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Abstract 

Wrong-way risk arises when an unexpected adverse change in interdependency among financial 
products or financial variables (such as interest rates, equities, exchange rates, credits, and 
commodities) triggers huge losses in portfolios. During the global financial crisis of 2007–09, 
financial institutions suffered huge losses due to the materialization of wrong-way risk. While 
its importance has been recognized by market participants, however, they have not reached a 
consensus on how to model and measure it. This paper proposes a method to model wrong-way 
risk in pricing and risk management and investigate the mechanism in which it can generate 
booms and busts in security prices. This paper assumes that there exist two types of investors 
with differing views on the management of the wrong-way risk and that they trade a derivative 
security with two underlying assets. The prudent (imprudent) investors are supposed to have a 
heavy (thin) tail structure in the joint distributions of risky assets in their models. This 
assumption implies that the reservation value on the security held by imprudent investors is 
higher than that by prudent investors. In this setup, a numerical analysis shows that (1) as time 
passes from the latest materialization of wrong-way risk and many investors tend to be 
imprudent, the market price is bidden up; and (2) once the wrong-way risk materializes, many 
imprudent investors realize the necessity for prudent management of wrong-way risk and thus 
the price drops suddenly to the lowest level.  
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I. Introduction 
It has been widely recognized that credit default swaps (CDSs) were one of the major driving 
forces behind the malfunctioning in the financial system during the global financial crises of 
2007–09. During the crisis, American International Group (AIG) suffered a huge amount of 
losses from its CDS position as a protection seller and its business condition deteriorated 
drastically.1 For protection buyers of AIG, this meant that the counterparty risk and the amount 
of exposure to AIG soared unexpectedly at the same time and they were forced to record huge 
mark-to-market losses caused by the inflated credit valuation adjustment (CVA).2 

The CDS problem just stated can be considered as a kind of materialization of wrong-way 
risk (WWR). WWR arises when an unexpected adverse change in interdependency among 
financial products or financial variables (such as interest rates, equities, exchange rates, credits, 
and commodities) triggers huge losses in portfolios.3 If market participants do not consider 
WWR, financial products tend to be overvalued compared with their true value incorporating 
WWR. Under favorable conditions without any adverse events, an optimistic view prevails and 
the degree of overvaluation continues to widen. As a result, once an unexpected adverse shock 
occurs, a huge loss is realized in these products. During the crises, many events were observed in 
which WWR eventuated and the financial system became destabilized. In this regard, Senior 
Supervisors Group (2009) states that the materialization of systemic risk during the financial 
crisis is deeply related to WWR. 

While the importance of WWR has been recognized by market participants, they have not 
reached a consensus on how to model and measure it. Current financial regulations require 
financial institutions to measure and monitor their portfolio risks up to the second moments 
(volatility and correlation) as a minimum requirement. Against this background, there is no need 
to consider the tail structure of the joint distribution among multiple financial products or 
variables, which are the source of WWR, and therefore only a limited number of financial 
institutions try to model and measure WWR. A contribution of this paper is to show that even if 
all investors implement prudent risk management up to the marginal distribution with linear 
correlation across risk categories, it is insufficient to prevent the market from suffering huge 
losses caused by the materialization of WWR. 

This paper proposes a method to model WWR in pricing and risk management and 

1 During the crisis, AIG lost US$99.2 billion from its CDS position as a protection seller in fiscal 2008. By the end 
of March 2008, AIG had accumulated a CDS position of up to US$475 billion (principal amount). 
2 According to the Basel Committee on Banking Supervision (BCBS), two-thirds of losses related to counterparty 
credit risk during the financial crisis were generated due to mark-to-market losses via CVA.  
3 The International Swaps and Derivatives Association (ISDA) defines WWR as a risk that occurs when “exposure 
to a counterparty is adversely correlated with the credit quality of that counterparty.” In this paper, we do not limit 
the scope of WWR to the correlation between the counterparty credit risk and the derivative exposure, but we cover 
all the events in which an unexpected adverse change in interdependency among financial products or financial 
variables (such as interest rates, equities, exchange rates, credits, and commodities) amplifies the loss. In addition, 
we place more emphasis on the tail property of WWR. 
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investigates the mechanism by which WWR can generate booms and busts in security prices. We 
consider an economy with two risky assets and use the bivariate jump-diffusion process with a 
common jump component to express an unexpected adverse change in interdependency. There is 
a market for a derivative security with two underlying assets, and there are a number of investors 
in the market trading the security with arm’s-length transactions.4 The security is assumed to be 
exposed to WWR. Then, we assume that although all the investors recognize an identical 
marginal distribution for each asset and the same covariance among assets, there exist two kinds 
of investors with differing techniques for considering the tail structure of the joint distribution: 
prudent (or conservative) and imprudent (or optimistic) investors. Prudent (imprudent) investors 
suppose a heavy (thin) tail structure and require a high (low) risk premium on WWR. As 
favorable conditions continue and many investors tend to be imprudent, security prices are 
bidden up. Once a large co-movement of underlying assets breaks out, however, the market price 
drops suddenly. This mechanism generates price trajectories with cyclical patterns of boom and 
bust. 

The remainder of the paper is structured as follows. Section 2 gives a brief review of the 
existing literature related to our study. Section 3 proposes a modeling approach for WWR in the 
pricing of derivative securities. We also introduce two types of investors with differing 
techniques for managing WWR. Section 4 provides the trading mechanism for our market and 
shows how the market price is formed. We prove that under certain conditions the market price 
converges to an overestimation price that does not reflect WWR. Section 5 demonstrates a 
numerical analysis of our model and shows how the market price fluctuates due to the differing 
approaches for modeling WWR across investors. Section 6 summarizes the paper.  

 
 

II. Literature Review 
Our study is related to three topics: (1) modeling of WWR; (2) the jump process and its 
application to risk modeling; and (3) asset pricing with heterogeneous agents. In this section, we 
briefly explain prior research on these issues. 
 
A. Modeling of WWR 
Most research on modeling WWR focuses on the relationship between counterparty credit risk 
and the derivative exposure to the counterparty. To the best of our knowledge, the first article 
dealing with WWR in derivative pricing is Duffie and Huang (1996). They examine the effect of 
correlation between the credit quality of the counterparty and the London Interbank Offered Rate 
(LIBOR) on the pricing of interest rate swaps. The research on WWR has seen many advances 
recently, especially since the financial crises of 2007–09. The fifth chapter of Brigo, Morini, and 

4 A market in which financial products are traded with arm’s-length transactions among investors is defined as an 
over-the-counter (OTC) market. 
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Pallavicini (2013) evaluates WWR embedded in CVA in the pricing of interest rate derivatives 
and avoids the undervaluation of derivatives indicated by Morini (2011) by introducing a jump 
component into the default intensity process of the counterparty. Brigo, Morini, and Pallavicini 
(2013) argue that it is indispensable to consider WWR properly in the valuation of derivative 
securities because the price impact of WWR is generally not trivial. Pykhtin and Sokol (2013) 
construct a model of the exposure for systemically important counterparties (SICs) and show that 
a default by SICs strongly affects market factors, which triggers the materialization of WWR and 
thus adversely affects the exposure of derivative transactions. There are many other studies 
dealing with WWR in CVA such as Redon (2006), Lipton and Sepp (2009), Caesari et al. (2009), 
Gregory (2012), Hull and White (2012), and it is not too much to say that the consideration of 
WWR in the valuation of OTC derivatives has become common practice in global financial 
markets. In addition to the derivative pricing related to WWR, a number of studies focus on the 
correlation structure among several assets from a statistical viewpoint. These studies emphasize 
that the amount of risk estimated in any metric depends largely on the tail structure of the joint 
distribution and that asset prices might be underestimated unless full information is available on 
the joint distribution. For example, Embrechts, Wang, and Wang (2014) compare the maximum 
and minimum of both value at risk (VaR) and expected shortfall (ES) on asset portfolios without 
using a specific model of the tail structure for the joint distribution (e.g., copulas) and they argue 
that the improper modeling of the tail structure causes a serious underestimation of risk 
regardless of the risk metrics. 
 
B. The Jump Process and Its Application to Risk Modeling 
Jump models, which are central to modeling WWR in this paper, have been utilized in many 
areas of financial studies. For example, in the pricing of credit derivatives, it is often observed 
that the credit spread suddenly widens along with the devaluation of the reference name’s 
creditworthiness (e.g., a downgrade), and the second chapter of Morini (2011) indicates that the 
undervaluation of derivative prices is deeply related to the modeling skill of this “jump” 
phenomenon. He concludes that, by comparing the default intensity processes with and without 
jumps, the introduction of a jump component in the intensity process is essential to evaluate the 
credit derivative appropriately. Pan (2002) reports that approximately 40 percent of the risk 
premium estimated from S&P500 option prices is attributed to the jump risk embedded in the 
underlying process and argues that the modeling approach to jump risk largely affects the 
estimation of the risk premium. Das and Uppal (2004) examine the optimal portfolio allocation 
for several risky assets, whose prices follow the jump diffusion process with systemic jumps (i.e., 
simultaneous jumps), and they conclude that the existence of systemic jumps worsens the 
effectiveness of portfolio diversification and causes serious losses to highly levered portfolios. 
Duffie and Garleanu (2001) introduce three types of jump components in the default intensity 
process—the common jump, the sector jump, and the idiosyncratic jump—to express the 
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complex correlation structure of defaults among reference names in their pricing model for 
collateralized debt obligations (CDOs). 
 
C. Asset Pricing with Heterogeneous Agents 
Research on asset pricing with heterogeneous agents, which we introduce to generate booms and 
busts in security prices, has developed rapidly together with progress in market microstructure 
studies. Studies in this area clarify the determination mechanism for the transaction price in a 
variety of markets (stocks, interest rates, commodities, foreign exchange rates (FX), etc.). Among 
them, Duffie, Garleanu, and Pedersen (2005) investigate the impact of both the price-bargaining 
behavior and the counterparty-searching behavior of market participants on the transaction price 
under heterogeneous agents with arm’s-length transactions. Their model combines the search 
model and the bargaining model and uses the two-step auction procedure in which an investor 
first searches for his/her trading counterparty and then negotiates with him/her to determine an 
individual transaction price. Kijima and Uchida (2005) extend the model of Duffie, Garleanu, 
and Pedersen (2005) using a Markov chain model. They assume that there are a finite number of 
investors, and they explore the effects of supply-demand fluctuations on transaction prices for an 
instrument. Their contribution is that they express the supply-demand balance across different 
types of investors as a distribution but not as a point estimation which is examined in Duffie, 
Garleanu, and Pedersen (2005). 
 
 

III. Modeling of WWR  
In this paper, we define WWR as the hazard of suffering huge losses caused by an unexpected 
adverse change in interdependency among risky assets. Specifically, we assume that the 
management of WWR is related to how to model the tail part of the joint distribution and use the 
bivariate jump-diffusion process with a common jump component to express the unexpected 
adverse change in interdependency between two risky assets. To examine the impact of WWR on 
the market price of a derivative security, we construct several structured products that are 
exposed to WWR. We also introduce two types of investors with differing views on the 
management of WWR. One takes WWR into account in the pricing and risk management of the 
security, while the other does not. The former views WWR as highly probable (type H), but the 
latter views it as less probable (type L). The reservation value of the security of type H investors 
is lower than that of type L investors, because the former takes WWR into account in the 
valuation of the security, while the latter does not.  
 
A. Stochastic Environment 
We introduce a filtered probability space (Ω, ℱ, 𝔽𝔽, ℙ)  where ℱ: = ℱ𝑇𝑇 , 𝑇𝑇 ≤ +∞ , 𝔽𝔽 ≔
{ℱ𝑡𝑡: 𝑡𝑡 ≥ 0, ℱ𝑡𝑡 ⊂ ℱ} is a complete, right-continuous, increasing filtration and ℙ is a (physical) 
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probability measure. Adapted to this filtration are two correlated standard Brownian motions 
�𝐵𝐵1,𝑡𝑡,𝐵𝐵2,𝑡𝑡�𝑡𝑡≥0  and four Poisson jump processes {𝐽𝐽𝐼𝐼1(𝑡𝑡), 𝐽𝐽𝐼𝐼2(𝑡𝑡), 𝐽𝐽𝐶𝐶1(𝑡𝑡), 𝐽𝐽𝐶𝐶2(𝑡𝑡)}𝑡𝑡≥0  where 𝐽𝐽𝑙𝑙𝑖𝑖(𝑡𝑡) ≔
∫ ∫ 𝑧𝑧𝑙𝑙𝑖𝑖𝑑𝑑𝑁𝑁𝑙𝑙𝑖𝑖(𝑧𝑧𝑙𝑙𝑖𝑖, 𝑠𝑠)ℤ
𝑡𝑡
0  ( 𝑧𝑧𝑙𝑙𝑖𝑖 ∈ ℤ ≔ (−1, +∞), 𝑖𝑖 ∈ {1,2} and 𝑙𝑙 ∈ {𝐶𝐶, 𝐼𝐼}). We set a special assumption on 

jump components that jumps occur simultaneously between 𝑖𝑖 = 1 and 2 on {𝐽𝐽𝐶𝐶1(𝑡𝑡), 𝐽𝐽𝐶𝐶2(𝑡𝑡)}𝑡𝑡≥0 
while independently on {𝐽𝐽𝐼𝐼1(𝑡𝑡), 𝐽𝐽𝐼𝐼2(𝑡𝑡)}𝑡𝑡≥0. Hence, we define {𝐽𝐽𝐶𝐶1(𝑡𝑡), 𝐽𝐽𝐶𝐶2(𝑡𝑡)}𝑡𝑡≥0 as the “common 
jump” processes and {𝐽𝐽𝐼𝐼1(𝑡𝑡), 𝐽𝐽𝐼𝐼2(𝑡𝑡)}𝑡𝑡≥0 as the “independent jump” processes. Jumps are assumed 
to occur independently over time. 𝑁𝑁𝑙𝑙𝑖𝑖(𝑧𝑧𝑙𝑙𝑖𝑖, 𝑡𝑡) represents a Poisson random measure that counts the 
number of jumps occurred up to time t, and its compensated version is given by 𝑁𝑁

~
𝑙𝑙
𝑖𝑖(𝑧𝑧𝑙𝑙𝑖𝑖, 𝑡𝑡) =

𝑁𝑁𝑙𝑙𝑖𝑖(𝑧𝑧𝑙𝑙𝑖𝑖, 𝑡𝑡) − 𝔼𝔼�𝑁𝑁𝑙𝑙𝑖𝑖(𝑧𝑧𝑙𝑙𝑖𝑖, 𝑡𝑡)� = 𝑁𝑁𝑙𝑙𝑖𝑖(𝑧𝑧𝑙𝑙𝑖𝑖, 𝑡𝑡) − 𝜐𝜐𝑙𝑙𝑖𝑖(𝑧𝑧𝑙𝑙𝑖𝑖, 𝑡𝑡)  where 𝜐𝜐𝑙𝑙𝑖𝑖(𝑧𝑧𝑙𝑙𝑖𝑖, 𝑡𝑡)  is a compensator with 𝜐𝜐𝑙𝑙𝑖𝑖(ℤ ×
[0, t]) < +∞  a. s. (∀𝑡𝑡 ≥ 0). Here we specify the compensator 𝜐𝜐𝑙𝑙𝑖𝑖(𝑧𝑧𝑙𝑙𝑖𝑖, 𝑡𝑡)  �∀(𝑖𝑖, 𝑙𝑙)�  such that 
𝜐𝜐𝑙𝑙𝑖𝑖(𝑧𝑧𝑖𝑖, 𝑡𝑡) ≔ 𝜆𝜆𝑙𝑙𝑖𝑖𝑡𝑡𝜑𝜑𝑙𝑙𝑖𝑖(𝑧𝑧𝑖𝑖) where 𝜑𝜑𝑙𝑙𝑖𝑖(𝑧𝑧𝑖𝑖) is a marginal distribution function with respect to jump size 
𝑧𝑧𝑙𝑙𝑖𝑖  and 𝜆𝜆𝑙𝑙𝑖𝑖(≥ 0 ) is a constant Poisson intensity. As for common jump intensities, we set 
𝜆𝜆𝐶𝐶1 = 𝜆𝜆𝐶𝐶2 ≔ 𝜆𝜆𝐶𝐶. We also assume that the jump size 𝑧𝑧𝑙𝑙𝑖𝑖 follows the log-normal distribution 
satisfying 𝑢𝑢𝑙𝑙𝑖𝑖 ≔ ln(1 + 𝑧𝑧𝑙𝑙𝑖𝑖) ~𝑁𝑁𝑙𝑙𝑖𝑖(𝜁𝜁𝑙𝑙𝑖𝑖, 𝛿𝛿𝑙𝑙𝑖𝑖2) �∀(𝑖𝑖, 𝑙𝑙)� where 𝑢𝑢𝐶𝐶1 and 𝑢𝑢𝐶𝐶2  are positively correlated 
with correlation coefficient 𝜌𝜌12

𝐽𝐽 ≥ 0  while 𝑢𝑢𝐼𝐼1  and 𝑢𝑢𝐼𝐼2  are independently distributed. For 
simplicity, we assume that the asset price in the market is observable at the end of any date. 

There are one riskless bond and two risky assets in a market. Their respective price 
processes {𝑃𝑃𝑡𝑡}𝑡𝑡≥0 and �𝑆𝑆1,𝑡𝑡,𝑆𝑆2,𝑡𝑡�𝑡𝑡≥0 evolve according to the following equations:  

 
𝑑𝑑𝑃𝑃𝑡𝑡 = 𝑟𝑟𝑃𝑃𝑡𝑡𝑑𝑑𝑡𝑡, 

 

 
𝑑𝑑𝑆𝑆𝑖𝑖,𝑡𝑡
𝑆𝑆𝑖𝑖,𝑡𝑡

= 𝜇𝜇𝑖𝑖𝑑𝑑𝑡𝑡 + 𝜎𝜎𝑖𝑖𝑑𝑑𝐵𝐵𝑖𝑖𝑡𝑡 + �𝑧𝑧𝐼𝐼𝑖𝑖
ℤ

𝑑𝑑𝑁𝑁
~
𝐼𝐼
𝑖𝑖(𝑧𝑧𝐼𝐼𝑖𝑖, 𝑡𝑡) + �𝑧𝑧𝐶𝐶𝑖𝑖

ℤ
𝑑𝑑𝑁𝑁

~
𝐶𝐶
𝑖𝑖(𝑧𝑧𝐶𝐶𝑖𝑖, 𝑡𝑡),   ∀𝑖𝑖 ∈ {1,2}, 

= (𝜇𝜇𝑖𝑖 − 𝜆𝜆𝐼𝐼𝑖𝑖𝜅𝜅𝐼𝐼𝑖𝑖 − 𝜆𝜆𝐶𝐶𝑖𝑖𝜅𝜅𝐶𝐶𝑖𝑖)𝑑𝑑𝑡𝑡 + 𝜎𝜎𝑖𝑖𝑑𝑑𝐵𝐵𝑖𝑖,𝑡𝑡 + �𝑧𝑧𝐼𝐼𝑖𝑖
ℤ

𝑑𝑑𝑁𝑁𝐼𝐼𝑖𝑖(𝑧𝑧𝐼𝐼𝑖𝑖, 𝑡𝑡) + �𝑧𝑧𝐶𝐶𝑖𝑖
ℤ

𝑑𝑑𝑁𝑁𝐶𝐶𝑖𝑖(𝑧𝑧𝐶𝐶𝑖𝑖, 𝑡𝑡), 

where 

𝜅𝜅𝐼𝐼𝑖𝑖 = �𝑧𝑧𝐼𝐼𝑖𝑖𝜑𝜑𝐼𝐼𝑖𝑖(𝑑𝑑𝑧𝑧𝐼𝐼𝑖𝑖)
ℤ

= exp �𝜁𝜁𝐼𝐼𝑖𝑖 +
1
2
𝛿𝛿𝐼𝐼𝑖𝑖2� − 1, 

𝜅𝜅𝐶𝐶𝑖𝑖 = �𝑧𝑧𝐶𝐶𝑖𝑖𝜑𝜑𝐶𝐶𝑖𝑖 (𝑑𝑑𝑧𝑧𝐶𝐶𝑖𝑖)
ℤ

= exp �𝜁𝜁𝐶𝐶𝑖𝑖 +
1
2
𝛿𝛿𝐶𝐶𝑖𝑖2 � − 1, 

 𝑑𝑑𝐵𝐵2,𝑡𝑡 = 𝜌𝜌12𝑑𝑑𝐵𝐵1,𝑡𝑡 + �1 −  𝜌𝜌122   𝑑𝑑𝐵𝐵0,𝑡𝑡, 

 
where 𝑟𝑟 ≥ 0 is a constant risk-free rate, �𝐵𝐵0,𝑡𝑡�𝑡𝑡≥0 is a standard Brownian motion independent of all 
other variables and 𝜌𝜌12 ∈ 𝐑  is a correlation coefficient for the diffusion part of the processes 
�𝜌𝜌12𝑑𝑑𝑡𝑡 = 𝑑𝑑〈𝐵𝐵1,𝑡𝑡,𝐵𝐵2,𝑡𝑡〉�. We assume that the price dynamics of two risky assets are given by the 
bivariate jump-diffusion process in which the jump component consists of the common jump and the 

(1) 
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independent jump.5 These dynamics are the common knowledge of all investors in the market. 
 
B. Investors with Differing Views on the Management of WWR 
There are 𝑁𝑁(< +∞) investors in the security market with two types of differing modeling approaches 
to WWR on the stochastic processes of two risky assets. “Type H” investors are considered to have a 
prudent view on managing WWR, while “type L” investors have an imprudent view. In this paper, we 
impose a rather unprecedented assumption that type H investors focus only on the common jump in the 
modeling of WWR, while type L investors focus only on the independent jumps, even though the 
dynamics of risky assets expressed in equation (1) are the common knowledge of all the investors. This 
assumption implies that, compared with equation (1), type H investors assess WWR more 
conservatively by imposing a heavier probability on the WWR scenarios, while type L investors 
recognize WWR more optimistically by imposing a thinner probability on the WWR events.  

Here, we should note that we do not consider equation (1) to be a “correct” model, but on the 
contrary both the common jump model and the independent jump model could be “incorrect” models. 
No investor is assumed to have a correct knowledge of WWR, and thus all the models could be 
categorized as incorrect ones. Therefore, all the investors are exposed to model uncertainty6 with 
respect to the modeling of WWR. Below, we modify equation (1) and generate two nested versions of 
jump processes so that each can be fitted to the WWR management view of their respective types. We 
note that both types are assumed to have the same filtered space (Ω, ℱ, 𝔽𝔽) but different probability 
assessments with respect to future events (scenarios). 

The price processes of risky assets recognized by type H are given by the bivariate jump-diffusion 
process with the jump component consisting only of common jumps: 
 

𝑑𝑑𝑆𝑆𝑖𝑖,𝑡𝑡
𝑆𝑆𝑖𝑖,𝑡𝑡

= (𝜇𝜇𝑖𝑖 − 𝜆𝜆𝐶𝐶𝑖𝑖𝜅𝜅𝐶𝐶𝑖𝑖)𝑑𝑑𝑡𝑡 + 𝜎𝜎𝑖𝑖𝑑𝑑𝐵𝐵𝑖𝑖,𝑡𝑡 + �𝑧𝑧𝐶𝐶𝑖𝑖
ℤ

𝑑𝑑𝑁𝑁𝐶𝐶𝑖𝑖(𝑧𝑧𝐶𝐶𝑖𝑖, 𝑡𝑡), ∀𝑖𝑖 ∈ {1,2}, 

where 

𝜅𝜅𝐶𝐶𝑖𝑖 = 𝔼𝔼𝐻𝐻[𝑧𝑧𝐶𝐶𝑖𝑖] = exp �𝜁𝜁𝐶𝐶𝑖𝑖 +
1
2
𝛿𝛿𝐶𝐶𝑖𝑖2 � − 1, 

𝑑𝑑𝐵𝐵2,𝑡𝑡 = 𝜌𝜌12𝐻𝐻 𝑑𝑑𝐵𝐵1,𝑡𝑡 + �1 −  (𝜌𝜌12𝐻𝐻 )2  𝑑𝑑𝐵𝐵0,𝑡𝑡. 

 

5 In this paper, the common jump is assumed to have a systematic impact on the entire market and this kind of 
jump risk cannot be diversified away. On the other hand, the independent jump is assumed to occur for either a 
firm-specific or sector-specific reason and does not have a systematic impact, because its risk can be diversified 
away. 
6 “Model uncertainty” is related to the uncertainty on the choice of the model itself. Unlike “risk,” which is the 
uncertainty on outcomes for which the probabilities are known, “model uncertainty” is recognized when several 
specifications are possible for such probabilities (Cont [2006]). In our setting, although each investor faces the 
model uncertainty, he/she will adopt either the common jump model or the independent jump model dependent on 
his/her type. 

(2) 
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This modification can be completed with the independent jump intensities in equation (1) 
converging to zero, that is, 𝜆𝜆𝐼𝐼𝑖𝑖 → 0,∀𝑖𝑖 ∈ {1,2}. The probability space is modified as (Ω, ℱ, 𝔽𝔽,
ℙ𝐻𝐻) where ℙ𝐻𝐻 is a subjective probability measure set by type H investors. We note that the 
measure ℙ𝐻𝐻 has heavier weights on the WWR events than the measure ℙ in equation (1). We 
define the conditional expectation under ℙ𝐻𝐻 as 𝔼𝔼𝑡𝑡𝐻𝐻[ ∙ ] ≔ 𝔼𝔼𝐻𝐻[ ∙  |ℱ𝑡𝑡]. 

On the other hand, the price processes of type L have no common jumps, and are given by 
the bivariate jump-diffusion process with the jump component consisting only of independent 
jumps: 
 

𝑑𝑑𝑆𝑆𝑖𝑖,𝑡𝑡
𝑆𝑆𝑖𝑖,𝑡𝑡

= (𝜇𝜇𝑖𝑖 − 𝜆𝜆𝐼𝐼𝑖𝑖𝜅𝜅𝐼𝐼𝑖𝑖)𝑑𝑑𝑡𝑡 + 𝜎𝜎𝑖𝑖𝑑𝑑𝐵𝐵𝑖𝑖,𝑡𝑡 + �𝑧𝑧𝐼𝐼𝑖𝑖
ℤ

𝑑𝑑𝑁𝑁𝐼𝐼𝑖𝑖(𝑧𝑧𝐼𝐼𝑖𝑖, 𝑡𝑡), ∀𝑖𝑖 ∈ {1,2}, 

where 

𝜅𝜅𝐼𝐼𝑖𝑖 = 𝔼𝔼𝐿𝐿[𝑧𝑧𝐼𝐼𝑖𝑖] = exp �𝜁𝜁𝐼𝐼𝑖𝑖 +
1
2
𝛿𝛿𝐼𝐼𝑖𝑖2� − 1, 

𝑑𝑑𝐵𝐵2,𝑡𝑡 = 𝜌𝜌12𝐿𝐿 𝑑𝑑𝐵𝐵1,𝑡𝑡 + �1 −  (𝜌𝜌12𝐿𝐿 )2  𝑑𝑑𝐵𝐵0,𝑡𝑡. 

 
This modification can be completed with the common jump intensity in equation (1) converging 
to zero, that is, 𝜆𝜆𝐶𝐶 → 0. The probability space is modified as (Ω, ℱ, 𝔽𝔽, ℙ𝐿𝐿) where ℙ𝐿𝐿 is a 
subjective probability measure set by the type L investor. We note that the measure ℙ𝐿𝐿 has 
thinner weights on the WWR events than the measure ℙ in equation (1). We define the 
conditional expectation under ℙ𝐿𝐿 as 𝔼𝔼𝑡𝑡𝐿𝐿[ ∙ ] ≔ 𝔼𝔼𝐿𝐿[ ∙  |ℱ𝑡𝑡]. 

Both types are assumed to have the same parameter values on asset price processes (i.e., 
drifts {𝜇𝜇1,𝜇𝜇2}, diffusion coefficients {𝜎𝜎1,𝜎𝜎2}, jump intensity {𝜆𝜆𝑙𝑙1, 𝜆𝜆𝑙𝑙2} (∀𝑙𝑙 ∈ {𝐶𝐶, 𝐼𝐼}), and mean 
and volatility of the jump size {(𝜁𝜁𝑙𝑙1, 𝛿𝛿𝑙𝑙1), (𝜁𝜁𝑙𝑙2, 𝛿𝛿𝑙𝑙2)} (∀𝑙𝑙 ∈ {𝐶𝐶, 𝐼𝐼}) are all identical between types) 
except for the diffusion correlation coefficient 𝜌𝜌12 ∈ 𝑹𝑹 (𝜌𝜌12𝐻𝐻  for type H , 𝜌𝜌12𝐿𝐿  for type L and 
𝜌𝜌12𝐻𝐻 ≠ 𝜌𝜌12𝐿𝐿 ) and the jump-size correlation coefficient 𝜌𝜌12

𝐽𝐽 ∈ 𝑹𝑹+ in the common jump process 
(𝜌𝜌12

𝐽𝐽 = 0 in the independent jump process). Every parameter value is constant, and the Poisson 
intensities are identical across assets and across types, that is, 𝜆𝜆𝐼𝐼1 = 𝜆𝜆𝐼𝐼2 = 𝜆𝜆𝐶𝐶 . 

    
C. Moment Restrictions and Tail Structure 
Given two distinctive bivariate price dynamics described above, we impose several constraints 
on means, variances, and correlations of risky assets so that both types have an identical marginal 
distribution for each asset and the same covariance between assets. These moment restrictions are 
given by 
 

𝔼𝔼𝐻𝐻 �
𝑑𝑑𝑆𝑆𝑖𝑖,𝑡𝑡
𝑆𝑆𝑖𝑖,𝑡𝑡

� = 𝜇𝜇𝑖𝑖 = 𝔼𝔼𝐿𝐿 �
𝑑𝑑𝑆𝑆𝑖𝑖,𝑡𝑡
𝑆𝑆𝑖𝑖,𝑡𝑡

� ,      ∀𝑖𝑖 ∈ {1,2}, 

(3) 
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𝑉𝑉𝑉𝑉𝑟𝑟𝐻𝐻 �
𝑑𝑑𝑆𝑆𝑖𝑖,𝑡𝑡
𝑆𝑆𝑖𝑖,𝑡𝑡

� = (𝜎𝜎𝑖𝑖2 + 𝜆𝜆𝔼𝔼𝑚𝑚[𝑧𝑧𝑖𝑖2])𝑑𝑑𝑡𝑡 = 𝑉𝑉𝑉𝑉𝑟𝑟𝐿𝐿 �
𝑑𝑑𝑆𝑆𝑖𝑖,𝑡𝑡
𝑆𝑆𝑖𝑖,𝑡𝑡

� ,    ∀𝑖𝑖 ∈ {1,2},∀𝑚𝑚 ∈ {𝐻𝐻, 𝐿𝐿}, 

𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟𝐻𝐻 �
𝑑𝑑𝑆𝑆1,𝑡𝑡

𝑆𝑆1,𝑡𝑡
,
𝑑𝑑𝑆𝑆2,𝑡𝑡

𝑆𝑆2,𝑡𝑡
� = 𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟𝐿𝐿 �

𝑑𝑑𝑆𝑆1,𝑡𝑡

𝑆𝑆1,𝑡𝑡
,
𝑑𝑑𝑆𝑆2,𝑡𝑡

𝑆𝑆2,𝑡𝑡
�, 

where 

     𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟𝐻𝐻 �
𝑑𝑑𝑆𝑆1,𝑡𝑡

𝑆𝑆1,𝑡𝑡
,
𝑑𝑑𝑆𝑆2,𝑡𝑡

𝑆𝑆2,𝑡𝑡
� =

𝜌𝜌12𝐻𝐻 𝜎𝜎1𝜎𝜎2 + 𝜆𝜆𝔼𝔼𝐻𝐻[𝑧𝑧1𝑧𝑧2]

�𝜎𝜎12 + 𝜆𝜆𝔼𝔼𝐻𝐻[𝑧𝑧12]�𝜎𝜎22 + 𝜆𝜆𝔼𝔼𝐻𝐻[𝑧𝑧22]
 , 

     𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟𝐿𝐿 �
𝑑𝑑𝑆𝑆1,𝑡𝑡

𝑆𝑆1,𝑡𝑡
,
𝑑𝑑𝑆𝑆2,𝑡𝑡

𝑆𝑆2,𝑡𝑡
� =

𝜌𝜌12𝐿𝐿 𝜎𝜎1𝜎𝜎2
�𝜎𝜎12 + 𝜆𝜆𝔼𝔼𝐿𝐿[𝑧𝑧12]�𝜎𝜎22 + 𝜆𝜆𝔼𝔼𝐿𝐿[𝑧𝑧22]

 , 

     𝔼𝔼𝐻𝐻[𝑧𝑧𝑖𝑖2] = 𝔼𝔼𝐿𝐿[𝑧𝑧𝑖𝑖2] = (𝜅𝜅𝑖𝑖 + 1) �exp �𝜁𝜁𝑖𝑖 +
3
2
𝛿𝛿𝑖𝑖2� − 2� + 1, 

     𝔼𝔼𝐻𝐻[𝑧𝑧1𝑧𝑧2] = (𝜅𝜅1 + 1)(𝜅𝜅2 + 1)exp�𝜌𝜌12
𝐽𝐽 𝛿𝛿1𝛿𝛿2� − (𝜅𝜅1 + 1)− (𝜅𝜅2 + 1) + 1. 

 
Here, we generate two sample joint distributions for the common jump model (type H) of 

equation (2) and the independent jump model (type L) of equation (3). We use parameter values 
satisfying the moment restrictions stated above. These are listed in Table 1. We fix the jump 
intensity parameter (𝜆𝜆) at 𝜆𝜆 = 0.05 so that a jump occurs on average every 20 years. 
 
 

Table 1  Trial Parameter Set 
Common Jump Model (Type H) 

𝜇𝜇1(= 𝜇𝜇2) σ1(= 𝜎𝜎2) 𝜌𝜌12𝐻𝐻  𝜆𝜆 𝜁𝜁1(= 𝜁𝜁2) 𝛿𝛿1(= 𝛿𝛿2) 𝜌𝜌12
𝐽𝐽  𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟𝐻𝐻(𝑑𝑑𝑆𝑆1 𝑆𝑆1⁄ ,𝑑𝑑𝑆𝑆2 𝑆𝑆2⁄ ) 

0.00 0.25 −0.9750 0.05 −0.325 0.01 0.999 −0.4384 

Independent Jump Model (Type L) 

𝜇𝜇1(= 𝜇𝜇2) σ1(= 𝜎𝜎2) 𝜌𝜌12𝐿𝐿  𝜆𝜆 𝜁𝜁1(= 𝜁𝜁2) 𝛿𝛿1(= 𝛿𝛿2) 𝜌𝜌12
𝐽𝐽  𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟𝐿𝐿(𝑑𝑑𝑆𝑆1 𝑆𝑆1⁄ ,𝑑𝑑𝑆𝑆2 𝑆𝑆2⁄ ) 

0.00 0.25 −0.9134 0.05 −0.325 0.01 － −0.4384 

 
 

Figure 1 plots the joint distributions with monthly frequency of 1,000 draws from both 
models. Both figures look alike, because they have the same statistical properties up to the 
second moments, but have completely different negative tail structures. On the left-hand side (the 
common jump model), the interdependency on the negative tail portion is contrary to our 
expectation that is formed by the negative correlation on the body portion. If the realization of 
events on the negative tail portion has an adverse impact on our portfolios and if we ignore it, we 
will suffer a huge loss as a result. This is the materialization of WWR consistent with our 
definition. On the right-hand side (the independent jump model), there is no event of WWR. Here, 
we have shown that even if the statistical properties are the same up to the second moments, we 
can construct two joint distributions with completely different tail structures. 
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Each model could generate a completely different risk amount due to the different structures 
on the negative tail portions of the joint distributions. For example, using the sample distributions 
generated above, we compute the 𝑉𝑉𝑉𝑉𝑅 at a confidence level of 99.9 percent (denoted by 
𝑉𝑉𝑉𝑉𝑅99.9) for a portfolio of 𝑆𝑆1 + 𝑆𝑆2 given conditions that the holding period is one month and the 
initial value of each asset is set to 1.0. Then the common jump model gives an estimate of 
𝑉𝑉𝑉𝑉𝑅99.9 = −0.675, while the independent jump model generates 𝑉𝑉𝑉𝑉𝑅99.9 = −0.312. This result 
suggests that the risk amount of a portfolio would be entirely underestimated if we do not take 
WWR into account in the modeling of joint distribution. 

    

Figure 1  Sampling of Joint Distributions 

 

 
In the following analyses, we show that the difference in modeling tail portions of the joint 

distribution could have the large impact on the valuation of financial instruments in the presence 
of WWR. 

    
D. Pricing Kernels for Two Types of Investors 
In the context of pricing derivative securities, models are specified under the appropriate 
probability measure. In this paper, we focus on two candidate pricing kernels for the respective 
jump models, each of which generates price dynamics under the martingale measure equivalent 
to its physical measure (ℙ𝐻𝐻 or ℙ𝐿𝐿). The pricing kernels proposed in this study are related to 
those derived in several studies such as Naik and Lee (1990), Bates (2000), Liu and Pan (2003), 
and Liu, Pan, and Wang (2005), in which the pricing kernel is derived from the expected utility 
maximization in equilibrium contexts. Our parametric forms can be regarded as an extension of 
their models with a single risky asset to those with two risky assets. We first propose two 
parametric forms of pricing kernel processes for respective types, that is, {𝜉𝜉𝑡𝑡𝐻𝐻 , 𝜉𝜉𝑡𝑡𝐿𝐿}𝑡𝑡≥0, and then 
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Independent Jump Model (Type L) 
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verify that these are valid pricing kernels which exclude arbitrage opportunities by showing that 
the deflated prices under respective physical measures (ℙ𝐻𝐻  or ℙ𝐿𝐿) are (local) martingale. 
Detailed derivations are presented in Appendix 1.  
 
1. Common jump process (type H)  
The parametric form of pricing kernel process {𝜉𝜉𝑡𝑡𝐻𝐻}𝑡𝑡≥0 for type H investors is given by 
 

𝑑𝑑𝜉𝜉𝑡𝑡𝐻𝐻

𝜉𝜉𝑡𝑡𝐻𝐻
= −𝑟𝑟𝑑𝑑𝑡𝑡 − (𝜼𝜼𝑡𝑡𝐻𝐻)𝑇𝑇𝑑𝑑𝑩𝑩𝑡𝑡 − �(1 − 𝜓𝜓)

ℤ
𝑑𝑑𝑁𝑁

~
𝐶𝐶(𝒛𝒛, 𝑡𝑡), 

where  

𝑩𝑩𝑡𝑡 = �𝐵𝐵1,𝑡𝑡,𝐵𝐵2,𝑡𝑡�
𝑇𝑇
, 𝒛𝒛 = (𝑧𝑧1, 𝑧𝑧2)𝑇𝑇, 𝒖𝒖 ≔ (ln(1 + 𝑧𝑧1) , ln(1 + 𝑧𝑧2))𝑇𝑇, 𝒖𝒖~𝑁𝑁�𝜻𝜻𝐽𝐽,𝜮𝜮𝐽𝐽�, 

𝜻𝜻𝐽𝐽 = (𝜁𝜁1, 𝜁𝜁2)𝑇𝑇, 𝜮𝜮𝐽𝐽 = �𝛿𝛿11 𝛿𝛿12
𝛿𝛿21 𝛿𝛿22

�, 𝛿𝛿11: = 𝛿𝛿12, 𝛿𝛿22: = 𝛿𝛿22, 𝛿𝛿12 = 𝜌𝜌12
𝐽𝐽 𝛿𝛿1𝛿𝛿2, 

           𝜓𝜓: = exp �𝜈𝜈1 + 𝝂𝝂2𝑇𝑇𝒖𝒖 − 𝝂𝝂2𝑇𝑇𝜻𝜻𝐽𝐽 −
1
2
𝝂𝝂2𝑇𝑇𝜮𝜮𝐽𝐽𝝂𝝂2�, 𝜈𝜈1: scalar, 𝝂𝝂2 = (𝜈𝜈21, 𝜈𝜈22)𝑇𝑇, 

 
𝜼𝜼𝑡𝑡𝐻𝐻 = �𝜂𝜂1,𝑡𝑡

𝐻𝐻 ,𝜂𝜂2,𝑡𝑡
𝐻𝐻 �𝑇𝑇 is a vector of the market price of diffusive risk, 𝜓𝜓 represents the market price 

of common jump risk, and 𝑁𝑁
~
𝐶𝐶(𝒛𝒛, 𝑡𝑡) ≔ 𝑁𝑁𝐶𝐶(𝒛𝒛, 𝑡𝑡) − 𝜆𝜆𝑡𝑡𝜑𝜑𝐶𝐶(𝒛𝒛) represents the compensated version of 

Poisson random measure for common jumps with a joint distribution function 𝜑𝜑𝐶𝐶(𝒛𝒛) for two 
jump sizes 𝒛𝒛 = (𝑧𝑧𝐶𝐶1, 𝑧𝑧𝐶𝐶2)𝑇𝑇. 

From the specifications above, we can derive the bivariate jump diffusion process for type H 
under a martingale measure ℚ𝐻𝐻 that is equivalent to its physical measure ℙ𝐻𝐻. 

 
𝑑𝑑𝑆𝑆𝑖𝑖,𝑡𝑡
𝑆𝑆𝑖𝑖,𝑡𝑡

= �𝑟𝑟 − 𝜆𝜆ℚ𝐻𝐻𝜅𝜅𝑖𝑖
ℚ𝐻𝐻� 𝑑𝑑𝑡𝑡 + 𝜎𝜎𝑖𝑖𝑑𝑑𝐵𝐵𝑖𝑖,𝑡𝑡

ℚ𝐻𝐻 + �𝑧𝑧𝑖𝑖∗
ℤ

𝑑𝑑𝑁𝑁𝐶𝐶
ℚ𝐻𝐻𝑖𝑖(𝑧𝑧𝑖𝑖∗, 𝑡𝑡), ∀𝑖𝑖 ∈ {1,2}, 

where 

           𝜆𝜆ℚ𝐻𝐻: = 𝜆𝜆𝑒𝑒𝜈𝜈1 , 𝜅𝜅𝑖𝑖
ℚ𝐻𝐻: = 𝔼𝔼ℚ𝐻𝐻[z𝑖𝑖∗] = (𝜅𝜅𝑖𝑖 + 1)exp�𝝂𝝂2𝑇𝑇𝚺𝚺𝐽𝐽𝜺𝜺𝑖𝑖� − 1, 

𝑧𝑧𝑖𝑖∗: =  exp(𝑢𝑢𝑖𝑖∗) − 1,    𝒖𝒖∗ ≔ (𝑢𝑢1∗, 𝑢𝑢2∗)𝑇𝑇 ~𝑁𝑁�𝜻𝜻∗ ,𝚺𝚺𝐽𝐽�,    𝜻𝜻∗ ≔ �𝜁𝜁1 + 𝝂𝝂2𝑇𝑇𝚺𝚺𝐽𝐽𝜺𝜺1, 𝜁𝜁2 + 𝝂𝝂2𝑇𝑇𝚺𝚺𝐽𝐽𝜺𝜺2�
𝑇𝑇

,  

𝑩𝑩𝑡𝑡
ℚ𝐻𝐻 = �𝐵𝐵1,𝑡𝑡

ℚ𝐻𝐻 ,𝐵𝐵2,𝑡𝑡
ℚ𝐻𝐻�

𝑇𝑇
represents a vector of standard Brownian motions under ℚ𝐻𝐻, 

             ∫ ∫ 𝑧𝑧𝑖𝑖∗ℤ 𝑑𝑑𝑁𝑁𝐶𝐶
ℚ𝐻𝐻𝑖𝑖(𝑧𝑧𝑖𝑖∗, 𝑡𝑡)t

0  is a jump process under ℚ𝐻𝐻 and 𝜺𝜺𝑖𝑖 ≔ �(1,0)𝑇𝑇  if  𝑖𝑖 = 1
(0,1)𝑇𝑇  if  𝑖𝑖 = 2

 . 

 
2. Independent jump process (type L) 
The parametric form of pricing kernel process {𝜉𝜉𝑡𝑡𝐿𝐿}𝑡𝑡≥0 for type L investors is given by 

(4) 

(5) 
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𝑑𝑑𝜉𝜉𝑡𝑡𝐿𝐿

𝜉𝜉𝑡𝑡𝐿𝐿
= −𝑟𝑟𝑑𝑑𝑡𝑡 − (𝜼𝜼𝑡𝑡𝐿𝐿)𝑇𝑇𝑑𝑑𝑩𝑩𝑡𝑡, 

where 𝜼𝜼𝑡𝑡𝐿𝐿 = �𝜂𝜂1,𝑡𝑡
𝐿𝐿 , 𝜂𝜂2,𝑡𝑡

𝐿𝐿 �
𝑇𝑇
 is a vector of market price of diffusive risks.  

We note that there is no jump component in the pricing kernel defined above because we 
assume that the independent jump is purely idiosyncratic and that its risk can be diversified 
away.7 Hence, no investor requests any reward for bearing the independent jump risk. Then, we 
derive the bivariate jump diffusion process for type L under the martingale measure ℚ𝐿𝐿 
equivalent to its physical measure ℙ𝐿𝐿. 
 

𝑑𝑑𝑆𝑆𝑖𝑖,𝑡𝑡
𝑆𝑆𝑖𝑖,𝑡𝑡

= (𝑟𝑟 − 𝜆𝜆𝜅𝜅𝑖𝑖)𝑑𝑑𝑡𝑡 + 𝜎𝜎𝑖𝑖𝑑𝑑𝐵𝐵𝑖𝑖,𝑡𝑡
ℚ𝐿𝐿 + �𝑧𝑧𝑖𝑖

ℤ
𝑑𝑑𝑁𝑁𝐼𝐼𝑖𝑖(𝑧𝑧𝑖𝑖, 𝑡𝑡), ∀𝑖𝑖 ∈ {1,2}, 

where 𝑩𝑩𝑡𝑡
ℚ𝐿𝐿 = �𝐵𝐵1,𝑡𝑡

ℚ𝐿𝐿 ,𝐵𝐵2,𝑡𝑡
ℚ𝐿𝐿�

𝑇𝑇
is a vector of standard Brownian motions under ℚ𝐿𝐿. 

 
E. Valuation of Financial Instruments with WWR 
To clarify the impact of different modeling approaches of WWR on the market price of a 
financial instrument, we introduce several fictitious but realistic structured products that typically 
incorporate WWR in their payoff structure.8 We construct these instruments so that most of the 
premiums reflected in the future payoffs are attributed mostly to the common jump risk. 
Therefore, if an investor uses the independent jump model to evaluate the instrument, the 
resulting value will be overvalued relative to that evaluated with the common jump model. We 
define the “WWR premium” as the difference between the value computed with the independent 
jump model and that computed with the common jump model. 

Here, we introduce several versions of asset-linked structured notes that have two 
underlying assets whose prices follow the bivariate jump-diffusion process, as already discussed. 
We characterize the materialization of WWR as the occurrence of a common jump on underlying 
assets within a short time interval (e.g., one month), causing great damage to either the coupon 

7 Without affecting the results of this study, the independent jumps can be assumed to be exposed to the systematic 
risk and thus have the risk premium. In this case, the pricing kernel for the independent jump process has the jump 
component.  
8 Credit derivatives in OTC markets are representative products incorporating WWR. For example, CDS includes 
WWR via the adverse change of interconnectedness between the credit quality of its reference name and that of the 
counterparty. Securitized products such as CDOs, collateralized loan obligations (CLOs), and commercial 
mortgage-backed securities (CMBSs) are exposed to WWR through either the simultaneous defaults of reference 
names or the simultaneous jumps in credit spreads. Many OTC derivatives with multiple risk factors such as 
interest rates (domestic and foreign) and FX, such as power reverse dual-currency notes (PRDCs), would be 
exposed to WWR through the adverse change in interdependency among risk factors. Furthermore, asset portfolios 
such as equities, bonds, commodities, FX, and their compositions—and even traditional loan portfolios—are on the 
edge of WWR via a simultaneous price plunge or default. 

(6) 

(7) 

11 
 

                                                 



cash flow or the principal amount of the note. The common setup of the structured notes is 
described as follows.  

The coupon is paid discretely at each time grid 𝑡𝑡𝑘𝑘 (∀𝑡𝑡𝑘𝑘 ∈ (0,𝑇𝑇],𝑘𝑘 ∈ {1,⋯ ,𝑁𝑁}, 𝑡𝑡0: = 0, 𝑡𝑡𝑁𝑁: =
𝑇𝑇) with a constant interval 𝛥𝛥 ≔ 𝑡𝑡𝑘𝑘 − 𝑡𝑡𝑘𝑘−1  (∀𝑘𝑘 ∈ {1,⋯ ,𝑁𝑁}) where 𝑇𝑇 is the terminal date of the 
notes. Here, 𝛥𝛥 expresses a year fraction of the interval such as 𝛥𝛥 = 1 4⁄  (quarterly) and 
𝛥𝛥 = 1 2⁄  (semiannually). In this paper, we set 𝛥𝛥 = 1 12⁄  (monthly). The principal amount of 
one unit of the note is standardized as 𝑋𝑋0 = 1.0 and the redemption amount 𝑋𝑋𝑇𝑇 at T depends 
on the sample paths of two risky assets up to maturity, that is, �𝑆𝑆1,𝑡𝑡,𝑆𝑆2,𝑡𝑡�0≤𝑡𝑡≤𝑇𝑇, and the coupon rate 
𝐶𝐶𝑡𝑡𝑘𝑘  at each grid is either high coupon 𝐶𝐶𝐻𝐻𝑖𝑖𝐻𝐻ℎ  or low coupon 𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿  �𝐶𝐶𝐻𝐻𝑖𝑖𝐻𝐻ℎ > 𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿 ≥ 0� , 

depending on the paths of two risky assets up to 𝑡𝑡𝑘𝑘, i.e., �𝑆𝑆1,𝑡𝑡,𝑆𝑆2,𝑡𝑡�0≤𝑡𝑡≤𝑡𝑡𝑘𝑘.  

In this study, we consider three cases of payoff conditions that determine either the principal 
amount redeemed at the maturity (T) (case 1 and 2) or the coupon cash flows (all cases). We 
assume no credit risk (no default of the issuer of the note) and no liquidity risk in all cases. 
 
【Case 1】 

𝑋𝑋𝑇𝑇 = �𝑋𝑋0min �min�
𝑆𝑆1,𝑇𝑇

𝑆𝑆1,0
,
𝑆𝑆2,𝑇𝑇

𝑆𝑆2,0
� , 1�    if  ∃(𝑡𝑡𝑘𝑘−1, 𝑡𝑡𝑘𝑘] ∈ [0,𝑇𝑇] with 

𝑆𝑆1,𝑡𝑡𝑘𝑘 

𝑆𝑆1,𝑡𝑡𝑘𝑘−1
≤ 𝐾𝐾 and  

𝑆𝑆2,𝑡𝑡𝑘𝑘 

𝑆𝑆2,𝑡𝑡𝑘𝑘−1
≤ 𝐾𝐾   

𝑋𝑋0            otherwise
 

𝐶𝐶𝑡𝑡𝑘𝑘 = �
𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿      if      

𝑆𝑆1,𝑡𝑡𝑘𝑘
𝑆𝑆1,𝑡𝑡𝑘𝑘−1

≤ 𝜃𝜃  and 
𝑆𝑆2,𝑡𝑡𝑘𝑘
𝑆𝑆2,𝑡𝑡𝑘𝑘−1

≤ 𝜃𝜃

𝐶𝐶𝐻𝐻𝑖𝑖𝐻𝐻ℎ                otherwise
 

  
where 𝐾𝐾 ∈ (0,1)  is a knock-in threshold for the principal redemption amount 𝑋𝑋𝑇𝑇  and 
𝜃𝜃 ∈ (0,1) is a threshold for determining each grid’s coupon rate 𝐶𝐶𝑡𝑡𝑘𝑘 . We assume 𝐾𝐾 < 𝜃𝜃 
throughout all cases. 
 
【Case 2】 

𝑋𝑋𝑇𝑇 = �𝑋𝑋0min �min � min
0≤𝑡𝑡≤𝑇𝑇

𝑆𝑆1,𝑡𝑡

𝑆𝑆1,0
, min
0≤𝑡𝑡≤𝑇𝑇

𝑆𝑆2,𝑡𝑡

𝑆𝑆2,0
� , 1� if  ∃(𝑡𝑡𝑘𝑘−1, 𝑡𝑡𝑘𝑘] ∈ [0,𝑇𝑇] with 

𝑆𝑆1,𝑡𝑡𝑘𝑘
𝑆𝑆1,𝑡𝑡𝑘𝑘−1

≤ 𝐾𝐾 and  
𝑆𝑆2,𝑡𝑡𝑘𝑘
𝑆𝑆2,𝑡𝑡𝑘𝑘−1

≤ 𝐾𝐾

𝑋𝑋0            otherwise
 

 
The condition for determining coupon rates {𝐶𝐶𝑡𝑡𝑘𝑘} is the same as in case 1. In addition, the 
knock-in condition for the principal amount is identical to case 1. Compared with case 1, the 
potential damage on the principal amount is more severe. This is considered to be the most severe 
of all cases of WWR. 
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【Case 3】 

𝐶𝐶𝑡𝑡𝑘𝑘 = �
𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿   if  𝑡𝑡𝑘𝑘 > min�𝑠𝑠 ∈ {𝑡𝑡0, 𝑡𝑡1,⋯ , 𝑡𝑡𝑁𝑁−1}: (𝑠𝑠, 𝑠𝑠 + Δ] ∈ [0,𝑇𝑇] with 

𝑆𝑆1,𝑠𝑠+Δ

𝑆𝑆1,𝑠𝑠
≤ 𝐾𝐾 and  

𝑆𝑆2,𝑠𝑠+𝛥𝛥

𝑆𝑆2,𝑠𝑠
≤ 𝐾𝐾�   

𝐶𝐶𝐻𝐻𝑖𝑖𝐻𝐻ℎ             otherwise
 

 
In this case, the principal amount is fully guaranteed as 𝑋𝑋𝑇𝑇 = 𝑋𝑋0 but the coupons paid at 𝑡𝑡𝑘𝑘 
and thereafter could be fixed to the low rate 𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿 depending on the paths of two risky assets up 

to 𝑡𝑡𝑘𝑘, that is, �𝑆𝑆1,𝑠𝑠, 𝑆𝑆2,𝑠𝑠�0≤𝑠𝑠≤𝑡𝑡𝑘𝑘. This is considered to be the mildest case of WWR. 

The value of structured note for type 𝑚𝑚 ∈ {𝐻𝐻, 𝐿𝐿} at time 𝑡𝑡0 is expressed as 𝑉𝑉0𝑚𝑚 and is 
computed by taking the expectation of the sum of discounted coupons and the redeemed principal 
amount 𝑋𝑋𝑇𝑇 under the martingale measure ℚ𝑚𝑚 (∀𝑚𝑚 ∈ {𝐻𝐻, 𝐿𝐿}). 
 

𝑉𝑉0𝑚𝑚 = 𝔼𝔼0
ℚ𝑚𝑚 �� exp(−𝑟𝑟𝑡𝑡𝑖𝑖)𝐶𝐶𝑡𝑡𝑖𝑖𝛥𝛥 𝑋𝑋0 + exp(−𝑟𝑟𝑇𝑇)𝑋𝑋𝑇𝑇

𝑁𝑁

𝑖𝑖=1

�. 

 
In this study, we utilize the Monte Carlo simulation for computing the value of each 

instrument. We simulate the bivariate jump-diffusion process of both the common and 
independent jump models under the respective martingale measures (ℚ𝐻𝐻 or  ℚ𝐿𝐿) . The 
implementation procedure is described in Appendix 2. 

Next, we prepare several parameter sets, each of which reflects different conditions of 
correlations, diffusion coefficients, and jump intensities. We prefix several parameter values such 
as 𝐾𝐾 = 0.75, 𝜃𝜃 = 0.85, 𝜌𝜌12

𝐽𝐽  = 1.0, 𝜁𝜁𝑖𝑖 = −0.3, 𝛿𝛿𝑖𝑖 = 0.1 (𝑖𝑖 = 1,2) and 𝑟𝑟 = 0.01. We also fix 
the low coupon rate equal to zero, that is, 𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿 = 0. We specify the high coupon rate 𝐶𝐶𝐻𝐻𝑖𝑖𝐻𝐻ℎ so 
that the value of the structured note under the independent jump model (type L) is equal to 1.0. In 
addition, we examine different lengths of the maturity such that 𝑇𝑇 ∈ {5,10,20}. 

To determine the jump risk parameters for the common jump model under the martingale 
measure ℚ𝐻𝐻  ( 𝜆𝜆ℚ𝐻𝐻 = 𝜆𝜆𝑒𝑒𝜈𝜈1  and 𝜅𝜅ℚ𝐻𝐻 = (𝜅𝜅𝑖𝑖 + 1)exp�𝝂𝝂2𝑇𝑇𝜮𝜮𝐽𝐽𝜺𝜺𝑖𝑖� − 1 ), a knowledge  of 
{ν1, ν21, ν22} is required. In this study, we refer to Bates (2000) to explore these values.9 The 
jump-related parameters in his model under a martingale measure ℚ  are given by 𝜆𝜆ℚ =
𝜆𝜆(1 + 𝜅𝜅)−𝜋𝜋 exp�−(1 2⁄ )𝛿𝛿2𝜋𝜋(1 + 𝜋𝜋)�  and 𝜅𝜅ℚ = exp(𝜁𝜁 − (1 2⁄ )𝛿𝛿2 − 𝜋𝜋𝛿𝛿2) − 1 , where 
𝜋𝜋 (∈ [0,1]) is a portfolio weight for a risky asset whose price evolution follows a jump-diffusion 
process. We set 𝜋𝜋 = 0.5, which implies that 50 percent of his portfolio consists of the risky asset. 
In addition, we impose a constraint of 𝜈𝜈21 = 𝜈𝜈22, that is, the market prices of the jump-size risk 
for the two jumps are assumed to be symmetric. We can determine the values of {ν1, ν21, ν22} by 

9 Bates (2000) derives a risk-neutral process for a jump-diffusion process in an equilibrium context in which an 
agent maximizes the expected utility by optimally allocating the wealth between a risky asset and a riskless bond. 

(8) 
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equating �𝜆𝜆ℚ𝐻𝐻 , 𝜅𝜅ℚ𝐻𝐻� with (𝜆𝜆ℚ, 𝜅𝜅ℚ) under the conditions stated above. 
We prepare nine parameter sets, each of which has distinct parameter values on the risky 

asset processes. These are presented in Table 2. Note that every parameter set satisfies the 
moment restrictions imposed in this section. We choose negative values for the overall 
correlation coefficient �Corr.≔ 𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟𝑚𝑚�𝑑𝑑𝑆𝑆1,𝑡𝑡 𝑆𝑆1,𝑡𝑡⁄ ,𝑑𝑑𝑆𝑆2,𝑡𝑡 𝑆𝑆2,𝑡𝑡⁄ �, 𝑚𝑚 ∈ {𝐻𝐻, 𝐿𝐿}� so that our model can 
generate a typical situation in which the realization of WWR will cause a great change in the 
correlation structure of the two assets. The jump intensity parameter (𝜆𝜆) is selected with small 
numbers to make the materialization of WWR (the occurrence of the common jump) a rare event. 
For example, 𝜆𝜆 = 0.1 implies that WWR will materialize on average every 10 (= 1/0.1) years. 

Table 3 summarizes the valuation results for three cases of the asset-linked structured notes 
under the nine parameter sets presented in Table 2. Each table presents the valuation results under 
a different length of maturity. Recall that we manipulate the high coupon rate 𝐶𝐶𝐻𝐻𝑖𝑖𝐻𝐻ℎ so that the 
value of type L (= 𝑉𝑉𝐿𝐿) is equal to 1.0. 

It is obvious that the values of type H (= 𝑉𝑉𝐻𝐻) are, in all cases and across tables, much 
smaller than those of type L. The difference between 𝑉𝑉𝐿𝐿 and 𝑉𝑉𝐻𝐻  (= 𝑉𝑉𝐿𝐿 − 𝑉𝑉𝐻𝐻) is represented 
by Diff.(IJ – CJ), which expresses the WWR premium. The maximum WWR premium is more 
than 5,000 basis points in Table 3(C) (case 1 and 2 with 𝑇𝑇 = 20). Even in the mildest case of 
WWR (case 3), the largest value of the WWR premium records more than 600 basis points in 
Table 3(C). These results suggest that the WWR premium generated due to the disparity in the 
modeling approaches of WWR (between type H and L) could be huge. If the materialization of 
WWR causes damage to the principal amount (case 1 and 2), which is typical for many credit 
derivative products, the WWR premium grows much larger. 

There are three obvious tendencies on the values of type H in all cases and across maturities.     
First, the values under the common jump model are lower (higher) when the jump intensity is 
higher (lower). Since we set the average jump size under martingale measure to a large negative 
value (–25.92 percent) and the jump size volatility to a relatively smaller value (7.43 percent), 
the occurrence of common jumps will in many cases lead relative prices �𝑆𝑆1,𝑡𝑡 𝑆𝑆1,𝑡𝑡−Δ⁄ and  𝑆𝑆2,𝑡𝑡/
𝑆𝑆2,𝑡𝑡−Δ� to cross the threshold 𝐾𝐾 (= 0.75) simultaneously from above. In addition, except for 
case 3, once the note is knocked in, the principal redemption amount will vary according to the 
sample paths of the two asset prices over (0,𝑇𝑇]. Hence, the higher jump intensity would cause 
damage to the principal amount of the note more frequently than the lower one.  
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Table 2  Parameter Setting for Valuation of Structured Notes 
Set # Corr. 𝜆𝜆 Model 𝜎𝜎1(= 𝜎𝜎2) 𝜌𝜌12𝐻𝐻   𝜌𝜌12𝐿𝐿  𝜆𝜆ℚ𝐻𝐻 𝜁𝜁ℚ𝐻𝐻 

1  

 

−0.3 

1
15

 
CJ 0.21464 −0.9750 -- 0.07755 −0.3050 

IJ 0.21464 -- −0.8725 -- -- 

2 1
10

 
CJ 0.26290 −0.9750 -- 0.11633 −0.3050 

IJ 0.26290 -- −0.8725 -- -- 

3 1
7

 
CJ 0.31420 −0.9750 -- 0.16618 −0.3050 

IJ 0.31420 -- −0.8725 -- -- 

4  

 

−0.4 

1
15

 
CJ 0.26340 −0.9750 -- 0.07755 −0.3050 

IJ 0.26340 -- −0.9069 -- -- 

5 1
10

 
CJ 0.32260 −0.9750 -- 0.11633 −0.3050 

IJ 0.32260 -- −0.9069 -- -- 

6 1
7

 
CJ 0.38560 −0.9750 -- 0.16618 −0.3050 

IJ 0.38560 -- −0.9069 -- -- 

7  

 

−0.5 

1
15

 
CJ 0.32015 −0.9750 -- 0.07755 −0.3050 

IJ 0.32015 -- −0.9289 -- -- 

8 1
10

 
CJ 0.39212 −0.9750 -- 0.11633 −0.3050 

IJ 0.39212 -- −0.9289 --  

9 1
7

 
CJ 0.46860 −0.9750 -- 0.16618 −0.3050 

IJ 0.46860 -- −0.9289 -- -- 

 
 

Secondly, the overall correlation coefficient between the two assets, 
𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟�𝑑𝑑𝑆𝑆1,𝑡𝑡 𝑆𝑆1,𝑡𝑡⁄ ,𝑑𝑑𝑆𝑆2,𝑡𝑡 𝑆𝑆2,𝑡𝑡⁄ � , does not have a major impact on the valuation. The overall 
correlation is driven mostly by the negative diffusive correlation (𝜌𝜌12𝑚𝑚 , 𝑚𝑚 ∈ {𝐻𝐻, 𝐿𝐿}) but the 
diffusion parts of the processes can hardly cause large price changes within a short time interval. 
We construct the payoff structures of the notes so that the payoffs are largely dependent on the 
occurrence of the common jumps (i.e., materialization of WWR) and hence the overall 
correlation coefficient does not have much impact on the value of notes.  

Finally, the longer (shorter) maturity induces the lower (higher) value. Since the longer 
maturity would raise the odds of the occurrence of common jumps within a sub-interval (i.e., one 
month) to the maturity, the notes with longer maturity are more susceptible to the materialization 
of WWR. 
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Table 3  Valuation of Structured Notes 
(A) T = 5 

 
Set # 

Case 1 Case 2 Case 3 
CJ (𝑉𝑉𝐻𝐻) IJ (𝑉𝑉𝐿𝐿) Diff.(IJ − CJ) CJ (𝑉𝑉𝐻𝐻) IJ (𝑉𝑉𝐿𝐿) Diff.(IJ − CJ) CJ (𝑉𝑉𝐻𝐻) IJ (𝑉𝑉𝐿𝐿) Diff.(IJ − CJ) 

1 0.9235  1.0000  0.0765  0.9165  1.0000  0.0835  0.9965  1.0000  0.0035  
2 0.8858  1.0000  0.1142  0.8764  1.0000  0.1236  0.9952  1.0000  0.0048  
3 0.8382  1.0000  0.1618  0.8270  1.0000  0.1730  0.9938  1.0000  0.0062  
4 0.9225  1.0000  0.0775  0.9158  1.0000  0.0842  0.9967  1.0000  0.0033  
5 0.8853  1.0000  0.1147  0.8767  1.0000  0.1233  0.9956  1.0000  0.0044  
6 0.8405  1.0000  0.1595  0.8309  1.0000  0.1691  0.9944  1.0000  0.0056  
7 0.9223  1.0000  0.0777  0.9161  1.0000  0.0839  0.9970  1.0000  0.0030  
8 0.8859  1.0000  0.1141  0.8786  1.0000  0.1214  0.9960  1.0000  0.0040  
9 0.8435  1.0000  0.1565  0.8358  1.0000  0.1642  0.9950  1.0000  0.0050  

(B) T = 10 
 

Set # 

Case 1 Case 2 Case 3 

CJ (𝑉𝑉𝐻𝐻) IJ (𝑉𝑉𝐿𝐿) Diff.(IJ − CJ) CJ (𝑉𝑉𝐻𝐻) IJ (𝑉𝑉𝐿𝐿) Diff.(IJ − CJ) CJ (𝑉𝑉𝐻𝐻) IJ (𝑉𝑉𝐿𝐿) Diff.(IJ − CJ) 

1 0.8425  1.0000  0.1575  0.8286  1.0000  0.1714  0.9871  1.0000  0.0129  
2 0.7683  1.0000  0.2317  0.7526  1.0000  0.2474  0.9828  1.0000  0.0172  
3 0.6853  1.0000  0.3147  0.6699  1.0000  0.3301  0.9784  1.0000  0.0216  
4 0.8382  1.0000  0.1618  0.8260  1.0000  0.1740  0.9881  1.0000  0.0119  
5 0.7684  1.0000  0.2316  0.7558  1.0000  0.2442  0.9843  1.0000  0.0157  
6 0.6859  1.0000  0.3141  0.6745  1.0000  0.3255  0.9801  1.0000  0.0199  
7 0.8373  1.0000  0.1627  0.8273  1.0000  0.1727  0.9890  1.0000  0.0110  
8 0.7690  1.0000  0.2310  0.7597  1.0000  0.2403  0.9855  1.0000  0.0145  
9 0.6942  1.0000  0.3058  0.6868  1.0000  0.3132  0.9819  1.0000  0.0181  

(C) T = 20 
 

Set # 

Case 1 Case 2 Case 3 

CJ (𝑉𝑉𝐻𝐻) IJ (𝑉𝑉𝐿𝐿) Diff.(IJ − CJ) CJ (𝑉𝑉𝐻𝐻) IJ (𝑉𝑉𝐿𝐿) Diff.(IJ − CJ) CJ (𝑉𝑉𝐻𝐻) IJ (𝑉𝑉𝐿𝐿) Diff.(IJ − CJ) 

1 0.7102  1.0000  0.2898  0.6906  1.0000  0.3094  0.9564  1.0000  0.0436  
2 0.5979  1.0000  0.4021  0.5813  1.0000  0.4187  0.9436  1.0000  0.0564  
3 0.4891  1.0000  0.5109  0.4774  1.0000  0.5226  0.9308  1.0000  0.0692  
4 0.7039  1.0000  0.2961  0.6891  1.0000  0.3109  0.9589  1.0000  0.0411  
5 0.5961  1.0000  0.4039  0.5852  1.0000  0.4148  0.9475  1.0000  0.0525  
6 0.4928  1.0000  0.5072  0.4863  1.0000  0.5137  0.9360  1.0000  0.0640  
7 0.7046  1.0000  0.2954  0.6948  1.0000  0.3052  0.9624  1.0000  0.0376  
8 0.6004  1.0000  0.3996  0.5943  1.0000  0.4057  0.9512  1.0000  0.0488  
9 0.5038  1.0000  0.4962  0.5009  1.0000  0.4991  0.9407  1.0000  0.0593  
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IV. Market Microstructure and Market Price 
In this section, we introduce a trading mechanism to determine the market price when there are a 
large number (but finite) of investors with different types (H and L) and they deal with a 
derivative security with arm’s-length transactions in each trading period over trading horizon 
�0,𝑇𝑇�  with 𝑇𝑇 ≤ +∞ . We derive some theoretical results on the market price, which is 
determined as a result of transactions among different types of investors in the market. The 
arm’s-length trading environment introduced in this section is constructed based on Duffie, 
Garleanu, and Pedersen (2005) and Kijima and Uchida (2005). 
 
A. Basic Assumptions 
1. Market participants 
There are N (𝑀𝑀 < 𝑁𝑁 < ∞) investors in the security market, trading a structured note (hereafter, 
security) introduced in the previous section with arm’s-length transactions, that is, one-to-one 
transactions or OTC transactions. Each investor is assumed to be risk-neutral and infinitely lived 
with either type H or L. The number of type H (L) investors at time t is given by 𝑁𝑁𝐻𝐻(𝑡𝑡) �𝑁𝑁𝐿𝐿(𝑡𝑡)� 
satisfying 𝑁𝑁𝐻𝐻(𝑡𝑡) + 𝑁𝑁𝐿𝐿(𝑡𝑡) = 𝑁𝑁. 𝑀𝑀 represents the total supply of the security, and each investor 
has at most a unit share. Short-selling is prohibited.  
 
2. Transition between types 
Many reports and papers regard poor financial risk management as one of the major causes of the 
latest global financial crisis. As favorable conditions continue, many investors are tempted to 
think “this time is different,” and their financial risk management tends to be lax. Once security 
prices drop, however, market participants recognize the importance of risk management. Based 
on this observation, we assume for simplicity that investors change their type (H and L), 
depending on time and cycle of price dynamics, as follows. 

An investor switches his/her type randomly either from H to L or L to H. A type H investor 
changes his/her type randomly and independently with a constant (instantaneous) switching rate 
𝛾𝛾 > 0. On the other hand, the switching rate for type L investors to be type H is given by 𝜆𝜆 > 0, 
which is identical to the intensity of the common jump process. We also assume that all the type 
L investors change their type simultaneously (not independently) when a common jump occurs. 

The type-switching behavior of each type can be interpreted as follows. When a common 
jump occurs, all the type L investors will instantly realize the danger of WWR and will pay 
attention to WWR in both pricing and risk management, implying a switch of their type 
simultaneously to H. As time passes from the latest materialization of WWR with the market 
situation returning to normal, the memory of market downturn among investors becomes 
attenuated, while investors’ attitude toward risk gets aggressive. This situation motivates type H 
investors to become shortsighted and seek short-term profits rather than maintain prudent risk 
management for WWR, and hence prompts type H investors to switch their type to L. 
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3. Trading strategy 
The value of the security computed by type H (L) at time t is represented as 𝑉𝑉𝑡𝑡𝐻𝐻(𝑉𝑉𝑡𝑡𝐿𝐿). We know 
from the result of Section 3 that the value of type H is lower than that of type L, that is, 𝑉𝑉𝑡𝑡𝐻𝐻 < 𝑉𝑉𝑡𝑡𝐿𝐿. 
We assume that the time to maturity (T) of the security keeps unchanged and thus the security 
value for each type stays constant throughout the trading horizon, that is, 𝑉𝑉𝑡𝑡𝑚𝑚 = 𝑉𝑉𝑚𝑚 (∀𝑡𝑡 ∈
[0,∞),∀𝑚𝑚 ∈ {𝐻𝐻, 𝐿𝐿} ). An investor is assumed to be a seller if he/she owns a security, otherwise a 
buyer. Each investor computes his/her own reservation value by optimally evaluating both the 
gain from future trades and the future type change conditional on his/her current type and 
endowment of the security. A buyer and a seller are assumed to meet randomly, and they agree to 
trade if the buyer’s reservation value is lower than or equal to the seller’s, that is, a trade will take 
place when a positive rent (including zero rent) is created for both investors. Otherwise, a 
transaction does not take place. Investors share the rent according to the ratio of 𝑞𝑞: 1 − 𝑞𝑞 (𝑞𝑞 ∈
(0,1)) between type L and type H. The size of 𝑞𝑞 depends on the bargaining power between two 
types. Note that trades occur only between type H sellers and type L buyers. The instantaneous 
rate (intensity) of matching between type H and type L is given by 𝜆𝜆𝐻𝐻𝐿𝐿 > 0. We denote the 
transaction price of the security at time t by 𝑝𝑝𝑡𝑡.  
 
4. Equilibrium price 
The equilibrium is defined as a Walrasian equilibrium characterized by a price process at which 
the supply matches the demand at each state and time in a perfectly competitive market. In an 
equilibrium allocation, there are no more trades between different types. That is, in equilibrium, 
either of the following conditions is met: (1) every type L investor owns a unit of the security; or 
(2) all the securities are owned by type L investors. For the equilibrium price 𝑝𝑝𝑡𝑡, we suppose 
𝑝𝑝𝑡𝑡 = 𝑞𝑞 × (reservation value of type L) +(1 − 𝑞𝑞) × (reservation value of type H). 

Based on the assumptions described above, we can derive the following results with respect 
to the equilibrium market price 𝑝𝑝∗. See Appendix 3 for the sketch of proof. 
 
THEOREM 
Assume 𝑞𝑞 ∈ (0,1) and 𝜆𝜆𝐻𝐻𝐿𝐿 → ∞. Then the equilibrium price 𝑝𝑝∗ is unique. Furthermore, if 
𝑁𝑁 → ∞ with 𝑠𝑠 ≔ 𝑀𝑀/𝑁𝑁 fixed, the equilibrium price satisfies 
 

𝑝𝑝∗ =
𝑞𝑞(1 − 𝑠𝑠)𝛾𝛾 + (1 − 𝑞𝑞)𝑠𝑠𝜆𝜆

1
𝑉𝑉𝐿𝐿 𝑞𝑞(1 − 𝑠𝑠)𝛾𝛾 + 1

𝑉𝑉𝐻𝐻 (1 − 𝑞𝑞)𝑠𝑠𝜆𝜆
. 

The theorem suggests that if type H and L are both in the market and are matched instantly 
(𝜆𝜆𝐻𝐻𝐿𝐿 → ∞), then the market price will converge to the equilibrium price that lies somewhere 
between 𝑉𝑉𝐻𝐻 and 𝑉𝑉𝐿𝐿 depending on the parameter values of {𝜆𝜆, 𝛾𝛾, 𝑞𝑞, 𝑠𝑠}. 

(9) 
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If the intensity of common jump (i.e., the switching rate of type L to H) converges to zero 
but the switching rate of type H to type L keeps a finite positive value, the market population is 
gradually dominated by type L and thus the equilibrium price converges to the highest value 𝑉𝑉𝐿𝐿 
with the lowest WWR premium. This is summarized as the lemma below. 
 
LEMMA 
If 𝜆𝜆/𝛾𝛾 → 0, then 𝑝𝑝∗ → 𝑉𝑉𝐿𝐿 regardless of 𝑞𝑞, 𝑠𝑠, and 𝛾𝛾. 

 
 
V. Numerical Analysis 

We demonstrate a numerical analysis of the security price dynamics and the transition of investor 
types based on the pricing models and the trading mechanism we stated in the previous sections. 
In this section, we assume that all the investors are shortsighted in the sense that they do not 
evaluate the trade dynamically but recognize the utility gain only from the current trade.10 We 
then assume that the reservation value for type H is 𝑉𝑉𝐻𝐻 and that for type L is 𝑉𝑉𝐿𝐿 (> 𝑉𝑉𝐻𝐻), and 
thus a trade will be implemented if the buyer’s reservation value is lower than or equal to the 
seller’s, that is, if a positive rent is created from the transaction. We note that in this study the 
maturity of the security (T) is assumed to stay constant and thus the reservation price for each 
type remains constant throughout the trading horizon, that is, 𝑉𝑉𝑡𝑡𝑚𝑚 = 𝑉𝑉𝑚𝑚 (∀𝑡𝑡 ∈ [0,∞),∀𝑚𝑚 ∈
{𝐻𝐻, 𝐿𝐿} ). Therefore, there are three cases in which a trade takes place between two investors: (1) a 
type H seller and a type L buyer; (2) a type H seller and a type H buyer; and (3) a type L seller 
and a type L buyer. Other conditions are the same as stated in the previous sections. 

In the following subsection, we explain the details of simulation procedure adopted in the 
analysis and then show the results. 
 
A. Simulation Procedure 
1. Switching behavior of type H investors 
Trading horizon is expressed as �0,𝑇𝑇� with 𝑇𝑇 ≤ +∞ and we divide it into small trading periods 
with a constant interval 𝛥𝛥 ≔ 𝑡𝑡𝑘𝑘 − 𝑡𝑡𝑘𝑘−1  �∀𝑘𝑘 ∈ �1,⋯ ,𝑁𝑁��  with 𝑡𝑡0 ≔ 0  and 𝑡𝑡𝑁𝑁 ≔ 𝑇𝑇 . We set 
𝑇𝑇 = 50 years (600 months) and 𝛥𝛥 = 1/12 (one month). Each investor can implement at most 
one trade in a period. In our analysis, we assume that the survival ratio of type H at each trading 
period t, defined as 𝛼𝛼𝑡𝑡 ∶= 𝑁𝑁𝐻𝐻(𝑡𝑡)/𝑁𝑁, is decreased deterministically period by period given the 
constant switching rate of 𝛾𝛾 > 0 . 11 We thus redefine 𝛼𝛼𝑡𝑡 as 𝛼𝛼𝑡𝑡: = exp�−𝛾𝛾(𝑡𝑡 − 𝜏𝜏𝑡𝑡)�, where 

10 In the previous section, we assume that investors consider the possibility that they change their types in the 
future in calculating their reservation value. In this section, however, we suppose that they do not take it into 
account for the purpose of simplicity. Both settings generate a boom and bust cycle in the security prices. The only 
difference is the degree of price fluctuation, that is, it is smaller in the former setting than in the latter. 
11 Examining the price impact of endogenously determined type-switching behavior is of interest and might be 
useful for clarifying the detailed dynamics of security prices. It is, however, not essential to consider the 
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𝜏𝜏𝑡𝑡 ∈ 𝑹𝑹 represents the latest time of the occurrence of common jumps just before time 𝑡𝑡. On the 
other hand, the individual among type H investors chosen to change his/her type is randomly 
determined. At initial date 𝑡𝑡0 = 0, the survival ratio of type H is given by 𝛼𝛼0�= exp�−𝛾𝛾(𝑡𝑡 −
𝜏𝜏0)�,   𝜏𝜏0 ≤ 0�. We set 𝜏𝜏0 = −2.5, that is, at the initial date 𝑡𝑡0, 2.5 years have already passed 
since the latest WWR materialization. 
 
2. Trading protocol 
We next describe the trading protocol in each trading period. We assume that the total supply of 
the security is fixed by 𝑀𝑀 (< 𝑁𝑁) units of shares. Here, we set 𝑁𝑁 = 10,000 and 𝑀𝑀 = 5,000. 
That is, 5,000 investors out of a total of 10,000 in the market own the security. At initial time 𝑡𝑡0, 
𝑀𝑀 units of the security are randomly allocated to investors regardless of their types, so that each 
investor has at most one unit of it. If an investor is endowed with one unit of the security, he/she 
is assumed to be a seller, otherwise a buyer. Among the three successful combinations of 
transactions between two types, which we stated in the beginning of this section, we give priority 
to transactions with a pair of type H seller and type L buyer over other transactions, satisfying the 
assumption of 𝜆𝜆𝐻𝐻𝐿𝐿 → ∞  in the theorem. Investors are assumed to share the rent evenly 
(𝑞𝑞 = 0.5). That is, the transaction price between the type H seller and type L buyer is given by 
𝑝𝑝𝑡𝑡 = (𝑉𝑉𝐻𝐻 + 𝑉𝑉𝐿𝐿)/2. If a type H seller cannot find type L buyers, he/she agrees to trade only with 
a type H buyer (rent = 0) with a transaction price of 𝑝𝑝𝑡𝑡 = 𝑉𝑉𝐻𝐻. A type H buyer can trade only 
with a type H seller (rent = 0) with a transaction price of 𝑝𝑝𝑡𝑡 = 𝑉𝑉𝐻𝐻. Similarly, a type L seller can 
trade only with a type L buyer (rent = 0) with a transaction price of 𝑝𝑝𝑡𝑡 = 𝑉𝑉𝐿𝐿. We assume all the 
transactions generating non-negative rent will be implemented. If an investor cannot find his/her 
desired counterparty, he/she does not trade at the period. When all desired and available trades 
are implemented, each investor takes over his revised position to the next period. At the next 
period, some of type H investors switch to type L to be consistent with the revised (deterministic) 
survival ratio of type H. Investors repeat the transaction based on the revised distributions on 
both the endowments of the security across investors and investor types. We compute the market 
price at each period t, denoted by  𝑝𝑝𝑡𝑡

_
, by taking the average of all transaction prices of individual 

trades executed at the period. When a common jump occurs in a trading period, all the type L 
investors switch their type simultaneously to type H, and then the trades among type H investors 
are only implementable at the period. As a result, the market price at the period will suddenly 
drop to 𝑉𝑉𝐻𝐻 (< 𝑉𝑉𝐿𝐿). 

We first draw a Poisson jump path over the entire trading horizon (50 years with one-month 
intervals) and then we implement 1,000 trading simulations of arm’s-length transactions with 
different initial distributions of endowments among investors given the Poisson jump path. In 
each trading period, we compute the average of market price computed in each simulation. This 

endogenous switching device for the purpose of current research, which elucidates the mechanism generating price 
trajectories with cyclical patterns of booms and busts, and thus we leave it for future research. 
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represents our simulated market price for each trading period. This, we define, is a set of the 
Poisson trial. 

Secondly, we repeat the Poisson trial for 1,000 times with the same combination of 𝜆𝜆 and 
𝛾𝛾, and compute the average of the jump sizes of the simulated market price over all Poisson trials. 
We define the average jump sizes as “expected jump size.” We repeat the simulation procedure 
with different combinations of 𝜆𝜆 and 𝛾𝛾. The jump intensity 𝜆𝜆 is chosen from {1/15, 1/12.5, 
1/10, 1/8.5, 1/7, 1/6, 1/5}, in which the denominator of each element expresses the average 
interval (yearly) between jump arrivals. In this study, for an expositional purpose, we assume that 
the Poisson intensity chosen in each Poisson trial is the same as the common jump intensity of 
type H investors.12 This implies that type H investors have correct knowledge about the common 
jump intensity. The switching rate 𝛾𝛾 of type H is selected from {1/1, 1/1.3, 1/2, 1/3.3, 1/5, 
1/10, 1/16.7, 1/33.3, 1/50}, in which the denominator of each element expresses the average 
interval (yearly) to switch. We select the structured note of case 1 with T = 20 and choose the 
overall correlation coefficient of −0.4, and resulting values of type H (𝑉𝑉𝐻𝐻) are computed as 
{0.7039, 0.6569, 0.5961, 0.5359, 0.4928, 0.4292, 0.3762}, each of which is consistent with the 
jump intensity parameter selected above. The value of type L is normalized by 𝑉𝑉𝐿𝐿 = 1.0.13 
 
B. Simulation Results 
We illustrate the results of our numerical analysis in Figures 2 and 3. Figure 2 shows two paths of 
simulated market prices (the upper rows) along with the evolutions of the survival ratio of type H 
(the lower rows) under two different Poisson jump paths (left and right). These are generated 
with the same parameter values except for the switching rate of type H with 𝛾𝛾 = 1/5 and 
1/16.7. In both sample paths, several discontinuous points indicate the occurrence of common 
jumps, that is, the materializations of WWR. We observe that, as time passes from the 
materialization of WWR, the market price converges to 𝑉𝑉𝐿𝐿(= 1.0) with the least WWR 
premium from 𝑉𝑉𝐻𝐻(= 0.5961) with the largest WWR premium. This situation implies that the 
WWR premium included in the market price gradually decreases along with the increase in the 
type L population. However, once WWR materializes, all the type L investors switch to type H 
and thus the market price drops suddenly to 𝑉𝑉𝐻𝐻. The materialization of WWR convinces all the 
type L investors of the danger of WWR and forces them simultaneously to shift toward the 
prudent management of WWR, by switching their type to type H, and this aggregate behavior 
induces the plunge in market price. Although, in this case, the individual behavior of type L 
investors is rational from the viewpoint of prudent risk management, the simultaneous behavior 
of type L investors to protect themselves results in intensifying the decline in market price, 

12 We also have examined several experiments under an assumption that the common jump intensity of type H is 
different from the actual (realized) one. As a result, we found no major observations altering the main results of our 
normal experiments. Accordingly, we omitted the results, but they can be given to interested readers on request. 
13 Recall that we set the higher coupon rate �𝐶𝐶𝐻𝐻𝑖𝑖𝐻𝐻ℎ > 0� so that the resulting security value of type L is 𝑉𝑉𝐿𝐿 = 1.0. 
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depressing the market as a whole. This is typically the case of a fallacy of composition. The size 
of the plunge reflects the amount of WWR premium (= 𝑉𝑉𝐿𝐿 − 𝑉𝑉𝐻𝐻), which has been gradually 
excluded from 𝑉𝑉𝐻𝐻 since the latest materialization of WWR. This mechanism generates the price 
trajectories with cyclical patterns of boom and bust. 

We also find that the higher 𝛾𝛾 enhances the market price to converge faster to 𝑉𝑉𝐿𝐿, making 
the magnitude of price plunges greater when WWR occurs (Figure 2[A]). On the other hand, the 
lower 𝛾𝛾 seems to hamper the large drop in the market price, since it delays the switching of type 
H to L and thus lowers the speed of the price rise (Figure 2[B]).  

We observe several inflection points in the paths of the market price, each of which lies in 
the middle of the post-WWR periods.14 These inflection points reflect the transition point in the 
predominance of the investor population from type H to L. The market is gradually dominated by 
type L after the inflection point and the curvature of the price paths on the way to 𝑉𝑉𝐿𝐿 becomes 
gentle, because the volatility across individual transaction prices gradually decreases along with 
the increase in the type L population. 

Figure 3(A) plots the expected jump size of the market price with respect to various 
combinations of common jump intensity (𝜆𝜆) and the switching rate of type H (𝛾𝛾). This 
three-dimensional figure suggests that the expected jump size is dependent on both the jump 
intensity and the switching rate of type H over all combinations of 𝜆𝜆 and 𝛾𝛾. Roughly speaking, 
the higher (lower) 𝜆𝜆 and the higher (lower) 𝛾𝛾 generate the larger (smaller) expected jumps in 
absolute magnitude (all in a negative direction). However, when 𝛾𝛾 takes a smaller value, the 
expected jump size becomes insensitive to 𝜆𝜆 . More specifically, we transform the 
three-dimensional figure into two two-dimensional figures from different viewpoints. Figure 3(B) 
(3[C]) plots the expected jump sizes with respect to 𝛾𝛾 (𝜆𝜆) with each 𝜆𝜆 (𝛾𝛾) fixed. Both figures 
indicate that the expected jump size can be dampened when we keep 𝛾𝛾 in lower values, 
regardless of 𝜆𝜆. This implies that the expected jump size of the market price depends more on 𝛾𝛾 
than on 𝜆𝜆. Therefore, even if we do not have correct knowledge of the common jump intensity 
that is unobservable, we can prevent the sudden drop in market price, generated due to the 
mispricing of WWR by type L investors, if we can control the level of 𝛾𝛾 and keep it at a 
sufficiently low level. This result seems to have a large implication for the design of financial 
regulations. If we can regulate the financial market to motivate each financial institution to adopt 
a prudent system for managing WWR and to remain prudent consistently over time, then the 
plunge in the market price due to mispricing with respect to the imprudent modeling approach of 
WWR could be alleviated. 

 
 
 

 

14 We define the time interval between periods of WWR-materializations as the “post-WWR period.” 
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Figure 2  Market Price and Survival Ratio of Type H 

 

 
  

(A) Case 1 with T = 20, parameter set = 5 
  𝜆𝜆 = 1/10 and 𝛾𝛾 = 1/5 

(B) Case 1 with T = 20, parameter set = 5 
 𝜆𝜆 = 1/10 and 𝛾𝛾 = 1/16.7 
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Figure 3  Expected Jump Size 
 

 

 
 
VI. Concluding Remarks 

Motivated by huge losses caused by WWR during the global financial crises of 2007–09, we 
proposed a method to model WWR and investigated the mechanism by which WWR generates 
boom and bust cycles in security prices through different WWR management attitudes among 
investors. We show that even if all the investors implement careful risk management up to the 
marginal distributions with linear correlation across several risk factors, it is insufficient to 
prevent the market from suffering huge losses caused by the materialization of WWR. 

We suppose that two types of investors, type H and type L, trade a derivative security with 
two underlying assets. Type H investors are assumed to monitor WWR prudently in that they 
regard the common jump component in the price processes of the two risky assets as the main 
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driver behind WWR in their model. Type L investors are assumed to treat WWR imprudently in 
the sense that they consider only the independent jump components in their model. This 
assumption means that even when both types recognize the same marginal distributions and 
covariance for the two risky assets, they can create completely different joint distributions, 
especially on their tail portions. Next, we introduce several fictitious but realistic derivative 
securities that incorporate WWR. We show that the valuation of type L investors in the security 
could be much higher than that of type H investors. We find from our numerical analysis that, as 
time passes since the latest materialization of WWR, the market price converges to the highest 
value with the lowest WWR premium along with the increase in the population of imprudent 
investors (type L) and drops suddenly with a certain frequency to the lowest level with the 
highest WWR premium. The materialization of WWR convinces type L investors of the danger 
of WWR, and motivates them simultaneously to move toward prudent management of WWR by 
switching their type to type H, and this aggregate behavior induces the plunge in market price. 
This mechanism generates the price trajectories with cyclical patterns of boom and bust.  

The results of our analyses have important implications for financial regulation. Current 
regulations request financial institutions to measure and monitor their portfolio risks up to the 
second moments (volatility and correlation) as a minimum requirement, but there is no explicit 
requirement on the management of higher moments on the tail portion of joint distributions. This 
paper demonstrates that if we can encourage investors to adopt prudent risk management of 
WWR, we could prevent or alleviate boom and bust cycles in security prices. Although the 
optimal design of financial regulation is beyond the scope of our research, an 
incentive-compatible method for financial institutions to enhance their motivation to adopt a 
prudent system for managing WWR would be essential to maintaining financial stability.  

 
 
APPENDIX 1: CHANGE IN PROBABILITY MEASURES FOR TWO JUMP 

PROCESSES 
A. Common Jump Process (Type H) 
We first prove that the expectation of the pricing kernel for the common jump model under type 
H’s subjective probability measure ℙ𝐻𝐻 is equal to the value of the zero-coupon bond matured at 
time t, that is, exp(−𝑟𝑟𝑡𝑡). By applying a generalized version of Ito’s lemma (including jump 
components) to equation (4), we have 

 

𝑑𝑑ln𝜉𝜉𝑡𝑡𝐻𝐻 = −𝑟𝑟𝑑𝑑𝑡𝑡 − (𝜼𝜼𝑡𝑡𝐻𝐻)𝑇𝑇𝑑𝑑𝑩𝑩𝑡𝑡 − 𝜆𝜆�(𝜓𝜓 − 1)𝜑𝜑(𝑑𝑑𝒛𝒛)𝑑𝑑𝑡𝑡 − �𝜌𝜌12𝐻𝐻 𝜂𝜂1,𝑡𝑡
𝐻𝐻 𝜂𝜂2,𝑡𝑡

𝐻𝐻 +
1
2

(𝜼𝜼𝑡𝑡𝐻𝐻)𝑇𝑇𝜼𝜼𝑡𝑡𝐻𝐻�
ℤ

𝑑𝑑𝑡𝑡 + �ln𝜓𝜓
ℤ

𝑑𝑑𝑁𝑁𝐶𝐶(𝒛𝒛, 𝑡𝑡), 

 
where 𝜑𝜑𝐶𝐶(𝒛𝒛) represents a joint distribution of 𝐳𝐳 = (𝑧𝑧𝐶𝐶1, 𝑧𝑧𝐶𝐶2)𝑇𝑇, and thus we derive 
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𝜉𝜉𝑡𝑡𝐻𝐻 = 𝜉𝜉0𝐻𝐻exp �−� �𝑟𝑟 + 𝜌𝜌12𝐻𝐻 𝜂𝜂1,𝑠𝑠
𝐻𝐻 𝜂𝜂2,𝑠𝑠

𝐻𝐻 +
1
2

(𝜼𝜼𝑠𝑠𝐻𝐻)𝑇𝑇𝜼𝜼𝑠𝑠𝐻𝐻 + 𝜆𝜆�(𝜓𝜓 − 1)𝜑𝜑(𝑑𝑑𝒛𝒛)
ℤ

�
𝑡𝑡

0
𝑑𝑑𝑠𝑠 − � (𝜼𝜼𝑠𝑠𝐻𝐻)𝑇𝑇𝑑𝑑𝑩𝑩𝑠𝑠

𝑡𝑡

0
+ � �ln𝜓𝜓

ℤ
𝑑𝑑𝑁𝑁𝐶𝐶(𝒛𝒛, 𝑠𝑠)

𝑡𝑡

0
�. 

 
Here, we assume 𝜉𝜉0𝐻𝐻 = 1 and we obtain the following result. 
 

              𝔼𝔼0𝐻𝐻[𝜉𝜉𝑡𝑡𝐻𝐻] = exp(−𝑟𝑟𝑡𝑡)𝔼𝔼0𝐻𝐻 �exp �−� (𝜼𝜼𝑠𝑠𝐻𝐻)𝑇𝑇𝑑𝑑𝑩𝑩𝑠𝑠 −
1
2
� �2𝜌𝜌12

𝐻𝐻 𝜂𝜂1,𝑠𝑠
𝐻𝐻 𝜂𝜂2,𝑠𝑠

𝐻𝐻 + (𝜼𝜼s𝐻𝐻)𝑇𝑇𝜼𝜼s𝐻𝐻�𝑑𝑑𝑠𝑠
𝑡𝑡

0

𝑡𝑡

0
�� 

                                                × 𝔼𝔼0𝐻𝐻 �exp�−� �𝜆𝜆(𝜓𝜓 − 1)𝜑𝜑(𝑑𝑑𝒛𝒛)𝑑𝑑𝑠𝑠
ℤ

+� �ln𝜓𝜓
ℤ

𝑑𝑑𝑁𝑁𝐶𝐶(𝒛𝒛, 𝑠𝑠)
𝑡𝑡

0

𝑡𝑡

0
�� = exp(−𝑟𝑟𝑡𝑡), 

 
where 

            𝔼𝔼0𝐻𝐻 �exp �−∫ (𝜼𝜼𝑠𝑠𝐻𝐻)𝑇𝑇𝑑𝑑𝑩𝑩𝑠𝑠 −
1
2 ∫ �2𝜌𝜌12𝐻𝐻 𝜂𝜂1,𝑠𝑠

𝐻𝐻 𝜂𝜂2,𝑠𝑠
𝐻𝐻 + (𝜼𝜼𝑠𝑠𝐻𝐻)𝑇𝑇𝜼𝜼𝑠𝑠𝐻𝐻�𝑑𝑑𝑠𝑠

𝑡𝑡
0

𝑡𝑡
0 �� = 1, and 

            𝔼𝔼0𝐻𝐻 �exp�−� �𝜆𝜆(𝜓𝜓 − 1)𝜑𝜑(𝑑𝑑𝒛𝒛)𝑑𝑑𝑠𝑠
ℤ

+ � �ln𝜓𝜓
ℤ

𝑑𝑑𝑁𝑁𝐶𝐶(𝒛𝒛, 𝑠𝑠)
𝑡𝑡

0

𝑡𝑡

0
�� 

                    = exp �−� �𝜆𝜆(𝜓𝜓 − 1)𝜑𝜑(𝑑𝑑𝒛𝒛)𝑑𝑑𝑠𝑠
ℤ

𝑡𝑡

0
�𝔼𝔼0𝐻𝐻 �exp�� �ln𝜓𝜓

ℤ
𝑑𝑑𝑁𝑁𝐶𝐶(𝒛𝒛, 𝑠𝑠)

𝑡𝑡

0
�� 

= exp �−� �𝜆𝜆(𝜓𝜓 − 1)𝜑𝜑(𝑑𝑑𝒛𝒛)𝑑𝑑𝑠𝑠
ℤ

𝑡𝑡

0
�𝔼𝔼0𝐻𝐻 �� exp �� ln𝜓𝜓

𝑘𝑘

ℎ=0
�

∞

𝑘𝑘=0
� 

= exp(−𝜆𝜆(exp(𝜈𝜈1)− 1)𝑡𝑡)exp(−𝜆𝜆𝑡𝑡)�
(𝜆𝜆𝑡𝑡)𝑘𝑘

𝑘𝑘!

∞

𝑘𝑘=0

𝔼𝔼0𝐻𝐻[𝜓𝜓]𝑘𝑘 

= exp(−𝜆𝜆 exp(𝜈𝜈1)𝑡𝑡)�
(𝜆𝜆exp(𝜈𝜈1)𝑡𝑡)𝑘𝑘

𝑘𝑘!

∞

𝑘𝑘=0

= 1  (∵ 𝔼𝔼0𝐻𝐻[𝜓𝜓] = exp(𝜈𝜈1)). 

 
Next, we show 𝔼𝔼0𝐻𝐻�𝜉𝜉𝑡𝑡𝐻𝐻𝑆𝑆𝑖𝑖,𝑡𝑡� = 𝑆𝑆𝑖𝑖,0  (∀𝑖𝑖 ∈ {1,2}). To do this, we specify the risk premium of the 

common jump process so that we have 𝔼𝔼0𝐻𝐻�𝑑𝑑�𝜉𝜉𝑡𝑡𝐻𝐻𝑆𝑆𝑖𝑖,𝑡𝑡�� = 0  (∀𝑖𝑖 ∈ {1,2}). By applying Ito’s lemma 
to 𝜉𝜉𝑡𝑡𝐻𝐻𝑆𝑆𝑖𝑖,𝑡𝑡, we have 

 

𝑑𝑑�𝜉𝜉𝑡𝑡𝐻𝐻𝑆𝑆𝑖𝑖,𝑡𝑡� = 𝑆𝑆𝑖𝑖𝑡𝑡𝑑𝑑𝜉𝜉𝑡𝑡𝐻𝐻 + 𝜉𝜉𝑡𝑡𝐻𝐻𝑑𝑑𝑆𝑆𝑖𝑖,𝑡𝑡 + 𝑑𝑑�𝜉𝜉𝑡𝑡𝐻𝐻, 𝑆𝑆𝑖𝑖,𝑡𝑡�+ �[𝜓𝜓 − 1 + 𝑧𝑧𝑖𝑖𝜓𝜓]𝜉𝜉𝑡𝑡𝐻𝐻𝑆𝑆𝑖𝑖,𝑡𝑡𝑑𝑑𝑁𝑁𝐶𝐶(𝒛𝒛, 𝑡𝑡)
ℤ

 

= 𝜉𝜉𝑡𝑡𝐻𝐻𝑆𝑆𝑖𝑖,𝑡𝑡 �−𝑟𝑟𝑑𝑑𝑡𝑡 − (𝜼𝜼𝑡𝑡𝐻𝐻)𝑇𝑇𝑑𝑑𝑩𝑩𝑡𝑡 + 𝜇𝜇𝑖𝑖𝑑𝑑𝑡𝑡 + 𝜎𝜎𝑖𝑖𝑑𝑑𝐵𝐵𝑖𝑖,𝑡𝑡 − 𝜆𝜆�(𝜓𝜓 − 1)𝜑𝜑(𝑑𝑑𝒛𝒛)𝑑𝑑𝑡𝑡
ℤ

− 𝜆𝜆�𝑧𝑧𝑖𝑖𝜑𝜑𝑖𝑖(𝑑𝑑𝑧𝑧𝑖𝑖)𝑑𝑑𝑡𝑡
𝑍𝑍

�

− 𝜉𝜉𝑡𝑡𝐻𝐻𝑆𝑆𝑖𝑖,𝑡𝑡𝜎𝜎𝑖𝑖𝜂𝜂𝑖𝑖,𝑡𝑡𝐻𝐻 𝑑𝑑𝑡𝑡 + �(𝜓𝜓 − 1 + 𝑧𝑧𝑖𝑖𝜓𝜓)𝜉𝜉𝑡𝑡𝐻𝐻𝑆𝑆𝑖𝑖,𝑡𝑡𝑑𝑑𝑁𝑁𝐶𝐶(𝒛𝒛, 𝑡𝑡)
ℤ

. 

 

By taking expectation under ℙ𝐻𝐻, we derive 
 
𝜇𝜇𝑖𝑖 − 𝑟𝑟 − 𝜆𝜆𝔼𝔼0𝐻𝐻[𝜓𝜓 − 1] − 𝜆𝜆𝔼𝔼0𝐻𝐻[𝑧𝑧𝑖𝑖] − 𝜎𝜎𝑖𝑖𝜂𝜂𝑖𝑖,𝑡𝑡𝐻𝐻 + 𝜆𝜆𝔼𝔼0𝐻𝐻[𝜓𝜓 − 1 + 𝑧𝑧𝑖𝑖𝜓𝜓] = 0. 
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Here, we derive the risk premium 𝜇𝜇𝑖𝑖 − 𝑟𝑟 so that we have 𝔼𝔼0𝐻𝐻�𝑑𝑑�𝜉𝜉𝑡𝑡𝐻𝐻𝑆𝑆𝑖𝑖,𝑡𝑡�� = 0. 
 

𝜇𝜇𝑖𝑖 − 𝑟𝑟 = 𝜎𝜎𝑖𝑖𝜂𝜂𝑖𝑖,𝑡𝑡𝐻𝐻 − �𝜆𝜆ℚ𝐻𝐻𝜅𝜅𝑖𝑖
ℚ𝐻𝐻 − 𝜆𝜆𝜅𝜅𝑖𝑖�, 

 
where 𝜆𝜆ℚ𝐻𝐻𝜅𝜅𝑖𝑖

ℚ𝐻𝐻 ≔ 𝜆𝜆𝔼𝔼0𝐻𝐻[𝑧𝑧𝑖𝑖𝜓𝜓] and 𝔼𝔼0𝐻𝐻[𝑧𝑧𝑖𝑖𝜓𝜓] can be calculated as follows. 
 

𝔼𝔼0𝐻𝐻[𝑧𝑧𝑖𝑖𝜓𝜓] = 𝔼𝔼0𝐻𝐻 �(𝑒𝑒𝑢𝑢𝑖𝑖 − 1)exp �𝜈𝜈1 + 𝝂𝝂2𝑇𝑇𝒖𝒖 − 𝝂𝝂2𝑇𝑇𝜻𝜻𝐽𝐽 −
1
2
𝝂𝝂2𝑇𝑇𝚺𝚺𝐽𝐽𝝂𝝂2�  � 

= 𝑒𝑒𝜈𝜈1 �exp��𝝂𝝂2
(𝑖𝑖) − 𝝂𝝂2�

𝑇𝑇
𝜻𝜻𝐽𝐽 +

1
2
�𝝂𝝂2

(𝑖𝑖)𝑇𝑇𝚺𝚺𝐽𝐽𝝂𝝂2
(𝑖𝑖) − 𝝂𝝂2𝑇𝑇𝚺𝚺𝐽𝐽𝝂𝝂2�� − 1� 

= 𝑒𝑒𝜈𝜈1 �exp�𝜁𝜁𝑖𝑖 −
1
2
𝝂𝝂2𝑇𝑇𝚺𝚺𝐽𝐽𝝂𝝂2 +

1
2 �
𝝂𝝂2𝑇𝑇𝚺𝚺𝐽𝐽𝝂𝝂2 + 𝝂𝝂2𝑇𝑇𝚺𝚺𝐽𝐽𝜺𝜺𝑖𝑖 + 𝜺𝜺𝑖𝑖𝑇𝑇𝚺𝚺𝐽𝐽𝝂𝝂2 + 𝜺𝜺𝑖𝑖𝑇𝑇𝚺𝚺𝐽𝐽𝜺𝜺𝑖𝑖�� − 1� 

= 𝑒𝑒𝜈𝜈1 �exp �𝜁𝜁𝑖𝑖 +
1
2
𝛿𝛿𝑖𝑖𝑖𝑖 + 𝝂𝝂2𝑇𝑇𝚺𝚺𝐽𝐽𝜺𝜺𝑖𝑖� − 1� 

= 𝑒𝑒𝜈𝜈1�(𝜅𝜅𝑖𝑖 + 1)exp�𝝂𝝂2𝑇𝑇𝚺𝚺𝐽𝐽𝜺𝜺𝑖𝑖� − 1�, 
 

where   𝝂𝝂2
(𝑖𝑖) ≔ 𝝂𝝂2 + 𝜺𝜺𝑖𝑖 with 𝜺𝜺𝑖𝑖 ≔ �(1,0)𝑇𝑇  if  𝑖𝑖 = 1

(0,1)𝑇𝑇  if  𝑖𝑖 = 2
 . 

 

Hence, we derive the jump-parameters �𝜆𝜆ℚ𝐻𝐻 , 𝜅𝜅𝑖𝑖
ℚ𝐻𝐻� under ℚ𝐻𝐻 of the form: 

𝜆𝜆ℚ𝐻𝐻𝜅𝜅𝑖𝑖
ℚ𝐻𝐻 = 𝜆𝜆𝑒𝑒𝜈𝜈1�(𝜅𝜅𝑖𝑖 + 1)exp�𝝂𝝂2𝑇𝑇𝚺𝚺𝐽𝐽𝜺𝜺𝑖𝑖� − 1�, 

where we specify 

                  𝜆𝜆ℚ𝐻𝐻: = 𝜆𝜆𝑒𝑒𝜈𝜈1 ,𝜅𝜅𝑖𝑖
ℚ𝐻𝐻: = 𝔼𝔼ℚ𝐻𝐻[𝑧𝑧𝑖𝑖∗] = (𝜅𝜅𝑖𝑖 + 1)exp�𝝂𝝂2𝑇𝑇𝚺𝚺𝐽𝐽𝜺𝜺𝑖𝑖� − 1, 

                  𝑧𝑧𝑖𝑖∗: =  exp(𝑢𝑢𝑖𝑖∗) − 1 with 𝑢𝑢𝑖𝑖∗~𝑁𝑁�𝜁𝜁𝑖𝑖 + 𝝂𝝂2𝑇𝑇𝚺𝚺𝐽𝐽𝜺𝜺𝑖𝑖 , 𝛿𝛿𝑖𝑖2�, 
 

and thus 𝒖𝒖∗ ≔ (𝑢𝑢1∗,𝑢𝑢2∗)𝑇𝑇~𝑁𝑁�𝜻𝜻∗,𝜮𝜮𝐽𝐽� with 𝜻𝜻∗ ≔ �𝜁𝜁1 + 𝝂𝝂2𝑇𝑇𝚺𝚺𝐽𝐽𝜺𝜺1, 𝜁𝜁2 + 𝝂𝝂2𝑇𝑇𝚺𝚺𝐽𝐽𝜺𝜺2�
𝑇𝑇

. 

Finally, we derive the bivariate common jump diffusion process under the martingale 
measure ℚ𝐻𝐻 equivalent to ℙ𝐻𝐻. By Girsanov’s theorem, we have that the process 

 

𝑑𝑑𝐵𝐵1,𝑡𝑡
ℚ𝐻𝐻 = 𝑑𝑑𝐵𝐵1,𝑡𝑡 + 𝜂𝜂1,𝑡𝑡

𝐻𝐻 𝑑𝑑𝑡𝑡 
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is a standard Brownian motion under ℚ𝐻𝐻. On the other hand, we write 𝑑𝑑𝐵𝐵2,𝑡𝑡
ℚ𝐻𝐻 as 

 

𝑑𝑑𝐵𝐵2,𝑡𝑡
ℚ𝐻𝐻 = 𝜌𝜌12𝐻𝐻 𝑑𝑑𝐵𝐵1,𝑡𝑡

ℚ𝐻𝐻 + �1 − (𝜌𝜌12𝐻𝐻 )2𝑑𝑑𝐵𝐵0,𝑡𝑡, 

 
where 𝐵𝐵0,𝑡𝑡 remains a standard Brownian motion under ℚ𝐻𝐻 and it is independent of 𝐵𝐵1,𝑡𝑡

ℚ𝐻𝐻. We 
transform the process as follows. 
 

𝑑𝑑𝐵𝐵2,𝑡𝑡
ℚ𝐻𝐻 = 𝜌𝜌12𝐻𝐻 �𝑑𝑑𝐵𝐵1,𝑡𝑡 + 𝜂𝜂1,𝑡𝑡

𝐻𝐻 𝑑𝑑𝑡𝑡� + �1 − (𝜌𝜌12𝐻𝐻 )2𝑑𝑑𝐵𝐵0,𝑡𝑡 

= 𝑑𝑑𝐵𝐵2,𝑡𝑡 + 𝜌𝜌12𝐻𝐻 𝜂𝜂1,𝑡𝑡
𝐻𝐻 𝑑𝑑𝑡𝑡 

= 𝑑𝑑𝐵𝐵2,𝑡𝑡 + 𝜂𝜂2,𝑡𝑡
𝐻𝐻 𝑑𝑑𝑡𝑡     �𝜂𝜂2,𝑡𝑡

𝐻𝐻 ≔ 𝜌𝜌12𝐻𝐻 𝜂𝜂1,𝑡𝑡
𝐻𝐻 �. 

 
On the other hand, by applying Girsanov’s theorem for the jump diffusion process (Oksendal and 
Sulem [2007]), we have that the process 

 

�𝑧𝑧𝑖𝑖
ℤ

𝑑𝑑𝑁𝑁
~
𝐶𝐶
ℚ𝐻𝐻(𝑧𝑧𝑖𝑖, 𝑡𝑡) = �𝑧𝑧𝑖𝑖

ℤ
𝑑𝑑𝑁𝑁𝐶𝐶𝑖𝑖 (𝑧𝑧𝑖𝑖 , 𝑡𝑡) − 𝜆𝜆ℚ𝐻𝐻𝜅𝜅𝑖𝑖

ℚ𝐻𝐻𝑑𝑑𝑡𝑡 

 
is a compensated jump process under ℚ𝐻𝐻. Then, plugging the risk premium specification, jump 
process under ℚ𝐻𝐻 and Brownian motion under ℚ𝐻𝐻 into equation (2) generates the following 
process under ℚ𝐻𝐻. 
 

𝑑𝑑𝑆𝑆𝑖𝑖𝑡𝑡
𝑆𝑆𝑖𝑖𝑡𝑡

= �𝜇𝜇𝑖𝑖 − 𝜆𝜆𝐶𝐶𝑖𝑖𝜅𝜅𝐶𝐶𝑖𝑖�𝑑𝑑𝑡𝑡+ 𝜎𝜎𝑖𝑖𝑑𝑑𝐵𝐵𝑖𝑖,𝑡𝑡 + �𝑧𝑧𝐶𝐶𝑖𝑖
ℤ

𝑑𝑑𝑁𝑁𝐶𝐶
𝑖𝑖 (𝑧𝑧𝐶𝐶𝑖𝑖, 𝑡𝑡) 

= �𝑟𝑟 + 𝜎𝜎𝑖𝑖𝜂𝜂𝑖𝑖,𝑡𝑡𝐻𝐻 − 𝜆𝜆ℚ𝐻𝐻𝜅𝜅𝑖𝑖
ℚ𝐻𝐻� 𝑑𝑑𝑡𝑡 + 𝜎𝜎𝑖𝑖 �𝑑𝑑𝐵𝐵𝑖𝑖,𝑡𝑡

ℚ𝐻𝐻 − 𝜂𝜂𝑖𝑖,𝑡𝑡𝐻𝐻 𝑑𝑑𝑡𝑡� + �𝑧𝑧𝑖𝑖
ℤ

𝑑𝑑𝑁𝑁
~
𝐶𝐶
ℚ𝐻𝐻𝑖𝑖(𝑧𝑧𝑖𝑖, 𝑡𝑡) + 𝜆𝜆ℚ𝐻𝐻𝜅𝜅𝑖𝑖

ℚ𝐻𝐻𝑑𝑑𝑡𝑡 

= 𝑟𝑟𝑑𝑑𝑡𝑡 + 𝜎𝜎𝑖𝑖𝑑𝑑𝐵𝐵𝑖𝑖,𝑡𝑡
ℚ𝐻𝐻 + �𝑧𝑧𝑖𝑖

ℤ
𝑑𝑑𝑁𝑁

~
𝐶𝐶
ℚ𝐻𝐻𝑖𝑖(𝑧𝑧𝑖𝑖 , 𝑡𝑡). 

 

B. Independent Jump Process 
We use the pricing kernel process for the independent jump process of the form: 
 

𝑑𝑑𝜉𝜉𝑡𝑡𝐿𝐿

𝜉𝜉𝑡𝑡𝐿𝐿
= −𝑟𝑟𝑑𝑑𝑡𝑡 − (𝜼𝜼𝑡𝑡𝐿𝐿)𝑇𝑇𝑑𝑑𝑩𝑩𝑡𝑡. 

 

Note that there is no jump-related terms in the pricing kernel defined above because we assume 
that the independent jumps are purely idiosyncratic and the jump risk can be diversified away. No 
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investor requests rewards from bearing the independent jump risk, and thus there is no market 
price of jump risk in 𝜉𝜉𝑡𝑡𝐿𝐿. On the other hand, there are still Brownian diffusion risks that are 
systematic and cannot be diversified away. Therefore, there are market prices of diffusion risks 
expressed in a vector of 𝜼𝜼𝑡𝑡𝐿𝐿. With this specification of the pricing kernel for the independent 
jump process, it is easy to derive the desired results in a way that is similar to the one we stated in 
the common jump process. 

 
APPENDIX 2: SIMULATION PROCEDURE FOR VALUATION OF 

STRUCTURED NOTES 
We first discretize the whole interval into small sub-intervals of length 𝑡𝑡𝑘𝑘−1 − 𝑡𝑡𝑘𝑘 ≔ 𝛥𝛥 > 0,∀𝑘𝑘 ∈
{1, … ,𝑁𝑁}. The price evolution of the common jump process (type H) under a martingale measure 
ℚ𝐻𝐻 over each sub-interval (𝑡𝑡𝑘𝑘−1, 𝑡𝑡𝑘𝑘] is given by 
 
         𝑆𝑆𝑖𝑖,𝑡𝑡𝑘𝑘

𝐶𝐶 = 𝑆𝑆𝑖𝑖,𝑡𝑡𝑘𝑘−1
𝐶𝐶 exp�𝑌𝑌𝑖𝑖,𝑡𝑡𝑘𝑘

𝐶𝐶 �, 

     𝑌𝑌𝑖𝑖,𝑡𝑡𝑘𝑘
𝐶𝐶 : = �𝑟𝑟 − 𝜆𝜆ℚ𝐻𝐻𝜅𝜅𝑖𝑖

ℚ𝐻𝐻 −
1
2
𝜎𝜎𝑖𝑖2� Δ + 𝜎𝜎𝑖𝑖 �𝐵𝐵𝑖𝑖,𝑡𝑡𝑘𝑘

ℚ𝐻𝐻 − 𝐵𝐵𝑖𝑖,𝑡𝑡𝑘𝑘−1
ℚ𝐻𝐻 �+ 𝑢𝑢𝑖𝑖∗ �𝑁𝑁𝐶𝐶

ℚ𝐻𝐻𝑖𝑖(𝑡𝑡𝑘𝑘)−𝑁𝑁𝐶𝐶
ℚ𝐻𝐻𝑖𝑖(𝑡𝑡𝑘𝑘−1)� , ∀𝑖𝑖 ∈ {1,2}.  

 

On the other hand, the price dynamics of the independent jump process (type L) under a 
martingale measure ℚ𝐿𝐿 over each sub-interval (𝑡𝑡𝑘𝑘−1, 𝑡𝑡𝑘𝑘] is given by (∀𝑖𝑖 ∈ {1,2}) 
 
                 𝑆𝑆𝑖𝑖,𝑡𝑡𝑘𝑘

𝐼𝐼 = 𝑆𝑆𝑖𝑖,𝑡𝑡𝑘𝑘−1
𝐼𝐼 exp�𝑌𝑌𝑖𝑖,𝑡𝑡𝑘𝑘

𝐼𝐼 �, 

                 𝑌𝑌𝑖𝑖,𝑡𝑡𝑘𝑘
𝐼𝐼 : = �𝑟𝑟 − 𝜆𝜆𝜅𝜅𝑖𝑖 −

1
2
𝜎𝜎𝑖𝑖2� Δ + 𝜎𝜎𝑖𝑖 �𝐵𝐵𝑖𝑖,𝑡𝑡𝑘𝑘

ℚ𝐿𝐿 − 𝐵𝐵𝑖𝑖,𝑡𝑡𝑘𝑘−1
ℚ𝐿𝐿 �+ 𝑢𝑢𝑖𝑖∗ �𝑁𝑁𝐼𝐼𝑖𝑖(𝑡𝑡𝑘𝑘)−𝑁𝑁𝐼𝐼𝑖𝑖(𝑡𝑡𝑘𝑘−1)� , ∀𝑖𝑖 ∈ {1,2}. 

We implement the Monte Carlo simulation by drawing S sample paths of �𝑆𝑆1,𝑡𝑡𝑘𝑘
(𝑠𝑠) ,𝑆𝑆2,𝑡𝑡𝑘𝑘

(𝑠𝑠) � , 𝑘𝑘 ∈

{1, … ,𝑁𝑁}, 𝑠𝑠 ∈ {1, … , 𝑆𝑆}, and we set S = 100,000 in this study. Our simulation procedure for each 
interval (𝑡𝑡𝑘𝑘−1, 𝑡𝑡𝑘𝑘] is illustrated in the following steps: 
 

1. Given �𝑆𝑆1,𝑡𝑡𝑘𝑘−1
𝑙𝑙 ,𝑆𝑆2,𝑡𝑡𝑘𝑘−1

𝑙𝑙 �  and �𝑌𝑌1,𝑡𝑡𝑘𝑘−1
𝑙𝑙 ,𝑌𝑌2,𝑡𝑡𝑘𝑘−1

𝑙𝑙 � for ∀𝑙𝑙 ∈ {𝐶𝐶, 𝐼𝐼}. Generate 𝑍𝑍0~𝑁𝑁(0,1)  and 
𝑍𝑍1~𝑁𝑁(0,1) and create the following: 

𝑍𝑍2𝐶𝐶 = 𝜌𝜌12𝐻𝐻 𝑍𝑍1 +�1 −  (𝜌𝜌12𝐻𝐻 )2  𝑍𝑍0 ,     𝑍𝑍2𝐼𝐼 = 𝜌𝜌12𝐿𝐿 𝑍𝑍1 + �1 −  (𝜌𝜌12𝐿𝐿 )2  𝑍𝑍0    

2. Generate 𝑁𝑁𝐶𝐶
ℚ𝐻𝐻𝑖𝑖(𝑡𝑡)−𝑁𝑁𝐶𝐶

ℚ𝐻𝐻𝑖𝑖(𝑡𝑡𝑘𝑘−1)~Poisson�𝜆𝜆ℚ𝐻𝐻𝛥𝛥�, 𝑁𝑁𝐼𝐼𝑖𝑖(𝑡𝑡𝑘𝑘)−𝑁𝑁𝐼𝐼𝑖𝑖(𝑡𝑡𝑘𝑘−1)~Poisson(𝜆𝜆𝛥𝛥), ∀𝑖𝑖 ∈ {1,2}. 
3. If 𝑁𝑁𝐶𝐶

ℚ𝐻𝐻𝑖𝑖(𝑡𝑡𝑘𝑘)−𝑁𝑁𝐶𝐶
ℚ𝐻𝐻𝑖𝑖(𝑡𝑡𝑘𝑘−1) > 0 then generate 𝒖𝒖∗~ 𝑁𝑁�𝜻𝜻∗ ,𝚺𝚺𝐽𝐽� or else set 𝒖𝒖∗ ≔ (0,0)𝑇𝑇. 

4. If 𝑁𝑁𝐼𝐼𝑖𝑖(𝑡𝑡𝑘𝑘) −𝑁𝑁𝐼𝐼𝑖𝑖(𝑡𝑡𝑘𝑘−1) > 0 then generate 𝑢𝑢𝑖𝑖~ 𝑁𝑁�𝜁𝜁𝑖𝑖 , 𝛿𝛿𝑖𝑖2� or else set 𝑢𝑢𝑖𝑖 ≔ 0, ∀𝑖𝑖 ∈ {1,2}. 
5. Create  

                                      𝑌𝑌𝑖𝑖,𝑡𝑡𝑘𝑘
𝐶𝐶 = �𝑟𝑟 − 𝜆𝜆ℚ𝐻𝐻𝜅𝜅ℚ𝐻𝐻 − 1

2
𝜎𝜎𝑖𝑖� Δ + 𝜎𝜎𝑖𝑖√Δ 𝑍𝑍𝑖𝑖𝐶𝐶 + 𝑢𝑢𝑖𝑖∗, 
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                                      𝑌𝑌𝑖𝑖,𝑡𝑡𝑘𝑘
𝐼𝐼 = �𝑟𝑟 − 𝜆𝜆𝜅𝜅 − 1

2
𝜎𝜎𝑖𝑖� Δ + 𝜎𝜎𝑖𝑖√Δ 𝑍𝑍𝑖𝑖𝐼𝐼 + 𝑢𝑢𝑖𝑖,    ∀𝑖𝑖 ∈ {1,2}. 

and set 𝑆𝑆𝑖𝑖,𝑡𝑡𝑘𝑘
𝐶𝐶 = 𝑆𝑆𝑖𝑖,𝑡𝑡𝑘𝑘−1

𝐶𝐶 exp�𝑌𝑌𝑖𝑖,𝑡𝑡𝑘𝑘
𝐶𝐶 � and 𝑆𝑆𝑖𝑖,𝑡𝑡𝑘𝑘

𝐼𝐼 = 𝑆𝑆𝑖𝑖,𝑡𝑡𝑘𝑘−1
𝐼𝐼 exp�𝑌𝑌𝑖𝑖,𝑡𝑡𝑘𝑘

𝐼𝐼 �. 
6. Repeat steps 1 to 5 for the next time interval (𝑡𝑡𝑘𝑘, 𝑡𝑡𝑘𝑘+1]  given �𝑆𝑆1,𝑡𝑡𝑘𝑘−1

𝑙𝑙 ,𝑆𝑆2,𝑡𝑡𝑘𝑘−1
𝑙𝑙 �  and 

�𝑌𝑌1,𝑡𝑡𝑘𝑘−1
𝑙𝑙 ,𝑌𝑌2,𝑡𝑡𝑘𝑘−1

𝑙𝑙 �, ∀𝑙𝑙 ∈ {𝐶𝐶, 𝐼𝐼}. 

 

Each sample path generates �𝐶𝐶𝑡𝑡𝑘𝑘
(𝑠𝑠)�

𝑘𝑘∈{1,…,𝑁𝑁}
 and 𝑋𝑋𝑇𝑇

(𝑠𝑠) based on conditions stated in case 1 to 3, and 

we take the sum of discounted payoffs, that is, ∑ exp(−𝑟𝑟𝑡𝑡𝑖𝑖)𝐶𝐶𝑡𝑡𝑘𝑘
(𝑠𝑠)𝛥𝛥 𝑋𝑋0 + exp(−𝑟𝑟𝑇𝑇)𝑋𝑋𝑇𝑇

(𝑠𝑠)𝑁𝑁
𝑘𝑘=1 , for each 

𝑠𝑠 ∈ {1, … , 𝑆𝑆}, 𝑆𝑆 = 100,000. The final estimate of the expectation is found by (∀𝑚𝑚 ∈ {𝐻𝐻, 𝐿𝐿})  
 

𝑉𝑉
^
0
𝑚𝑚 =

1
𝑆𝑆
��� exp(−𝑟𝑟𝑡𝑡𝑘𝑘)𝐶𝐶𝑡𝑡𝑘𝑘

(𝑠𝑠)𝛥𝛥 𝑋𝑋0 + exp(−𝑟𝑟𝑇𝑇)𝑋𝑋𝑇𝑇
(𝑠𝑠)

𝑁𝑁

𝑘𝑘=1

�
S

s=1

. 

 
APPENDIX 3: SKETCH OF PROOF: THEOREM 

We prove the theorem by modifying the results in Kijima and Uchida (2005). In their study, the 
low-type agent (similar to type L in this study) is assumed to switch his/her type randomly and 
independently to a high type (similar to type H in this study). We modify the assumption so that 
all the type L investors switch randomly but simultaneously to type H at a constant switching rate 
𝜆𝜆 (> 0) . Along with this modification, we revise the Markov transition structure of 
{𝑁𝑁𝐻𝐻𝐻𝐻(𝑡𝑡),𝑁𝑁𝐿𝐿𝐿𝐿(𝑡𝑡)} where 𝑁𝑁𝐻𝐻𝐻𝐻(𝑡𝑡) �𝑁𝑁𝐿𝐿𝐿𝐿(𝑡𝑡)� represents the number of type H sellers (type L 
buyers) at time t, so that the state space stays irreducible. Then, we can apply the well-known 
result in the theory of Markov chains and with the similar manipulation in Kijima and Uchida 
(2005), we derive the desired result given the assumptions stated in Section 4. 
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