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Abstract 

 

In this paper, we examine the factors driving Eurozone sovereign credit default 

swap (CDS) spreads during the Eurozone sovereign debt crisis. For identifying 

factors we utilize independent component analysis (ICA), a technique similar to 

principal component analysis (PCA). We identify three factors that impact spreads 

and capture the features specific to the crisis such as the breakup risk of the 

Eurozone: peripheral factor, global factor, and Eurozone common factor. In 

contrast, when PCA is applied, only a single factor is identified. Moreover, using 

ICA with a GARCH model, we show that the source of volatility for CDS spreads 

shifted from the global factor in 2009 and the peripheral factor in 2010 to the 

Eurozone common factor in 2012, and that the dynamic correlation reflects the 

decoupling between low credit countries such as Germany and high credit 

countries such as Greece. We also show that the goodness-of-fit of the ICA-based 

model is better than other models used such as the Student-t copula model.  
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1 Introduction

The Eurozone sovereign debt crisis is an ongoing crisis. The crisis is said to have started

in late 2009, and remains a critical sector of the global credit market where there is

concern about sovereign risk. Prior to the crisis the credit risk of Eurozone countries

was considered to be very low; however, after the onset of the crisis, the credit risk, as

indicated by the widening of credit default swap (CDS) spreads and bond yields, has

increased dramatically. Moreover, the credit spreads between countries with lower risk,

such as Germany, and those with higher risk, such as Greece, widened substantially.

In this paper, we investigate the factors driving Eurozone sovereign CDS spreads.

While a default of a country ultimately depends on reasons specific to the country, pre-

ceding studies reported that sovereign CDS spreads exhibit co-movements across coun-

tries. Using principal component analysis (PCA), Longstaff et al. (2011) studied the

spreads of 26 sovereign CDSs of monthly frequency from 2000 to 2010. They reported

that co-movements are linked to US equity, equity volatility, and bond risk premium.

Pan and Singleton (2008) studied the term structure of three countries (Korea, Mex-

ico, and Turkey) seeking to estimate default and recovery rates. They propose a pricing

model with stochastic default intensity, and decompose the variation of CDS into default

intensity and risk premium. The risk premium is shown to have co-movements across

countries, and are linked to the CBOE VIX volatility index, US corporate bond spreads,

and the volatility of the country’s foreign exchange rate. Ang and Longstaff (2013) stud-

ied systemic credit shock by comparing the US and the Eurozone using the CDS for US

Treasuries, US states, and major Eurozone countries. In the pricing model, they proposed

the use of two types of credit events, systemic and sovereign-specific. They found that

the systemic risk component is more important in the Eurozone than in the US, and is

related to global financial factors such as the VIX index.

In addition to the issue of co-movements of CDS spreads, we consider two issues
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specific to the the period which is referred to as the Eurozone sovereign debt crisis.

First, during this a strong relation was observed between sovereign CDS spreads and

the stability of the Eurozone financial sector. According to Mody (2009), following the

US government bail out of Bear Stearns in 2008 the Eurozone sovereign CDS spread

began widening, reflecting the rescuing cost of stressed financial institutions. Since the

onset of the US subprime mortgage crisis starting in 2007, banks and other financial

institutions have encountered difficulties, some being forced into bankruptcy while others

being fortunate to be bailed out by governments. The costs of such government bailouts

were potential so large that they were expected to increase the government debt level,

resulting in increased sovereign credit risk. This is particularly the case in the Eurozone

since the scale of the financial sector is larger than the other countries.1 Considerable

theoretical and empirical research has been devoted to show the fundamental relation

between sovereign credit and the financial industry. One recent example of such research

is the paper by Acharya et al. (2014).

The other issue of the Eurozone sovereign debt crisis we investigate is what is referred

to as the “risk of convertibility” or the “risk of redenomination.” The President of the

European Central Bank (ECB) Mario Draghi mentioned in a speech on July 26, 2012

that convertibility risk was charged on the Eurozone sovereign CDS spreads (Draghi,

2012). Before this speech, the crisis of the Eurozone became deepened, and the CDS

spreads of countries such as Italy, Portugal and Spain increased to the level such that

market participants started thinking of the possible breakup of the Eurozone into national

currencies. President Draghi stated that “the euro is irreversible,” and confirmed that the

ECB would take whatever the action was in order to preserve the Eurozone. The word

redenomination risk is also used in referring to this kind of risk (Draghi and Constâncio,

1According to Table 2.3.1 in the report about the EU banking sector published by European Com-
mission (2012), the ratio of the bank assets over GDP is 349% in the EU, 78% in the US, and 174% in
Japan.
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2012). De Santis (2015) showed that the redenomination risk serves as the systemic

risk during the crisis period; Krishnamurthy et al. (2013) showed that it is to some

extent through the reduction of redenomination risk that some monetary measures by the

ECB (such as the Outright Monetary Transaction) works effectively during the Eurozone

sovereign crisis.

As a consequence of this crisis, the decoupling of sovereign credits across the Euro-

zone countries was observed, as well as the co-movements of the sovereign credits. The

countries with low credit risk such as Germany are often colloquially termed core coun-

tries, whereas those with high credit risk countries such as Greece termed peripheral

countries. There are some who question whether these terms are appropriate (Kaletsky,

2012). However, these terms are commonly used, appearing in some prior studies about

the Eurozone (e.g., Artis and Zhang, 2001; Stockhammer, 2011). We use these terms since

we consider it is important to investigate the decoupling between the “core” countries

and “peripheral” countries.

In this paper, our objective is to identify the factors driving the changes in CDS

spreads, separating the decoupling factor and the co-movement factor. Following Kum-

iega et al. (2011) and Garćıa-Ferrer et al. (2012), in this paper we employ independent

component analysis (ICA) for that purpose. Although similar to factor analysis (FA) and

PCA in that it is a linear model, ICA differs from these two traditional models in that

its objective is to find a linear representation for non-Gaussian variables so that the com-

ponents identified are statistically independent from the other components identified.2

The non-Gaussianity plays an essential role in ICA. If the data obey the Gaussian

distribution, then ICA produces the same components as PCA. In the case of asset returns

for financial instruments, there is a preponderance of empirical evidence that asset returns

2The theory and applications of ICA and algorithms for solving for the components are described
in Hyvärinen and Oja (2000) and Hyvärinen et al. (2001). Recent advances in ICA are described in
Hyvärinen (2013).
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violate the Gaussian assumption; for example, see Chapter 11 of Rachev et al. (2005).

In fact, tail heaviness is the important feature of asset returns causing the catastrophic

events realized in the financial market that began in 2007, as well as other documented

market crashes (for example, see Kim et al., 2011). Consequently, the application of ICA

to the analysis of asset returns seems to be more appropriate than other techniques that

assume a Gaussian distribution.3

The paper is structured as follows. Section 2 briefly reviews the Eurozone sovereign

CDS market during the crisis and describes the data we analyze. In Section 3 we discuss

factor decomposition based on ICA and comparing the ICA results with those found

using PCA. Section 4 discusses the volatility of the ICs and the correlation between the

CDS spreads based on the GARCH model, and compares the goodness-of-fit of the ICA-

based model with the alternative models using copula functions. Section 5 provides our

conclusions.

2 The data and the Eurozone sovereign CDS market

during the crisis

In this paper, we analyze Eurozone sovereign CDS spreads from Jaunary 2009 to Decem-

ber 2013 (see Figure 1).4 More precisely, we use data for CDS spreads denominated in

US dollars with a maturity of five years obtained from Bloomberg. We use weekly data

to avoid noise that may be contained in daily data. The observation period is January

3For example, Chapter 24 of Hyvärinen et al. (2001) shows several examples of ICA applications to
financial data.

4Note that another source representing the sovereign credit is the yield of sovereign bonds. The CDS
spread referencing an entity theoretically matches the spread of the bond yield issued by the entity
over the risk free rate. In the real-world of financial markets, however, the market for these two credit
products are very similar but not identical, reflecting the difference of some market features. For the
Eurozone sovereign credit markets, Fontana and Scheicher (2010) showed that the difference between the
CDS and cash bond markets arises because the cash market is less liquid than the CDS market, that is,
the CDS market is more liquid. In this paper, therefore, we focus on the CDS spread.
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2009 to December 2013. We use the CDS spreads of seven Eurozone countries: Belgium

(BE), France (FR), Germany (DE), Greece (GR), Italy (IT), Portugal (PT), and Spain

(ES). These countries account for more than 80% of the Eurozone GDP, and include the

countries that attracted increased attention during the crisis.

From Figure 1, we can observe that CDS spreads started widening from the middle of

2009, soared toward the middle of 2012, and then decreased. It is also observed that the

level of the CDS spreads in 2013 is generally much higher compared to the level in the

middle of 2009. Moreover, the difference of CDS spreads between the Eurozone sovereign

countries in 2013 is much larger than that in 2009. Figure 1(b) shows the CDS spreads

in logarithmic scale, depicting this credit decoupling more clearly.

The period depicted in Figure 1 contains the major part of what is referred to as

the Eurozone sovereign debt crisis. The onset of the crisis is not precisely defined, but

is usually considered as the end of 2009, in which bad news about sovereign debt were

reported and their CDS spreads started widening. For example, on November 5, 2009,

Reuters reported that the budget deficit of Greece was more than the double of what was

previously announced. This news increased the Greek CDS spread.

Figure 1 shows that the Greek CDS spread skyrocketed toward the summer of 2011.

Since its economy and fiscal conditions are one of the most fragile among the Eurozone,

the country has attracted attention from market participants. On May 2, 2010, in ex-

change for a bailout loan amounting to e 110 billion, the Greek government agreed about

its austerity program with the ECB, the European Commission (EC), and the Interna-

tional Monetary Fund (IMF). However, its CDS spread increased during the week of May

3 to 7, from 722 basis points (at the closing on April 30, the end of the last week) to

965 basis points (at the closing on May 7). On May 10, the spread dropped to 590 basis

points, reportedly because of the introduction of the Security Market Programme by the

ECB on that day (European Central Bank, 2010). However, it kept increasing after that
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Figure 1: CDS spreads of the seven Eurozone countries: Belgium (BE), France (FR),
Germany (DE), Greece (GE), Italy (IT), Portugal (PT), and Spain (ES). The denomina-
tion currency is the US dollar, and the maturity is five years. Note that in the legend of
the figure, the countries are in the descending order of the average values of CDS spreads.
The data for Greece were discontinued in July 2011.
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day. Finally, the International Swaps and Derivatives Association (ISDA) announced

its resolution on March 9, 2012, that a restructuring credit event had occurred for the

CDS contract referencing Greece (the Hellenic Republic; The International Swaps and

Derivatives Association, 2012)

Obviously, Greece is the country we are most interested in. However, as already noted,

the Greek CDS experienced a credit event, so it seems better to limit the data for Greece

to the pre-2012 time period. On the other hand, we are also interested in investigating

the CDS market around 2012, since the spreads for the other countries hit their maxima

around that time. For these reasons, we partition the data into two parts. One part

consists of all seven countries, covering the period from January 2009 to June 2011. The

other part consists of all countries except Greece, covering the period from January 2009

to December 2013. We will refer to the former data as the “seven countries” data and

the latter as the “six countries” data. The number of observations is 130 in the seven

countries data and 261 in the six countries data.

Since we are interested in factors driving CDS spreads, we mainly focuses on the

changes of CDS spreads, not on the levels. However, their scales are very different across

the countries in our study. In order to adjust for this scale difference, we use the changes

of logarithm (log-returns) of CDS spreads. Figure 1(b) suggests that the logarithm of

CDS spreads is closer to the usual Brownian motion than the CDS spreads themselves

are. From the Table 1 which provides descriptive statistics of the log-returns of CDS

spreads, it can be seen that the standard deviations of log-returns are about the same

(ranging from 10% to 15%) across the countries. This justifies the use of log-returns for

comparison across the countries. Taking logarithm generally decreases the tail heaviness

of the given data, but the values of kurtosis in Table 1 indicate that the log-returns of

CDS spreads exhibit tail heaviness in this case.
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Table 1: Descriptive statistics of log-returns of sovereign CDS spreads, their principal
components (PCs), and their independent components (ICs). Columns “avg.,” and
“std.,” show average and standard deviation, whose unit is 1% for the log-returns of
CDS spreads (for the scales of the PCs and ICs, see Table 3). Column “skew.” shows
skewness. Column “kurt.” shows kurtosis (not excess kurtosis; that is, 3.0 if the variable
obeys the Gaussian distribution).

Seven countries from Six countries from

January 2009 to June 2011 January 2009 to December 2013

(130 datapoints) (261 datapoints)

avg. std. skew. kurt. avg. std. skew. kurt.

Logarithmic returns of CDS spreads

Belgium

France

Germany

Greece

Italy

Portugal

Spain

Principal components (PCs)

PC1

PC2

PC3

Independent components (ICs)

IC1

IC2

IC3
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3 Factor Decomposition of CDS based on ICA

In this section, we discuss factor decomposition of the data we presented in Section 2.

For that purpose, we introduce the idea of ICA, and present the model based on that in

Section 3.1.

3.1 The return model based on ICA and PCA

Suppose a q-dimensional random vector X = (X1, . . . , Xq)
> representing the observable

variables, and assume E[X] = 0. ICA is the following model of X:

X = AS, (1)

where S = (S1, . . . , Sq)
> is a set of q independent random variables and A is a q-by-q

constant matrix. The random variable Sj, j = 1, . . . , q, is referred to as the independent

component (IC). The independence is equivalent to the following equation about the

probability density function (PDF):

fS(s) = fS1(s1) · · · fSq(sq), (2)

where s = (s1, . . . , sq)
> is a possible value of S and fS and fSj are the joint and the

marginal PDF of S and Sj, respectively.

An algorithm for ICA decomposes X into S by finding the matrix A such that Sj is

as independent from the other Sj′ 6=j as possible.
5 There are several algorithms for finding

A; among them, the fastICA algorithm introduced by Hyvärinen and Oja (2000) realizes

5Note that the components obtained by an ICA algorithm are not completely independent of each
other. For example, if each component of X is completely dependent on each other, such decomposition
is impossible. However, practically, we apply ICA to the non-correlated data obtained by PCA, as
discussed later. While no correlation does not mean independence, it is close to independence. Therefore
we postulate that each component obtained using ICA is independent.
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ICA by maximizing the non-Gaussianity of each independent component based on the

fixed point method.

Equation (1) has the same form as PCA. Although PCA and ICA provide for linear

transformation of multidimensional data, they differ as to how to determine the matrix

A. PCA diagonalizes the covariance matrix of X in equation (1) by a unitary matrix A,

usually denoted as U , that is,



X = UP,

covX = UDU>,

D = covP = diag(λ1, . . . , λq),

UU> = U>U = Iq,

(3)

where P = (P1, . . . , Pq)
>. As a result, Pj in PCA has no correlation with the other Pj′ .

Pj is referred to as the principal component (PC), and its variance is equal to the diagonal

element λj. Conventionally, λj is in the descending order as λ1 ≥ · · · ≥ λq ≥ 0, and P1

is referred to as the first PC since its variance is the largest.

ICA is often used in combination with PCA. ICA cannot determine the scales of

the ICs, since A can be a non-unitary matrix. Consequently, ICA cannot reduce the

dimension of data based on their scales. In contrast, PCA can reduce the data dimension

based on the variances of the PCs, since the variances are determined with the unitarity

of U . Therefore, for the data with large dimension d (> q), the dimension is reduced

from d to q by PCA at first, and then ICA is applied to the q-dimensional data obtained

by PCA.

Our principal interest is applying ICA to the multivariate time series of the CDS

spreads. Let rt = (r1t, . . . , rdt)
>, t = 1, . . . , T denote the log-return of d sovereign CDS

spreads on day t. Let us assume that the returns rt obeys a factor model with q (≤ d)

10



factors: 

rt = µ+ Ast + εt,

st = (s1t, . . . , sqt)
>: source of variation,

εt = (ε1t, . . . , εdt)
>: noise term,

µ: constant vector, and

A: d× q-constant matrix.

(4)

Note that st and εt can be interpreted as the sources of variation of the CDS spreads and

the noise term, respectively. We assume that these vectors are independent of each other.

We employ both PCA (PCA only) and ICA (ICA combined with PCA) to determine

the matrix A and the series {sjt}1≤t≤T , j = 1, . . . , q, in equation (4). We use PCA

for the correlation matrix, that is, X = D
−1/2
r (rt − µ) in equation (3) where Dr =

diag((σ
(r)
1 )2, . . . , (σ

(r)
d )2) and σ

(r)
jt = std(rjt). For ICA, we use the fastICA algorithm.6

We can derive the following formulae:

st = (D−1/2
r A)+D−1/2

r (rt − µ), (5)

εt = D1/2
r Ubp

b
t, (6)

where X+ = (X>X)−1X>, which is the Moore-Penrose pseudoinverse for a matrix such

that (X>X) is invertible, Ub is the right (d − q) columns of U in equation (3) and

pb
t = (pq+1,t, . . . , pdt)

> is the PCs from the (q + 1) th to dth in equation (3).

6We use the MATLAB code distributed by the authors at their webpage:
http://www.cs.helsinki.fi/u/ahyvarin/ .

In the fastICA algorithm, we select the hyperbolic tangent (tanh) function as the nonlinearity function,
and set the scale parameter as unity.
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Table 2: The explanatory powers of the first three PCs and ICs. The table includes the
results for two different data: the “Seven countries” data, from January 2009 to June
2011 including Greece, and the “Six countries” data, from January 2009 to December
2013 excluding Greece.

PCA Results ICA Results

PC1 PC2 PC3 IC1 IC2 IC3

Seven countries 78% 10% 4% 29% 26% 37%
Six countries 76% 12% 4% 29% 26% 38%

3.2 Decomposition results

Table 2 shows the “explanatory powers” of the first three PCs and ICs.7 PC1, PC2 and

PC3 in the table are the first, second, and the third PCs. IC1, IC2 and IC3 in the table

are the ICs when we set q = 3.8 The ICs are in the descending order of non-Gaussianity.

It can be seen from Table 2 that the explanatory powers of the first PC is 78% or 76%,

which is dominant over the other two PCs which have much less explanatory powers. In

stark contrast to the PC for PCA, the first three ICs when ICA is used have similar

values of explanatory powers.

Table 3 shows the entries of the constant matrix A in equation (4) for both PCA and

ICA, where the unit is one percent point per unit value of the PC or the IC. The R2

values of the regression for each factor for each country is also shown in the parentheses in

the table. For example, PC1 in the seven countries data explains 77% of the CDS spread

return of Belgium, and the CDS of Belgium increases by 4.32% when PC1 increases by

7Here, the explanatory power is defined in the following way: For each country and each component, a
simple regression is estimated by setting the CDS spread returns of the country as the explained variable
and the component as the explanatory variable, and obtain the coefficient of determination R2. The
explanatory power of the component is defined as the average of the R2 across the countries. Note that
for PCA, the explanatory power by this definition matches its usual definition; that is, it is the ratio of
the eigenvalue corresponding to the component over the total of the eigenvalues.

8Since the three ICs are linear transformations of the three PCs, the sum of the explanatory powers
of the three PCs matches that of the three ICs.

12



Table 3: The factor loadings of the first three PCs and ICs. The unit of factor loadings
is 1% increase of CDS spreads per one point increase of each PC or IC. The figures in
parentheses are the R2 values of the regression for each component on each country. The
parenthesized figures in the “Tot.” rows show the explanatory powers shown in Table 2.

PCA Results ICA Results

PC1 PC2 PC3 IC1 IC2 IC3

Seven countries from January 2009 to June 2011

Tot.

BE

FR

DE

GR

IT

PT

ES

Six countries from January 2009 to December 2013

Tot.

BE

FR

DE

IT

PT

ES

one.

For PC1, the factor loadings range from 3.98 to 5.00, and the explanatory powers

range from 67% to 87%. This PCA result suggests that PC1 can be considered as the

common factor whose changes affect all the countries. In contrast, PC2 has much less

value in terms of its explanatory power. Looking more closely at the PCA results, we

see that the factor loadings for PC2 are positive for Belgium, France, and Germany, but

negative for the other countries. The three countries for which the PC2 is positive are

considered as the core countries, while the other countries are considered as the peripheral

countries. From these observations, it can be argued that PC2 may be related to the

difference between core countries and peripheral countries, while the difference explained

by PC2 is much smaller than the common factor explained by PC1 from the viewpoint

of explanatory power. As for PC3, it is difficult to find some tendency or interpretation.
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As seen here, PCA has the advantage that it can reduce the dimension of data into

the minimum number of factors needed to explain the data. The large value for the R2

of PC1 suggests that only PC1 should be considered and the other PCs can be ignored.

However, decoupling of the credit spreads suggests adding an additional component in

order to explain the decoupling. PC2 can be a candidate for such a component, and the

values of factor loading reported in Table 3 show that to some extent PC2 fulfills that

role. However, the small R2 values of PC2 show the difficulty of such interpretation.

Therefore, we apply an alternative method of decomposition, ICA.

Turning to the results for the factor loadings obtained from ICA, we see that the

factor loading for IC3 for all but Greece in the seven country data and Portugal in the six

country data ranges from 4.94 to 9.70. For Greece in the seven country data, IC3’s factor

loading is 3.62, and for Portugal in the six country data, IC3’s factor loading is 3.54.

The explanatory powers of IC3 range from 23% to 71% for all countries except these two

cases. For Greece in the seven countries, it is 7%, and for Portugal in the six countries,

it is 9%. These ICA results suggest that IC3 is related to the changes of all countries

except these two cases. Therefore it seems that IC3 can be viewed as the common factor.

The other two components, IC1 and IC2, have different characteristics. IC1 and

IC2 have large factor loadings and explanatory powers for peripheral countries and core

countries, respectively. Like PC2, IC1 and IC2 are related to the distinctive country

groups in the Eurozone. However, different from PCA, ICA can separate the factor

found by PC2 into the two factors reflecting the characteristics of the two country groups.

Moreover, the explanatory powers of IC1 and IC2 are much larger than those of PC2,

showing the significance of the factors.

These results show the relative advantage of ICA. ICA can find different multiple

factors and these independent factors have an interesting interpretation concerning credit

decoupling between countries. In addition, the role of the ICA-obtained factors are

14



comparable with respect to explanatory power, whereas the second and the third factors

obtained from PCA are negligible compared to the first PC. However, in order to identify

the ICs as meaningful factors, additional evidence would be required. For this purpose,

we consider the relation of the ICs with the variables observed in the financial markets

in Sections 3.3 and 3.4.

The descriptive statistics of the PCs and the ICs are shown in Table 1. The PCs are

in the descending order of their standard deviation values. In contrast, the ICs are in

the descending order of their kurtosis values, since ICs are obtained by maximizing non-

Gaussianity, and non-Gaussianity is measured by higer-order moments of distribution

such as skewness and kurtosis.

It can be seen from Table 1 that IC1, the factor related to the peripheral countries,

has values for kurtosis that exceeds 15.0. Considering the fact that the value of kurtosis

is 3.0 for the Gaussian distribution and 12.0 for the Student-t distribution with degrees of

freedom 4.5, which is often used in order to describe tail heaviness of return distribution,

a kurtosis value exceeding 15 is extremely large, strongly suggesting that the tail risk

in the peripheral countries is high. This result suggests the importance of using tail-

heavy models for CDS spreads. Such a tail-heavy model includes not only a tail-heavy

distribution but also volatility clustering effect which is discussed in Section 4.1.

3.3 Selection of financial variables

Here we consider the financial variables that may be possibly related to the factors im-

pacting the CDS spreads. Longstaff et al. (2011) provide a comprehensive study about

the relation between the sovereign CDS spread and financial and economic variables.

They investigated the relation between monthly changes of 26 sovereign CDS spreads

and 14 financial and economic variables. These variables include local stock market re-

turn, change in US corporate yield spread between BBB and AAA credits, change in US
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corporate yield spread between BB and BBB credits, change in volatility risk premium

(measured as the difference between the implied volatility of the VIX and the realized

volatility of S&P 100), and regional and global averages of CDS spreads.9 These variables

are related to the CDS spread. The significance of the other variables in the paper with

the CDS spreads varies.

In the context of the systemic risk in the Eurozone, Ang and Longstaff (2013) in-

vestigated the relation between seven financial variables and what they refer to as the

“intensity of the systemic risk,” computed from their stochastic default intensity model.10

They computed the intensities for the systemic risk for the US and the Eurozone using

the CDS spreads for the US and Germany, respectively. They then investigated which

financial variable drives weekly change in the systemic risk intensity. The variables they

investigated are market stock returns (S&P500 for the US and DAX for the Eurozone),

change in the 5-year constant maturity swap rates (denominated in the US dollar for the

US and in the euro for the Eurozone), change in VIX (for both the US and the Euro-

zone), change in corporate CDS spreads (the CDX North American Investment Grade

Index for the US and the European iTraxx Index for the Eurozone), and changes in five

foreign CDS spreads (Japan, China, and CDX Emerging Markets). They found that

market stock returns, change in corporate CDS spreads, and the CDS spread change for

the Chinese government are related to the intensity of systemic risk in both the US and

the Eurozone. They also reported that for the US, change in the VIX is related to the

systemic risk intensity.

Guided by the variables identified in these two studies, we selected six variables for our

9The other variables are: exchange rates, foreign reserves, US stock market return, change in 5-year
US Treasury yields, equity premium, US term premium, and capital flows in bonds and equities.

10Ang and Longstaff (2013) proposed a model based on Duffie et al. (2003) that the default intensity of
a specific country is the sovereign-specific intensity plus the intensity for the systemic risk (multiplied by
a constant specific for the country representing its exposure to the systemic risk). They considered that
the default intensity in the CDS spreads for the US Treasuries represents the intensity of the systemic
risk for the CDS spreads of US states. Likewise, they regarded the intensity of Germany as the intensity
of the systemic risk for the Eurozone sovereign CDS spreads.
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analysis. First, since both studies reported that stock returns impact the sovereign CDS

spreads, we include two series of stock index returns. The first is the average of logarithmic

returns across the three core countries (Belgium, France and Germany). We use the euro-

denominated MSCI11 for the stock index return for each country, and the equally-weighted

average for these countries is labeled “stock index of core countries.” The second series

is the average of the peripheral countries (Greece, Italy, Portugal and Spain for the seven

countries data and Italy, Portugal and Spain for the six countries data). The equally-

weighted average for these countries is labeled “stock index of peripheral countries.”

Second, since it was reported that volatility was related to sovereign CDS spreads,

we introduced two volatility indices. One is the VSTOXX, an index of volatility implied

by the EUROSTOXX 50 options, an index comprised of the most liquid Eurozone stocks

representing the risk aversion within the Eurozone. We label this volatility index as the

“Eurozone stock implied volatility (VSTOXX).” The other volatility index is the CBOE

VIX, an index of volatility implied by the S&P 500 options. Since the US stock market

is more global than the Eurozone stock market, we label the VIX “global stock implied

volatility (VIX).”

Both Longstaff et al. (2011) and Ang and Longstaff (2013) observed that corporate

credit condition is related to the CDS spreads. More specifically, Longstaff et al. (2011)

reported that changes in US corporate yield spreads were related to changes in the CDS

spreads, and Ang and Longstaff (2013) reported that changes in corporate CDS indexes

were related to the systemic risk intensity in CDS spreads both in the US and the Eu-

rozone. As a proxy for credit condition, in this paper we use the Markit iTraxx Europe

Index, referring to it as the “Eurozone corporate CDS index.”

Ang and Longstaff (2013) reported that China’s CDS spread was related to the sys-

temic risks of the US and the Eurozone. Longstaff et al. (2011) showed that systemic

11Designed by the Morgan Stanley Capital International before, and by the MSCI Barra today.
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risks defined as the first PC of the 26 sovereign CDSs explained more than 60% of their

variation. These findings indicate that the Eurozone sovereign CDS market and that of

the rest of the world are related, multilaterally affecting each other. In order to represent

this relation, we consider four major economies outside of the Eurozone: China, Japan,

the United Kingdom, and the Switzerland. We use their equally-weighted average of the

CDS spreads denominated in US dollar, labeling it “global sovereign CDS index.”12

In addition to these six variables, we consider four variables representing the risk

characterizing the Eurozone sovereign debt crisis. The first variable is the one related

to the cost for a sovereign state government to maintain the financial system by means

such as bail-outs, as reported by Mody (2009). In this paper, we use the Markit iTraxx

Europe Senior Financial Index for its continuity and simplicity. We label it “Eurozone

financial CDS index.”

The second, third and fourth variables are those representing the risk of redenomina-

tion of the Eurozone countries. One of the approaches to measure this risk is to compare

the bond yields in different currencies based on the notion that the expected exchange

rate change due to redenomination is reflected to the yield difference in different cur-

rencies. Krishnamurthy et al. (2013) introduced this idea by using bond yields of Italy,

Portugal and Spain denominated in the US dollar and the euro. De Santis (2015) used

CDS spreads of France, Italy, Spain and Germany since the USD-denominated bond is-

sued by these countries is scarce. We use the CDS spreads, following De Santis (2015).

Accordingly, the redenomination risk I underlying the CDS spread is defined as follows:

Ic,b,ht = (Sc,h,USD
t − Sc,h,EUR

t )− (Sb,h,USD
t − Sb,h,EUR

t ), (7)

where S denotes a CDS spread, the superscript c denotes the country referenced by

the CDS, b denotes Germany, USD denotes denomination in US dollar, EUR denotes

12We do not use the US Treasury CDS spread since it is usually denominated in the Euro.
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denomination in the euro, h denotes the maturity, and the subscript t denotes time.

In order to compute I in equation (7), we use the US dollar-denominated CDS spreads

explained in Section 2, and the euro-denominated 5-year CDS spreads downloaded from

the Bloomberg Financial Markets.13 We consider the redenomination risk I for Belgium,

France, Greece, Portugal and Spain.14 We compute the equally-weighted average of the

values of I for Belgium and France and label it “redenomination risk of core countries.”

We also compute the average of I for Greece, Portugal, and Spain (for the seven countries

data) and for Portugal and Spain (for the six countries data), labeling it “redenomination

risk of peripheral countries.”

Finally, the volatility of the exchange rate between the euro and the US dollar would

be expected to be related to the redenomination risk because it is related to the valuation

of the euro. We use the volatility implied by the three-month at-the-money option of the

exchange rate obtained from Bloomberg, labeling it “EURUSD implied volatility.”

Table 4 lists the 10 variables we use in this study.

3.4 Link between ICs and financial variables

Here we investigate whether the ICs found in our analysis are related to the financial

variables selected in Section 3.3. We estimate a simple regression whose the explanatory

variable (X) is one of the financial variables we selected, and whose explained variable

(Y ) is one of the PCs or ICs. Since the explained variable (a PC or an IC) has large

kurtosis as can be seen from Table 1, it is possible that outlier observations influence

the regression result. Therefore, we adopt a robust regression using the Tukey’s biweight

13There are many missing values of the euro-denominated CDS spreads in 2012. We complement these
values from the sovereign bond yields, under the assumption that the weekly change of CDS spread
is a linear function of that of bond yield. Note that both changes match theoretically since both are
denominated in the same currency, the euro.

14Germany is excluded since it is used as the basis in equation (7). Italy is excluded for the scarcity
of the available data.
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Table 4: Definition for the financial variables in this study.

Name Definition

Stock index of core

countries:

Weekly log-return of the EUR-denominated MSCI, equally-weighted average

of Belgium, Germany and France. The unit is one percent.

Stock index of

peripheral countries:

Weekly log-return of the EUR-denominated MSCI, equally-weighted average

of  Greece, Italy, Portugal, and Spain. The unit is one percent.

Global stock implied

volatility (VIX):
Weekly changes of the CBOE VIX. The unit is one percent.

Eurozone stock

implied volatility

(VSTOXX):

Weekly changes of the VSTOXX. The unit is one percent.

Eurozone corporate

CDS index:
Weekly change of the Markit iTraxx Europe. The unit is one basis point.

Global sovereign CDS

index:

Weekly change of 5-year sovereign CDS spreads, equally-weighted average of

China, Japan, Switzerland, and the United Kingdom. The unit is one basis

point.

Eurozone financial

CDS index:

Weekly change of the Markit iTraxx Europe Senior Financials. The unit is one

basis point.

Redenomination risk

of core countries:

Weekly change of "redenomination risk" defined in equation (7) in section

3.3, equally-weighted average of France and Belgium. The unit is one basis

point.

Redenomination risk

of peripheral

countries:

Weekly change of "redenomination risk" defined in equation (7) in section

3.3, equally-weighted average of Greece, Portugal, and Spain. The unit is one

basis point.
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Table 5: Simple linear regression results when each PC is set as the explained variable
(Y ) and each financial variable as the explanatory variable (X). For estimation of the
regression coefficients, robust regression with Tukey’s biweight function is adopted. The
single asterisk (*) means that the regression coefficient deviates from zero using a sig-
nificance level of 5%, and the double asterisk (**) means that the regression coefficient
deviates from zero using a significance level of 1%. The R2 values are those obtained
from applying ordinary least squares.

Y=PC1 Y=PC2 Y=PC3

X= coeff. R2 coeff. R2 coeff. R2

Seven countries from January 2009 to June 2011

Stock index of core countries

−0.42

**

0.30 −0.03 0.00 −0.01 0.01

Stock index of peripheral countries

−0.46

**

0.49 −0.02 0.00 0.00 0.01

Global stock implied volatility (VIX)

0.21

**

0.13 0.02 0.03 0.01 0.02

Eurozone stock implied volatility (VSTOXX)

0.24

**

0.15 0.02 0.02 0.01 0.02

Eurozone corporate CDS index

0.18

**

0.48 0.02

**

0.00 0.00 0.00

Global sovereign CDS index

0.29

**

0.43 0.04

**

0.04 0.00 0.00

Eurozone financial CDS index

0.13

**

0.53 0.01

*

0.01 −0.01

*

0.00

Redenomination risk of core countries

0.20

**

0.06 −0.01 0.00 −0.03

*

0.03

Redenomination risk of peripheral countries

0.05

**

0.07 0.00 0.02 0.00 0.00

EURUSD implied volatility

1.25

**

0.18 0.03 0.04 −0.08 0.00

Six countries from January 2009 to December 2013

Stock index of core countries

−0.41

**

0.32 −0.04

**

0.00 0.02

*

0.00

Stock index of peripheral countries

−0.41

**

0.42 −0.02 0.00 0.02

*

0.00

Global stock implied volatility (VIX)

0.28

**

0.17 0.03

**

0.01 0.00 0.00

Eurozone stock implied volatility (VSTOXX)

0.26

**

0.17 0.03

**

0.00 −0.01 0.00

Eurozone corporate CDS index

0.15

**

0.45 0.01

*

0.00 0.00 0.00

Global sovereign CDS index

0.25

**

0.34 0.04

**

0.03 0.00 0.00

Eurozone financial CDS index

0.09

**

0.49 0.00 0.00 −0.01

**

0.01

Redenomination risk of core countries

0.07

**

0.04 −0.01 0.01 −0.01

*

0.02

Redenomination risk of peripheral countries

0.01 0.01 0.00

*

0.03 0.00 0.00

EURUSD implied volatility

1.33

**

0.21 0.02 0.01 −0.03 0.00

function.15 Tables 5 and 6 show the results of the simple regressions for the PCs and the

ICs, respectively. It shows regression coefficients, the significance of these coefficients (‘*’

and ‘**’ denote the levels of 1% and 5%, respectively), and R2 values.16

For PC results reported in Table 5, all financial variables except the redenomination

risk of peripheral countries are found to be significantly related to PC1. The signs of the

regression coefficients are negative for the stock index returns and are positive for the

15The weight for an outlier residual ε = sr is given as [max{0, 1 − r2/k2}]2 where s is the estimated
standard deviation of residuals. Here we adopt k = 4.685.

16The R2 values here are those based on the ordinary least squares.
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Table 6: Simple linear regression results when each IC is set as the explained variable
(Y ) and each financial variable as the explanatory variable (X). For estimation of the
regression coefficients, robust regression with Tukey’s biweight function is adopted. The
single asterisk (*) means that the regression coefficient deviates from zero using a sig-
nificance level of 5%, and the double asterisk (**) means that the regression coefficient
deviates from zero using a significance level of 1%. The R2 values are those obtained
from applying ordinary least squares.

Y=IC1 Y=IC2 Y=IC3

X= coeff. R2 coeff. R2 coeff. R2

Seven countries from January 2009 to June 2011

Stock index of core countries

−0.04 0.11 −0.11

**

0.11 −0.11

**

0.09

Stock index of peripheral countries

−0.07

**

0.17 −0.10

**

0.17 −0.12

**

0.16

Global stock implied volatility (VIX)

0.02 0.13 0.06

**

0.03 0.04 0.01

Eurozone stock implied volatility (VSTOXX)

0.02 0.13 0.07

**

0.05 0.05

*

0.01

Eurozone corporate CDS index

0.01 0.17 0.03

**

0.15 0.05

**

0.16

Global sovereign CDS index

0.02 0.05 0.08

**

0.24 0.10

**

0.26

Eurozone financial CDS index

0.01

*

0.22 0.01

**

0.10 0.05

**

0.22

Redenomination risk of core countries

0.02 0.00 −0.01 0.00 0.08

**

0.09

Redenomination risk of peripheral countries

0.01

**

0.07 0.01 0.01 0.01 0.02

EURUSD implied volatility

0.02 0.15 0.09 0.01 0.26

*

0.05

Six countries from January 2009 to December 2013

Stock index of core countries

−0.04

**

0.05 −0.08

**

0.08 −0.18

**

0.20

Stock index of peripheral countries

−0.05

**

0.12 −0.06

**

0.07 −0.16

**

0.25

Global stock implied volatility (VIX)

0.03

**

0.09 0.05

**

0.03 0.10

**

0.06

Eurozone stock implied volatility (VSTOXX)

0.02 0.05 0.06

**

0.05 0.10

**

0.08

Eurozone corporate CDS index

0.02

**

0.12 0.03

**

0.10 0.05

**

0.24

Global sovereign CDS index

0.03

**

0.05 0.08

**

0.21 0.08

**

0.15

Eurozone financial CDS index

0.01

**

0.12 0.01

**

0.06 0.04

**

0.31

Redenomination risk of core countries

0.02

*

0.01 −0.01 0.00 0.03

**

0.06

Redenomination risk of peripheral countries

0.01

**

0.03 0.00 0.01 0.00 0.00

EURUSD implied volatility

0.16

**

0.12 0.17

**

0.03 0.37

**

0.07
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other variables, which is an intuitive result. As for R2, the values for the stock index

of peripheral countries and for the Eurozone financial and corporate CDS indexes range

from 0.42 to 0.53. These results show that PC1 is an important component.

In contrast, the regression results for PC2 and PC3 are less informative. PC2 is

significantly related to several financial variables. However, the R2 values are less than

0.05 for all the cases, showing that these variables cannot explain the variation of PC2.

As for PC3, the regression coefficient is not significant for most cases, and their signs are

difficult to interpret.

Table 6 shows the result for the ICs. Observing the results for each IC, we see that

all ICs have more than one financial variable that is significantly related to with large

R2 values. For example, for both datasets IC1 can be related to the stock index of

peripheral countries, the Eurozone financial CDS index, and the redenomination risk

of peripheral countries. IC2 can be related to the stock indices (of the core and the

peripheral countries), the stock implied volatilities (of the global and the Eurozone),

and the CDS indices (of the Eurozone corporate, the global sovereign, and the Eurozone

financial). IC3 can be related to the stock indices, the Eurozone stock implied volatility

(VSTOXX), the CDS indices, the redenomination risk of core countries, and the EURUSD

implied volatility.

In turn, the results for each financial variable indicates that some of the financial

variables have a selective effect on ICs. The stock index of core countries is significant

for IC2 and IC3 but not for IC1 in both datasets. The global stock implied volatility

(VIX) is significant only for IC2. The Eurozone stock implied volatility (VSTOXX)

and the CDS indices (Eurozone corporate CDS index, Global sovereign CDS index, and

Eurozone financial CDS index) are significant for both IC2 and IC3. The redenomination

risk of core countries is significant for IC3, while the redenomination risk of peripheral

countries is significant for IC1. The EURUSD implied volatility is significant only for
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IC3.

These results support the interpretation of ICs that we proposed in Section 3.2. There

we reported that IC1 can be interpreted as the factor related to the risk of the peripheral

countries. The regression results above support this idea, since IC1 is related to peripheral

variables such as the stock index return of peripheral countries and the redenomination

risk of peripheral countries. IC3 is exclusively related to the redenomination risk of

core countries and the EURUSD implied volatility, in addition to the stock returns and

the CDS indices. This supports the view that IC3 represents the risk common to the

Eurozone.

In Section 3.2 we observed that IC2 can be considered to be a factor of core countries.

However, the above results indicate that IC2 is exclusively related to the global stock

implied volatility (VIX), and also is related to the global sovereign CDS spreads. Since the

markets of core countries such as Germany and France are connected to global financial

markets in the same way that the US market is, it is not surprising that the factor

representing core countries is related to global financial market variables. Therefore, we

can interpret IC2 as the global risk factor.

In summary, based on the factor loadings and the regression by financial variables, we

can interpret the three ICs as the peripheral risk factor, the global risk factor, and the

Eurozone common risk factor. Figure 2 provides a comparison between the cumulative

sum of each IC and the level of one of the variables significantly related to the IC. We

selected the stock index of peripheral countries for the cumulative sum of IC1 ×(−1),17

the global sovereign CDS index for IC2, and the Eurozone financial CDS index for IC3.

From the figure the relations between the ICs and the financial variables are observed.

17We multiplied (−1) in order that the stock returns and IC1 change in the same direction.
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Figure 2: Comparison between the cumulative sum of each IC and the levels of variables in
relation with the IC. Note that the cumulative sum of IC1 is inverted since the regression
coefficients between IC1 and the stock index of peripheral countries is negative.
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4 Analyses based on the ICA model

In this section, we propose possible analyses based on the ICA model given by equation

(4). We first introduce the conditional volatility of the ICs, and consider the dynamic

correlation based on that, showing the decoupling of the Eurozone sovereign CDS markets.

We also show the PDF of the ICA-based models and propose an example of model

comparison based on the likelihood.

Hereafter, we assume that the components of s are independent and therefore each

component of s can be modeled by a one-dimensional distribution. This is a major

advantage compared to the other multivariate models because it reduces a good deal of

computational burden tied to multivariate models.

4.1 Volatility of the ICs

Because the changes of the CDS spreads in the crisis period are volatile, the log-returns

of CDS are expected to have a volatility clustering effect, and so are the ICs. In fact, by

using the statistical test proposed by Engle (1982), IC1 and IC2 are expected to exhibit

a volatility clustering effect.18 Therefore we apply GARCH(1,1) model19 to sjt:


sjt = σ

(s)
jt εjt,

(σ
(s)
j,t+1)

2 = ωj + ajs
2
jt + bjσ

2
jt,

E εjt = 0, varεjt = 1.

(8)

Figure 3 shows the volatility of the ICs obtained from the GARCH(1,1) model with

the standardized Student-t distribution.20 The historical (26 weeks backward) volatility

18The null hypothesis of no serial correlation in the squared ICs is rejected for IC1 up to at least 8
lags for both datasets with 99% significance level. For IC2, the null is rejected for most lags up to 10
with 90% significance level, many of which can be rejected with 99% significance. However, the null for
IC3 cannot be rejected for most cases.

19This specification is popular; see Hansen and Lunde (2005).
20Here the Student-t distribution is multiplied by

√
ν − 2/ν in order to set the variance to unity, where
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Figure 3: Volatilities of the ICs obtained. All series except “IC3 (historial)” are obtained
by the GARCH(1,1) model with standardized Student-t residuals. The series labeled
“IC3 (historical)” shows the historical volatility of IC3 with the length of window 26.

is also shown for IC3 since using the ARCH model in this case cannot be statistically

justified.

From the figure, the volatility of IC1, the peripheral factor, spiked to a level more

than 4.0 in May 2010. Before this spike, the volatility of IC1 started increasing around

the beginning of 2010, showing the increasing concern for the peripheral countries. The

spike in May 2010 shows the magnitude of the concern for the events in Greece at that

time (see Section 2), which invoked the following crisis that the Eurosystem confronted.

After May 2010, the volatility of IC1 had calmed down as indicated by a decline in its

level to around 1.0, showing that the concern shifted from the risk in periphery to the

other source of risk.

The volatility of IC2, the global factor, was high at the beginning of 2009. This is

related to the remaining effect from the US financial crisis in 2008, which is considered

to have a global effect. The volatility of IC2 during the Eurozone sovereign debt crisis

post-2010 was relatively stable compared to IC1.

ν is the number of degrees of freedom.
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As for IC3 in the six country data, its GARCH volatility widened towards the be-

ginning of 2012.21 This widening becomes clearer by looking at its historical volatility.

In contrast, the volatilities of IC1 and IC2 remained low around that time. So IC3, the

Eurozone common factor, can be considered as the major source of volatility during the

period around 2012. As we discussed in Section 1, the risk specific to this period was the

risk of redenomination in the Eurozone. The result shows the possibility that the rede-

nomination risk comes from the common factor to the Eurozone, not from the reasons

specific to peripheral countries.

These different peaks for the volatilities indicates the shift of the volatility source of

the Eurozone sovereign CDS spreads. That is, the volatility source was the global factor

in 2009, but then shifted to the peripheral factor in 2010, and to the Eurozone common

factor in 2011 to 2012. These different risk sources would correspond to different stages

of the Eurozone sovereign debt crisis.

Note that the sharp increase for IC1 volatility can be observed in the six countries

data which do not contain the information about Greece. This suggests that ICA can

reconstruct the risk of the peripheral countries including Greece from the information

excluding Greece.

4.2 Dynamic correlation

Based on equation (8), the dynamic variance and covariance of returns can be derived.

To do so, we follow Kumiega et al. (2011) and Garćıa-Ferrer et al. (2012). We assume

21The GARCH volatility of IC3 for the seven countries data seems almost flat. This is because its
historical volatility is close to flat, suggesting that the GARCH model may not be suitable in this case.
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that the volatility of st is time dependent and that of pb
t in (6) is constant:

vart(sjt) = (σ
(s)
jt )

2, j = 1, . . . , q, (9)

vart(pjt) = (σ
(p)
j )2, j = q + 1, . . . , d, (10)

where vart mean that the variance measured at time t. From equations (4) and (6) we

obtain

covt(rt) = A× covt(st)× A> + covtεt

= A× diag[(σ
(s)
1t )

2, . . . , (σ
(s)
qt )

2]× A>

+D1/2
r Ubdiag[(σ

(p)
q+1)

2, . . . , (σ
(p)
d )2]U>

b D
1/2
r . (11)

The dynamic correlation between rtj1 and rtj2 is then defined as

ρt,j1,j2 =
covt(rt,j1 , rt,j2)√
vart(rt,j1)vart(rt,j2)

. (12)

Figure 4 shows the pairwise dynamic correlations for the seven countries. The red

bold line labeled “ICA” shows the dynamic correlation based on equation (12). The

black dashed line labeled “rolling” shows the historical correlation during the rolling-

window period consisting of 26 weeks prior to the designated date. In addition to these

correlations, for the purpose of comparison, we also show the dynamic correlation based

on the conditional Gaussian copula model proposed by Patton (2006), which is shown by

the blue thin sold line labeled “Conditional copula”.

From Figure 4 it can be observed that the ICA correlations between the peripheral

countries and Germany (DE-IT, DE-ES, DE-PT, DE-GR) decreased toward the middle

of 2010. The ICA correlation between the peripheral countries (IT-GR, ES-GR, PT-GR,

and IT-PT, for example) increased toward the middle of 2010. These correlations strongly

29



0

1
DE−FR

0

1
DE−IT

0

1
DE−ES

0

1
DE−BE

0

1
DE−PT

0

1
DE−GR

0

1
FR−IT

0

1
FR−ES

0

1
FR−BE

0

1
FR−PT

0

1
FR−GR

0

1
IT−ES

0

1
IT−BE

0

1
IT−PT

0

1
IT−GR

0

1
ES−BE

0

1
ES−PT

0

1
ES−GR

Jan.09 10 11
0

1
BE−PT

Jan.09 10 11
0

1
BE−GR

Jan.09 10 11
0

1
PT−GR

 

 

Rolling Conditional copula ICA

Figure 4: Dynamic correlations between the seven countries. The dynamic correlations
are obtained by the three different methods: the historical correlation during the rolling-
window (black dashed lines labeled “Rolling”), the correlation based on conditional copula
model (blue thin lines labeled “Conditional copula”), and the correlation based on the
ICA model combined with the GARCH model (red bold lines labeled “ICA”).
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Figure 5: Dynamic correlations between Germany and Greece (based on the seven coun-
tries data). The dynamic correlations are obtained by the three different methods: the
historical correlation during the rolling-window (black dashed line labeled as “Rolling”),
the correlation based on conditional copula model (blue thin line labeled “Conditional
copula”), and the correlation based on the ICA model combined with the GARCH model
(red bold line labeled “ICA”).

suggest the increasing disparity between the Eurozone sovereign CDS spreads during the

period investigated.

Figure 5 enlarges the chart of the dynamic correlation between Germany and Greece

from Figure 4. From the figure, the rolling correlation between Germany and Greece is

close to unity in 2009, while it slides down to around 0.5 since 2010 as the Greek crisis

deepened. In the ICA correlation, the correlation stays in the range 0.6 to 0.8 in 2009,

and since 2010 descends gradually to the range 0.4 to 0.6 since 2010. In May 2010, the

ICA correlation drops down to 0.4, which is not evident in the rolling correlation. As

we indicated in Section 2, at that time the hidden debt of the Greek government was

revealed and, as a result, the solvency of the country came into question. The decline in

ICA correlation can be considered to be the market’s immediate response, which is not

evident by simply looking at the rolling correlation.

From Figure 5, the correlation based on the dynamic Gaussian copula model also drops

sharply in May 2010, indicating that both models can detect the sharp decrease in the
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correlation. It seems that in 2010, the dynamic Gaussian copula exhibits more sensitive

movements compared to the ICA correlation, that is, the ICA correlation decreases slowly

before the dynamic Gaussian copula model shows immediate and sharp decreases. From

these observations, it is fair to say that the ICA correlation provides a dynamic correlation

whose feature is different from that provided by the dynamic copula model. An advantage

of the ICA correlation compared to the rolling correlation or the dynamic copula model is

that we can distinguish the factor of high volatility and high risk, as explained in Section

4.1.

4.3 ICA model likelihood

In this paper, we compare model fitness by using likelihood function. We derive a simple

formula for the likelihood of models based on equations (4) and (8). Let fX(·) denote the

PDF of a random scalar or vector X, hereafter.

4.3.1 The case q = d

For simplicity, we first consider the case q = d, that is, the number of components q is

equal to the number of the data dimension d. In this case the noise term εt in equations

(4) satisfies εt ≡ 0, and we obtain rt = µ+ Ast.

Using the formula for the change of variables (Jacobian transformation) and the fac-

torization of fst in equation (2), we obtain

frt(rt) =
1

| detA|
fst(st)

=
1

| detA|
fs1t(s1t) · · · fsdt(sdt), (13)
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For the unconditional Sj, the distribution of rt is

f(r1, . . . , rT ) =
1

| detA|T
d∏

j=1

T∏
t=1

fSj(sjt). (14)

For the GARCH-type conditional distribution in equation (8), fsj1,sj2,...,sjT is factorized

as

fj(sj1, sj2, . . . , sjT ) = fj1(sj1)fj2|1(sj2) · · · fjT |T−1(sjT ),

=
fε(εj1)

σj1

· fε(εj2)
σj2

· · · fε(εjT )
σjT

(15)

where fjt|t−1(sjt) is the PDF of sjt conditional to the information up to time t − 1 nd

fε = fε(ε) is the PDF of the residuals ε independent of t. Therefore, we can derive the

PDF as

f(r1, . . . , rT ) =
1

| detA|T
d∏

j=1

T∏
t=1

fε(εjt)

σjt

. (16)

Equations (14) and (16) are the formula for computing the likelihood of an ICA-based

model. Together with these equations, we compute the likelihood of the data, allowing

us to compare the model with other models that we review in Section 4.4.

4.3.2 The case q < d

Next we consider the general case q < d. In order to derive a simple formula for the PDF,

we adopt two reasonable assumptions based on the interpretation that εt represents noise.

The first assumption is that factors st and noises εt are independent of each other. Second,

according to equation (6), εt is a linear combination of (d−q) PCs pb
t = (pq+1,t, . . . , pdt)

>.

Interpreting these (d − q) PCs as independent noise sources, we assume that they are

independent of each other. Accepting these assumptions, we obtain the following formula
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for the PDF of equation (4):

frt(rt) =
1

| detD1/2
r detAIC|

q∏
j=1

fSjt
(sjt)

d∏
j=q+1

fpjt(pjt), (17)

where AIC is a q-by-q matrix defined as A = D
1/2
r UaAIC and Ua is the left q columns of

U in equation (3).

4.4 Model comparison based on likelihood

Next we consider the goodness-of-fit of the ICA-based model, equation (4), using the

likelihood function obtained in Section 4.3. In Section 3.1 we consider the ICA model of

q = 3, and in Section 4.1 we consider the GARCH(1,1) model in equation (8). We refer

to the GARCH(1,1) model for the case q = 3 as the ICA-GARCH-T dimension reduction

model. In this model we use the Student-t distribution with a scale parameter as the

distribution of the noise pjt.

For purposes of comparison, we apply five additional models to the CDS spreads. The

first model is the multivariate Gaussian model:

rt ∼ N(µ,Σ), (18)

where µ is a vector representing mean and Σ is a matrix representing covariance.

The second model is the GARCH(1,1) model with Gaussian marginal and copula (the

idea of copula is explained below). The model is specified by equations (8) and


rjt = µj + sjt,

εjt = Φ−1(ujt),

Ut = (u1t, . . . , udt)
> ∼ CG(Σ),

(19)
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where Φ−1 is the inverse cumulative distribution function of the standard Gaussian dis-

tribution and CG(Σ) denotes the Gaussian copula with correlation parameter matrix Σ.

This is a popular model to incorporate volatility clustering effect to multivariate series.

We label the model the GARCH-Gaussian marginal and copula model.

The third and the fourth models are the ICA-based models. In the third model, we

obtain the ICs without dimension reduction. So we obtain d series of the ICs, and we

apply GARCH(1,1) with Student-t residuals to each IC. We consider the possibility of

loss of information due to dimension reduction by this model. We label this model the

ICA-GARCH-T no dimension reductionmodel. In the fourth model, we obtain d ICs with

no dimension reduction, and apply the standardized Student-t distribution for each ICs.

Using this model, we consider the difference between homoscedastic and heteroscedastic

models for the ICs. We label this model the ICA-T no dimension reduction model.

The fifth model is based on the theory of copula distribution, which is a popular

statistical concept to describe the dependency structure of multiple variables. A copula

function has the advantage that it can describe the nonlinear structure of dependence

that would be impossible to express by linear models such as ICA, PCA or FA (Joe,

1997; Nelsen, 2007). A Gaussian copula is popular since it is easy to implement. In this

model we use a Student-t copula as a dependency structure, which can describe important

dependence structures between variables such as tail dependence (Demarta and McNeil,

2005). Because marginal distributions must be specified when using a copula, we use

Student-t distributions for the marginals. We refer to the following model as the Student-t

marginal and copula model:

 rjt = µj + σjF
−1
tstd(νj)

(uj),

U = (u1, . . . , ud)
> ∼ Ct(Σ, ν),

where F−1
tstd(νj)

(uj), j = 1, . . . , d, is the inverse cumulative density function of the standard-
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Table 7: Log likelihood and Akaike information criteria. The first column gives the
name of each model. The second column shows the number of parameters in the model.
The parenthesized numbers are the ranks of the models among the five models studied.
Commas denote thousand separators.

Models and numbers of parameters Log likelihood AIC BIC

Seven countries from January 2009 to June 2011

ICA-GARCH-T dimension reduction

Multivariate Gaussian

GARCH-Gaussian marginal and copula

ICA-GARCH no dimension reduction

ICA-T no dimension reduction

Student-t marginal and copula

Six countries from January 2009 to December 2013

ICA-GARCH-T dimension reduction

Multivariate Gaussian

GARCH-Gaussian marginal and copula

ICA-GARCH no dimension reduction

ICA-T no dimension reduction

Student-t marginal and copula

ized Student-t distribution with the degree of freedom νj, and Ct(Σ, ν) is the Student-t

copula distribution with the correlation matrix parameter Σ and the degree of freedom

ν.

We consider the likelihood of these models. In addition, to penalize the number of

parameters, we use the Akaike and the Bayesian information criteria (the AIC and the

BIC). Table 7 shows the result for the values of the log-lilelihood, the AIC, and the BIC.

The number in parentheses is the rank among the six models.

The ICA-GARCH-T dimension reduction model exhibits a better fitting than the mul-

tivariate Gaussian or the GARCH-Gaussian marginal and copula models, demonstrating

the advantage of the ICA model in comparison to the Gaussian model. In contrast, the

ICA-GARCH-T dimension reduction model is always worse than the ICA-GARCH-T no

dimension rediction model, the ICA-T no dimension reduction model, and the Student-t

marginal and copula models. Therefore, it can be seen that dimension reduction reduces

the goodness-of-fit, indicating that dimension reduction results in a lot of information
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loss.

Among these no-dimension-reduction models, the ICA-GARCH-T no dimension re-

duction model is shown to provide a better fit than the Student-t marginal and copula

model based on the log-likelihood and the AIC. Also, the ICA-T no dimension reduction

model is shown to provide a better fit than the Student-t marginal and copula model for

some cases. Considering that the copula-based model can incorporate nonlinear depen-

dence between variables, it is surprising that either the ICA-GARCH-T or the ICA-T

models, which are linear models, show better fits than the copula model.

The comparison between the ICA-GARCH-T no dimension reduction and the ICA-T

no dimension reduction models shows that the model’s fit is improved by considering the

volatility clustering effect of the ICs.

Based on these observations, it is fair to conclude that the ICA model provides a

good fit to the CDS spread data. Dimension reduction reduces the goodness-of-fit, but

the reduced model is still better than popular models such as the GARCH model, and

comparable to the complicated dependence model such as Student-t copula model. As

for volatility clustering, it is better to incorporate the effect into the model.

5 Conclusion

In this paper, we investigated the behavior of Eurozone sovereign CDS spreads during

the period of the Eurozone sovereign debt crisis. For that purpose, we introduced a

novel technique of factor decomposition, independent component analysis (ICA). We

first showed that ICA can find multiple factors impacting CDS spreads, while principal

component analysis (PCA) finds one factor. We identified three factors based on ICA,

and we found interpretations for these three factors by combining the factor loadings and

the regression analysis with financial variables. The first IC was interpreted as the factor
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related to the risk associated with the peripheral countries such as Greece and Portugal.

The second IC was interpreted as the factor related to global risk. The third IC was

interpreted as the factor related to the risk common to the Eurozone. More specificially,

we showed that there were two risks specific to the Eurozone sovereign CDS spreads,

that is, the risk of the financial sector and the risk of redenomination, are related to these

three factors.

Next, we considered several analyses based on ICA. By applying GARCH, we found

that the three factors identified had different peaks during the crisis. These different

peaks indicated that the source of risk was the global factor in 2009, but it shifted to

the peripheral factor in 2010, and finally shifted to the Eurozone common factor in 2012.

Utilizing this GARCH volatility, we found that the dynamic correlation based on the

ICA model can explain the decoupling between the core and peripheral countries, such

as between Germany and Greece. Finally, we compared the ICA model to alternative

models by using the likelihood, the AIC and the BIC, showing that the goodness-of-fit

of the ICA model is generally better than the other models such as the GARCH and

Gaussian marginal and copula model and the Student-t marginal and copula model.

The contributions of the findings of this paper are threefold. Our principal contri-

bution is the finding that there were multiple factors impacting the Eurozone sovereign

CDS spreads. This multiplicity is important for explaining the CDS spreads during the

Eurozone crisis since it can reasonably explain the reported decoupling of the Eurozone

sovereign countries. Second we provided a reasonable interpretation of these factors based

on our statistical analysis (regression analysis with financial variables, volatility analysis,

and dynamic correlation analysis). Third, our empirical analysis demonstrated why ICA

is a more effective statistical tool to employ compared to the more commonly used tool,

PCA.
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