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Abstract 

This paper surveys several applications of parametric copulas to market portfolios, 

credit portfolios, and enterprise risk management in the banking industry, focusing 

on how to capture stressed conditions. First, we show two simple applications for 

market portfolios: correlation structures for returns on three stock indices and a 

risk aggregation for a stock and bond portfolio. Second, we show two simple 

applications for credit portfolios: credit portfolio risk measurement in the banking 

industry and the application of copulas to CDO valuation, emphasizing the 

similarity to their application to market portfolios. In this way, we demonstrate the 

importance of capturing stressed conditions. Finally, we introduce practical 

applications to enterprise risk management for advanced banks and certain 

problems that remain open at this time. 
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1. Introduction 

Risk managers in the banking industry evaluate the risks associated with financial 

asset and credit portfolios based on the assumption that underlying risk factors follow 

multivariate probability distributions that consist of marginal distributions and 

correlation structures. Most financial asset returns that determine marginal distributions 

have heavier tails than Gaussian distributions. In addition, each pair of returns is 

mutually dependent, particularly in the tail part of the distribution. For example, stock 

prices will plunge simultaneously in the event of financial turmoil like the Lehman 

shock of September 2008, while prices correlate moderately under more typical 

conditions. This suggests that the dependence between stock prices in the lower tail is 

stronger than in other parts of the multivariate distribution. 

Parametric copulas are widely used in financial risk management to capture the 

various correlation structures that hold between risk factors. A copula is a function that 

joins, or couples, univariate distribution functions to a multivariate distribution function, 

as denoted by ܥ in the equation 

 Prሺ ଵܺ  ,ଵݔ … , ܺௗ  ௗሻݔ ൌ ሺPrሺܥ ଵܺ  ଵሻݔ , … , Prሺܺௗ   , (1)	ௗሻሻݔ

for the multivariate random vector ሺ ଵܺ, … , ܺௗሻ (for examples, see Joe [1997] or Nelsen 

[2006]). A copula extracts the dependence structure from the joint distribution, 

independent of marginal distributions. We can construct the joint distribution of 

financial assets returns by specifying the marginal distributions and the parametric 

copula. Due to their tractability, copulas are used in evaluations of certain portfolio risks 

involving several assets and in evaluations of collateralized debt obligations (CDOs) 

comprising several bonds associated with default risks. 

A Gaussian copula is the most popular copula for representing correlation structures 

for asset returns. Although the copula is easy to estimate, it cannot capture lower tail 

dependencies. One solution is to assume copulas capable of representing correlation 

structures under stressed conditions. 

This paper overviews several applications of copulas in the banking industry to 

market portfolios, credit portfolios, and enterprise risk management, referring to work 

by Tozaka and Yoshiba (2005), Shintani, Yamada, and Yoshiba (2010), and Yoshiba 

(2013). Using parametric copulas to capture stressed conditions is a particular focus.  



2 
 

This paper is organized as follows. Section 2 overviews risk aggregation for market 

portfolios for which copulas are used. Section 3 discusses the use of copulas to assess 

credit portfolio risks. Section 4 describes how advanced banks apply copulas to 

enterprise risk management. Section 5 gives concluding remarks. 

 

2. Risk aggregation for market portfolios 

With regard to risk aggregation for market portfolios, risk managers determine 

correlation structures for certain risk factors non-parametrically or parametrically. 

Popular non-parametric methods include historical simulation methods, which capture 

only patterns of risk factors for both correlation structures and marginal distributions. 

Popular parametric methods assume a Gaussian copula for the correlation structure of 

risk factors and a Gaussian distribution for marginal distributions. (See, for example, 

Jorion [2006]). 

Most banks adopt an unconditional approach to measure relevant market risks for one 

day, ten days, and other short-term periods. Unconditional approaches assume that the 

relevant risk factors for the period in question follow the same distribution and do not 

incorporate time series characteristics, such as serial correlations. Following the 

standard practice of risk measurement in banks, we measure market portfolio risk 

unconditionally for a one-day period based on daily log returns for risk factors.1 

 

2.1. Correlation structures for three major stock indices 

Shintani, Yamada, and Yoshiba (2010) analyzed correlation structures for three major 

stock indices daily returns in the US (the S&P500), the Eurozone (Euro Stoxx 50), and 

for Japan (the Nikkei 225). The observation period was from January 2001 to 

September 2009. 

They began by analyzing pairwise lower tail dependence with 5% and 1% thresholds: 

 is defined ݑ ሺ0.01ሻ. The lower tail dependence with a certain thresholdߣ ሺ0.05ሻ andߣ

as 

                                                 
1 For differences in unconditional and conditional approaches, see McNeil, Frey, and Embrechts 
(2005) and Isogai (2014). 
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ሻݑሺߣ  ൌ Prሾܨଶሺܺଶሻ ൏ ଵሺܨ|ݑ ଵܺሻ ൏ ሿݑ ൌ ሺ௨,௨ሻ

௨
, (2) 

where ܨଵሺ ଵܺሻ and ܨଶሺܺଶሻ are marginal distribution functions of the first and the second 

variable. We adopt an empirical distribution for the marginal distributions ܨଵሺ⋅ሻ and 

 ଶሺ⋅ሻ. We estimate each parametric copula parameter by equating the sample correlationܨ

and theoretic correlation after calculating Kendall’s sample rank correlation ߬̂. 

Table 1 summarizes the expressions and the rank correlations for some of the 

bivariate copulas used in this subsection. Although the Gumbel copula is upper-tail 

dependent, it can be applied to lower-tail dependent data with the rotated-Gumbel 

copula. The rotated copula ܥሺݑଵ, ,ଵݑመሺܥ ଶሻ for a copulaݑ ଶሻ is obtained by ሺ1ݑ െ ,ଵݑ 1 െ

መܥ~ଶሻݑ  and is defined as ܥሺݑଵ, ଶሻݑ ൌ ଵݑ  ଶݑ െ 1  መሺ1ܥ െ ,ଵݑ 1 െ ଶሻݑ . The rank 

correlation of the rotated copula is equal to that of the original copula. 

Table 1. Bivariate parametric copulas and their rank correlation 

Copula Parameter Expression ܥሺݑଵ,  ଶሻ Kendall’s tau ߬ݑ

Gaussian ߩ
ఘሺΦିଵሺݑଵሻ,Φିଵሺݑଶሻሻ ሺ2/ߨሻ	arcsin ߩ

t ߩ, ߥ ఔ,ఘሺࢀ ఔܶ
ିଵሺݑଵሻ, ఔܶ

ିଵሺݑଶሻሻ ሺ2/ߨሻ	arcsin ߩ

Clayton ߙ ሺ1ݑ
െߙ  2ݑ

െߙ െ 1ሻ
െ1/ߙ

 ߙሺ/ߙ  2ሻ

Gumbel ߛ exp൛െሺሺെ ln ଵሻఊݑ  ሺെ ln ଶሻఊሻଵ/ఊൟݑ 1 െ  ߛ/1

Notes: ఘሺ⋅,⋅ሻ	 denotes a bivariate standard Gaussian distribution function with correlation .ߩ 	ࢀఔ,ఘሺ⋅,⋅ሻ 

denotes a bivariate t distribution function with degree of freedom ߥ and correlation ߩ. Φିଵሺ⋅ሻ denotes 

the inverse function of the univariate standard Gaussian distribution function. ఔܶ
ିଵሺ⋅ሻ  denotes the 

inverse function of univariate t distribution function. 

Table 2 shows the sample lower tail dependence ߣመሺݑሻ and the theoretical value by 

each parametric copula. The parameter for each parametric copula is obtained by 

equating it to Kendall’s tau ߬. We see that the sample lower tail dependence is much 

greater than the theoretical value given by the Gaussian copula. The sample lower tail 

dependence with a 5% threshold approaches the theoretical value of the t copula with 

degree of freedom parameter ߥ ൌ 3. The lower tail dependence in this period is much 

stronger than that implied by the Gaussian copula. 



4 
 

Table 2. Sample lower tail dependence and theoretical value given by each parametric 

copula between each pair of daily returns for three major stock indices 
 

Pair ߣመሺݑሻ Gaussian t(6) t(3) 
Rotated-
Gumbel 

Clayton

 US/Euro 0.39 0.25 0.32 0.37 0.47 0.52 

 ሺ0.05ሻ US/JPN 0.35 0.20 0.30 0.36 0.40 0.43ߣ

 Euro/JPN 0.24 0.13 0.20 0.25 0.30 0.28 

 US/Euro 0.27 0.13 0.24 0.33 0.43 0.51 

 ሺ0.01ሻ US/JPN 0.29 0.09 0.23 0.32 0.36 0.41ߣ

 Euro/JPN 0.18 0.05 0.14 0.22 0.24 0.23 

Notes: The data used for estimations for the US/JPN pair is one day lagged data for JPN. The parameter ߥ 

for t copula is fixed to 6 or 3 in this table. 

Next, we estimate parameters for each parametric copula by maximizing the 

likelihood for the same data with empirical cumulative probabilities for each index 

return. Table 3 shows the maximum likelihood estimates and Schwarz’s Bayesian 

information criterion (BIC) for each parametric copula. We adopt BIC to select the 

optimal parametric copula. The t copula with low degree of freedom parameters from 3 

to 5 is selected by BIC. A Gaussian copula is worse than the t or rotated-Gumbel copula 

in terms of BIC. The result is consistent with the results of Tsafack (2009), who selected 

a copula based on Akaike information criterion (AIC) and BIC for weekly stock return 

data for United States and Canada up to 2004.2 We see that a Gaussian copula with 

weak lower tail dependence does not adequately capture the overall correlation structure 

in terms of likelihood. 

                                                 
2 Some information criteria, such as BIC and AIC, are used to select the optimal copula. Both criteria 
are calculated based on log-likelihood, with certain penalties applied by number of parameters. We 
adopt BIC for the criteria, which imposes more penalties in number of parameters than AIC. BIC is 
calculated by െ2݈ሺߦሻ   lnܰ , where ݈ሺߦሻ  is the maximum log-likelihood,   the number of 
parameters, and N the sample size. The model with the lowest BIC is selected. 
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Table 3. Maximum likelihood estimates and BIC for each parametric copula for each pair 

of daily returns for three major stock indices 

Pair 
Gaussian t 

Rotated-
Gumbel 

Clayton Gumbel 

ߩ ߩ ߥ  ߛ ߙ ߛ

US/Euro 0.519  
(785) 

0.520 3
(1,055) 

1.539 
(868) 

0.831  
(695) 

1.533  
(887) 

US/JPN 0.443  
(544) 

0.427 3
(637) 

1.389 
(583) 

0.640  
(488) 

1.366 
(542) 

Euro/JPN 0.270  
(183) 

0.273 5
(253) 

1.220 
(248) 

0.387  
(217) 

1.180  
(165) 

Notes: The upper values in each cell are maximum likelihood estimates. The lower values in the 

parenthesis are the BICs. The parameter ߥ for the t copula is estimated with the restriction that ߥ is an 

integer value greater than 2. 

Figure 1 depicts a joint density contour of the estimated copula with standard 

Gaussian margins for daily stock returns for the US and the Eurozone. Figure 1(a) 

depicts a Gaussian copula with standard Gaussian margins. Figure 1(b) depicts 

Student’s t copula with standard Gaussian margins, adopted by BIC as the best-fit 

copula among several alternatives. We see that the lower tail dependence (the bottom-

left corner) for Student’s t copula is stronger than that for the Gaussian copula. 

  
(a) Gaussian copula (b) Student’s t copula 

Figure 1. Contour plot of copula density for two stock returns with standard Gaussian 

margins for (a) Gaussian copula and (b) Student’s t copula 

 

2.2. Correlation structures for stock prices and interest rates 

Japanese daily market data from 2007 to 2012 indicate a positive linear correlation 
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between stock prices and interest rates, suggesting an increase in bond prices paired 

with a fall in stock prices. The measured risk of value-at-risk (VaR) or expected 

shortfall (ES) for the aggregated bond and stock portfolio becomes much smaller than 

the sum of the risk measures for those sub-portfolios. The reduction in risk measures for 

an aggregated portfolio is known as the diversification effect. Widely used aggregation 

methods that analyze recent Japanese data sometimes show up to a diversification effect 

of up to 60%. 

Yoshiba (2013) has proposed using copulas for risk factors, focusing on stressed 

conditions. First, a bivariate copula with both positive and negative linear correlations is 

applied to the copula. Second, a copula estimated from stressed data such as Eurozone 

crisis data or post-Bubble data in Japan is applied to the copula. This paper gives an 

overview of the first method. 

We select two risk factors; daily log returns for the Nikkei 225 index and daily 

changes in 5-year government interest rates.3 The observation period is from October 1, 

2007 to October 1, 2012. Marginal distributions are estimated by the skew-t distribution 

proposal by Azzalini and Capitanio (2003). Using the estimated marginal distribution 

functions ܨଵ ሺݔሻ and ܨଶሺݔሻ estimated, respectively, from stock returns and interest rate 

movement data, the pseudo sample ሼሺݑଵଵ, …ଶଵሻݑ , ሺݑଵே, ଶேݑ )} is obtained by ݑ ൌ

݅ ൯ forݔప൫ܨ ൌ 1,2; ݆ ൌ 1,… , ܰ. Figure 2 (a) depicts a joint histogram of the pseudo 

sample ሼሺݑଵଵ, …ଶଵሻݑ , ሺݑଵே,  ଶே)} during this period. The front side with zero for bothݑ

axes indicates the largest drop in stock prices and interest rates. The figure indicates a 

relatively high frequency, suggesting that bond values will rise when stock prices fall, 

mitigating portfolio losses. Figure 2 (b) plots the joint density contour after converting 

each ݑ to the quantiles of the standard Gaussian distribution, Φିଵሺݑሻ.
4 This contour 

rises diagonally up to the right with an elliptical shape, suggesting that this pseudo 

sample exhibits a positive linear correlation. 

                                                 
3 We use generic interest rates calculated by Bloomberg for 5-year interest rates of government 
bonds. 
4 Joint density contours with standard Gaussian margins are visual representations of the various 
dependencies in the center and the tail area (see Joe [1997]). If the copula is Gaussian, the contour is 
elliptical (see Figure 1[a]). 
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(a) Histogram (b) Joint density contour 

Figure 2. Joint histogram and contour plot for the pseudo sample 

Table 4 is the result of the maximum likelihood estimation. Here, we consider 

parametric copulas in Table 1 and the rotated ones for Gumbel and Clayton. We also 

consider a mixed-Gaussian copula implied in a mixed-Gaussian distribution. When we 

consider two state in the bivariate case, the mixed-Gaussian distribution is mixed with a 

negatively correlated Gaussian distribution and a positively correlated Gaussian 

distribution in the ratio of ߠ: ሺ1 െ  :ሻ. The copula is expressed as followsߠ

,ଵݑሺܥ  ଶሻݑ ൌ ఘభ൫Φߠ
ିଵሺݑଵሻ, Φିଵሺݑଶሻ൯  ሺ1 െ ሻఘమ൫Φߠ

ିଵሺݑଵሻ,Φିଵሺݑଶሻ൯. (3) 

The mixed Gaussian copula extracts a negatively correlated Gaussian component from 

positively correlated data. The mixed-Gaussian copula is selected by BIC.5 

                                                 
5 The mixed-Gaussian copula is not always selected by BIC. For example, Yoshiba (2013) shows t 
copula is selected by BIC for data related to the Euro crisis and the post-bubble period in Japan. As 
for more complicated copulas, we can construct, as examples, mixed-t or mixed-Gaussian-t copulas. 
An examination of these copulas is left for the future. 
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Table 4. MLE for the pseudo sample 
 Parameter Est. Value Std. Err. BIC 

Gumbel  1.385 0.031 239.8  
Rotated-Gumbel  1.416 0.031 282.0  
Clayton  0.662 0.050 236.8  
Rotated-Clayton  0.567 0.047 184.5  
Gaussian  0.436 0.021 251.9  
t  0.466 0.024 307.2  

 5.481 0.918 
Mixed-Gaussian 1 0.458 0.124 313.0  

2 0.616 0.026 
 0.145 0.036 

Notes: The parameter  for t copula is estimated without restrictions on integer value. 

We consider a sample portfolio consisting of 50 billion yen in stocks and 700 billion 

yen in 5-year discount bonds, which is representative of the average portfolio held by 

Japanese regional banks. We adopt a daily 99% VaR and 97.5% expected shortfall (ES) 

estimates for risk measures.6 For each category of stocks and bonds, we estimate the 

return distribution by applying a skew-t distribution. Table 5 shows the VaR and ES for 

each category, along with the simple sum of those risk measures. 

Table 5. VaR and ES for stocks and bonds, and their simple sum 
stocks bonds simple sum

VaR (99%) 2.61 2.47 5.08  
ES (97.5%) 2.82 2.77 5.59  

(billion yen) 

Table 6 summarizes VaR and ES for the sample portfolio while accounting for the 

diversification effect. The diversification effect is given by the reduction rate of the 

aggregated VaR or ES from the simple sum of VaR or ES as follows: 

 diversification	effect ൌ
simple sum VaR/ES െ aggregate VaR/ES

simple sum VaR/ES
. (4) 

The joint distribution for risk factors is constructed by each estimated copula with 

estimated marginal distributions. For the nonparametric copula, the pseudo sample is 

converted into a set of risk factors by taking quantiles for marginal skew-t distributions. 

                                                 
6 99% VaR is the 99th percentile for a portfolio loss distribution. A 97.5% ES is the average of the 
losses in the 2.5% tail of the loss distribution. If the portfolio profit–loss distribution is Gaussian, a 
97.5% ES nearly equals 99% VaR. 
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For each parametric copula, we generate 100,000 random bivariate vectors and calculate 

VaR and ES with marginal skew-t distributions. Iterating the procedure 100 times, we 

obtain averages and standard deviations for VaR and ES. 

Table 6. VaR and ES using the estimated copula 

Copula VaR(99%) Std. 
dev. 

diversification 
effect 

ES(97.5%) Std. 
dev. 

diversification 
effect 

Nonparametric 3.01   41% 3.24  42%
Gumbel 2.66  0.03 48% 2.90 0.04  48%
Rotated-Gumbel 2.58  0.03 49% 2.84 0.04  49%
Clayton 2.68  0.03 47% 2.96 0.04  47%
Rotated-Clayton 2.81  0.03 45% 3.05 0.04  45%
Gaussian 2.65  0.03 48% 2.95 0.04  47%
t 2.60  0.03 49% 2.85 0.04  49%
Mixed-Gaussian 4.21  0.04 17% 4.55 0.05  19%

Notes: VaR and ES are given in units of billions of yen. 

The diversification effect for a mixed-Gaussian copula (VaR:17%; ES:19%) selected 

by BIC is the smallest and is much smaller than that for other copulas. Unlike other 

parametric copulas, a mixed-Gaussian copula can capture both positive and negative 

linear correlations, allowing a better fit to the pseudo sample. The results indicate a 

negative linear correlation can be captured at a frequency of = 14.5% (see Figure 3). 

This correlation structure increases estimates for portfolio VaR and ES and reduces 

diversification effects. 

  
(a) Nonparametric copula (b) Mixed Gaussian copula 

Figure 3. Contour plot of joint density with Gaussian margins 
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3. Risk aggregation for credit portfolios 

Correlation structures for firm asset values are a key element for credit portfolio risk 

aggregation. First, we will survey risk measurements for a banking industry credit 

portfolio by addressing prudent correlation structures. Second, we will provide an 

overview of applications to CDO valuation. 

 

3.1. Credit portfolio risk measurement in the banking industry 

In the banking industry, the credit portfolio risk of lending exposure is assessed by 

VaR with confidence levels of up to 99.9% in accordance with the Basel Accords (Basel 

Committee on Banking Supervision 2011). In models for credit VaR, the asset log 

values for the lending firms follow a multivariate Gaussian distribution with a 

correlation matrix based on the structural model developed by Merton (1974). If the 

firm’s asset value at maturity T is less than the firm’s liability, the firm defaults. The 

maturity T is usually fixed to one year, which is the time interval required to cover the 

potential loss of the bank by economic capital. Bank losses are given by the loss given 

default (LGD) multiplied by the exposure at default (EAD). In most cases, EAD is 

capped at the lending amount. LGD is also fixed exogenously. 

Banks estimate the default probability of each firm until maturity by applying a 

statistical model based on financial indicators, not by the above structural model. Even 

in the latter case, banks capture the same correlation structures for firm asset values as a 

multivariate Gaussian distribution, according to Merton (1974). The correlation 

structure is a Gaussian copula. Many credit VaR models, including J.P. Morgan’s 

CreditMetrics, assume a Gaussian copula between firm asset values. 

Frey, McNeil, and Nyfeler (2001) have calculated the number of defaulting firms 

using a Gaussian copula and t copula with several degree of freedom parameters for a 

lending portfolio involving loans to N homogenous firms with 0.5% default probability 

and 0.038 asset correlation. Following Frey, McNeil, and Nyfeler (2001), Tozaka and 

Yoshiba (2005) have applied Gaussian, t with degree of freedom parameter of 10, 

Clayton, and rotated-Gumbel copulas to asset correlation structures and calculated the 

number of defaulting firms for N = 10,000. Table 7 gives the distribution of the numbers 
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obtained by a Monte Carlo simulation involving 100,000 iterations. 

Table 7. Number of defaulting firms given by each copula for specific confidence levels 
Copula 50% 90% 95% 99% 99.9% 

Gaussian 43 90 109 155 227 
t(10) 9 133 240 586 1,305 

Rotated-Gumbel 42 56 66 156 1,176 
Clayton 26 122 179 343 643 

Table 7 indicates that a tail dependent copula like t(10) and the rotated-Gumbel gives 

an extremely large number of defaulting firms with high confidence level (99.9%). 

This is a simple example of applying a copula to capture credit portfolio risk. In 

practice, the correlation structure may vary from industry to industry. A vine copula7 or 

hierarchical Archimedean copula (HAC) 8  may be applied to capture flexible asset 

correlation structures. See Kawaguchi, Yamanaka, and Tashiro (2014) for a study of 

flexible asset correlation structures using vine copulas. 

 

3.2. Applying copulas to CDO valuation 

Li (2000) has applied copulas to the valuation of CDOs, which consist of many CDS 

(credit default swap) to firms with 5-year maturity. To capture the number of defaulting 

firms at maturity, Li (2000) uses a copula to represent the correlation structure for the 

underlying firm asset values at maturity. Credit ratings agencies, where Gaussian 

copulas are widely used for CDO valuations, have been criticized for the inability of 

their models to capture tail dependencies when the price of CDOs plunged around the 

time of the Lehman shock. The explanation for this shortcoming is that Gaussian 

copulas have no asymptotic tail dependence.  

Burtschell, Gregory, and Laurent (2009) have investigated various copulas with few 

parameters to fit iTraxx market data in August 2005. On the other hand, Shintani, 

Yamada, and Yoshiba (2010) comparatively investigated the effects on credit spread by 

applying various copulas determined by historical asset value data. 

Following standard settings for CDOs, we set a CDO with 100 homogenous 

underlying assets, 5-year maturity, and 40% recovery rate for each asset. The default 

                                                 
7 For vine copulas, see the handbook by Kurowicka and Joe (2010). 
8 For HAC, see Savu and Trede (2010). 
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probability for each asset was 5% per 5 years, somewhat higher than usual. The asset 

correlation  for the Gaussian copula is 0.15, a standard setting used by ratings agencies. 

In this case, the Kendall’s tau ߬ of the Gaussian copula is 0.096. Equating this value to 

the theoretical value of each copula, we obtain the parameter for each copula as t’s 

0.15, Clayton’s 0.21, and the rotated-Gumbel’s 1.11. We can divide the CDO 

portfolio into tranches of [0%, 6%] for equity, [6%, 18%] for mezzanine, [18%, 36%] 

for senior, and [36%, 100%] for super-senior, thereby maintaining ratings above AAA 

for super-senior, AA–AAA for senior, BBB–A for mezzanine by Gaussian copula’s 

valuation.9 Table 8 shows the credit spread for each tranche derived from expected loss 

rates in this case.10 The rows of t(20), t(6), and t(3) are resulting from a t copula with 

fixed degree of freedom parameters  =20, 6, and 3, respectively. The Gaussian copula 

evaluates the lowest credit spread for the upper tranches (senior, super-senior), while the 

rotated-Gumbel copula evaluates the highest credit spread for equity. For example, the 

credit spread for the senior tranche is 0.65bp by the Gaussian copula, which is much 

lower than 21.81bp by t(3) copula or 19.04bp by rotated-Gumbel copula. We see that 

the recognition of tail dependencies yields large differences in risk sensitivity for the 

upper tranches. 

Table 8. Credit spread for each tranche (bp) 

Copula Equity Mezzanine Senior Super- 
senior 

Gaussian 1147.43 63.38 0.65 0.000  

t(20) 1061.07 86.94 2.33 0.002  

t(6) 899.52 127.82 9.11 0.043  

t(3) 735.55 165.40 21.81 0.196  

Rotated-Gumbel 1018.34 59.01 19.04 2.685  

Clayton 860.61 135.77 12.65 0.099  

 

4. Enterprise risk management 

Banks measure risks within market, credit, and operational risk categories. Many 

major banks aggregate firm-wide risks for each risk category to calculate the economic 

capital needed out to a one-year horizon. The economic capital is allocated to each 

                                                 
9 The tranche with [a%, b%] covers the portfolio loss, while the loss rate is in [a%, b%]. 
10 Credit spread s is calculated as ݏ ൌ െln	ሺ1 െ  ሻ/ܶ, where EL is the expected loss for the trancheܮܧ
and T is 5-year maturity. 
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business unit and used as performance measures (see, for example, Klaassen and van 

Eeghen [2009]). Rosenberg and Schuermann (2006) have explored various risk 

aggregation methods empirically, and Brockmann and Kalkbrener (2010) have 

introduced the Deutsche Bank model.  

Since banks apply different methods to each risk category, the first problem in 

aggregating firm-wide risk is to determine which level of the correlation structure we 

should notice (see Figure 4). Some advanced banks apply a tail dependent t copula or a 

high correlation of Gaussian copula to profit–loss for each risk category. This is called 

top level aggregation. Profit–loss is sometimes proxied by a time series of some index. 

Some other advanced banks apply a t copula to the joint distribution of risk factors 

(RFs) in each risk category. This is called base level or bottom up aggregation. 

With top level aggregation, banks sometimes calibrate Gaussian or t copula 

parameters (including  for t copula) by using each time series for market and credit 

profit–loss. They determine correlations with other risk categories a priori, without 

statistical estimates. In this context, intuitively identifiable correlation structures are 

desirable for actual practice. 

 
Figure 4. Aggregation level 

Differences in risk evaluation periods for each risk category represent a practical 

issue for enterprise risk aggregation. Although the risk horizon for calculating economic 

capital is one year, banks assume some positions may close in a short-term period of 

high market liquidity. One and ten days are standard risk evaluation periods for liquid 

market risks for trading positions. Three months and six months are typical evaluation 

periods for non-trading positions. Selecting the optimal time intervals for given 

Stock Bond
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Credit

Credit 
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correlation structures and methods for selecting ideal serial correlation structures when 

estimating economic capital remain outstanding issues. 

 

5. Concluding remarks 

This paper surveys the application of copulas in the banking industry, focusing in 

particular on ways to incorporate stressed situations into risk measurements. 

The application of copulas in the banking industry can differ from academic 

convention, incorporating drastic assumptions in certain cases. Research on applications 

that account for the needs of the banking industry is likely to prove beneficial. 
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