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Introduction

A currency carry trade consists in selling a low interest rate currency to
fund the purchase of a high interest rate currency, or in selling forward a
currency that is at a significant forward premium. The high Sharpe ratio
generated by carry-trade strategies is one of the most enduring puzzles in
international finance.

Carry trades have been at the forefront of the recent debate on global
financial stability. The highly accommodative U.S. monetary policy that
followed the 2008 financial crisis has triggered large dollar-funded credit
flows towards currencies associated with a tighter monetary stance. These
flows have been accused of unduly destabilizing exchange rates and local
asset markets. This has led several observers to question the continuing
relevance of the Mundell trilemma. Their view is that it has become unclear
whether flexible exchange rates still allow independent monetary policies in
the presence of international capital mobility. The argument is that there
exists an important global component in local credit cycles and asset prices.
This common component is highly correlated with funding conditions in U.S.
dollars, and corresponds to credit flows that may be misaligned with local
macroeconomic conditions, and with the objectives of the local monetary
authority (Agrippino and Rey, 2014; Bruno and Shin, 2013, 2014; Rey,
2013).

This paper offers a theory that relates excess returns on carry trades
to these destabilizing consequences of international capital flows. We write
down a model in which carry traders may earn positive excess returns (rents)
if they successfully coordinate on exploiting asynchronous monetary policies.
In our setup, international investors enter into carry trades by borrowing in
the world currency and investing the proceeds in assets denominated in
the currency of a small open economy. Our theory rests on two central
ingredients.

First, we posit that the prices of the nontradable goods in this small
economy are much stickier than that of the tradable goods. This is consistent
with evidence documented by Burstein, Eichenbaum, and Rebelo (2005).1

Second, the domestic monetary authority anchors domestic inflation ex-
pectations by committing to a textbook interest rule that responds to re-
alized CPI inflation. In particular, the monetary authority responds to
carry-trade inflows only insofar as they affect domestic inflation. It ignores

1They argue that the slow adjustment of the prices of nontradables explains why the
large devaluations that they study are associated with little inflation, and with a large
decline in the real exchange rate.
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the direct effect of these inflows on local capital markets.
Absent the first ingredient—that is, with flexible prices, this economy

features a unique equilibrium in which carry traders invest until the rate
of return on domestic assets is equal to the world interest rate. Nominal
variables are constant, uncovered interest parity holds and the carry trade
earns no excess return. This is an elementary example of stabilizing spec-
ulation whereby, as famously argued by Friedman (1953), arbitrageurs lean
against mispricings until they eliminate them. If larger carry-trade inflows
exert downward pressure on domestic asset returns, and thus reduce the ex-
pected return on the carry trade, then the equilibrium carry-trade activity is
uniquely determined as that at which carry traders are indifferent between
investing or not.

The picture is different in the presence of our two key ingredients. First,
by ignoring that carry-trade inflows bid up asset prices and thus reduce the
domestic real rate, the central bank acts as if it was inadvertently introduc-
ing positive policy shocks to the interest rule in response to these inflows.
This implies that carry-trade inflows result in a realized inflation that is
below target.

Second, given our assumption that the prices of nontradables do not
adjust much, this deflationary impact of carry-trade inflows must operate
through the prices of tradables. If, as documented by Burstein, Eichenbaum,
and Rebelo (2005), the fraction of pure tradables in consumption services is
small, then small deflationary shocks translate into large swings in tradables
prices, and thus into a large appreciation of the nominal exchange rate.

Overall, the anticipation of future carry-trade activity raises the current
return on the carry trade through an appreciation of the nominal exchange
rate. On the other hand, current carry-trade activity reduces domestic asset
returns and thus negatively affects the current return on the carry trade.
If the former positive effect of future inflows more than offsets the latter
negative effect of current inflows, there are multiple self-justified equilibria.
There exists an equilibrium in which the anticipation of excessive future
capital inflows fuels excessive current inflows. In this equilibrium, the do-
mestic currency keeps appreciating, and the carry trade generates a positive
excess return. There also exists a symmetric equilibrium associated with
insufficient foreign lending, a negative return on the carry trade, and a de-
preciating currency.

In a version of the model with exogenous shocks on the interest-rate dif-
ferential, the equilibrium is unique and the interest-rate differential acts as
a coordination device among carry traders. Positive shocks on the interest-
rate differential set off dynamics in which capital inflows increase, and the
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domestic currency keeps appreciating. This generates a prolonged series of
positive returns on the carry trade, that ends abruptly only after a suffi-
ciently long series of negative shocks on the interest differential leads carry
traders to coordinate on large and rapid capital outflows. These dynamics
are reminiscent of the large and prolonged reactions of exchange rates to
monetary shocks described in Eichenbaum and Evans (1995) in the context
of the U.S. dollar.

The qualitative properties of these equilibrium paths relate to several
well-documented empirical facts, such as the profitability of FX momentum
and carry-trade strategies. Further, since equilibrium paths feature rare but
dramatic fluctuations in carry-trade activity, finite sample paths generated
by the model would likely generate a peso problem, and lead to an overesti-
mation of the expected return on the carry trade. Our model also generates
a new set of yet untested predictions on the relationship between the stance
of monetary policy and the patterns of carry-trade returns.

Related Literature

Our theory of carry-trade returns as self-fulfilling genuine excess returns
bears little relationship to the existing theories that seek to explain the
return on carry trades as a compensation for (possibly mismeasured) risk.
Farhi and Gabaix (2013) thorougly survey this existing literature. We do
not deny that a significant fraction of carry-trade returns may reflect risk
premia. We abstract from risk considerations here for tractability only,
and view our theory as a complement to such considerations rather than a
competing alternative.

Our approach is more closely related to models of financial instability in
which speculators earn rents if they successfully coordinate on a collective
course of action that triggers a policy response that benefits them. In inter-
national economics, static models of self-fulfilling currency attacks pioneered
by Obstfeld (1996) have this flavor. Farhi and Tirole (2012) or Schneider and
Tornell (2004) offer models of ”collective moral hazard” in which the gov-
ernment bails out speculators if their aggregate losses are sufficiently large,
which creates a coordination motive among speculators. In this paper, we
invoke related arguments in order to rationalize carry-trades returns. We
contribute to this literature on coordination-driven financial instability in
two ways.

First, our paper is the first, to our knowledge, in which speculators seek
to game an interest-rate rule that is directly borrowed from New-Keynesian
textbooks. We believe that this is a fruitful way to contribute to the im-
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portant debate on the relationship between inflation targeting and financial
stability using a well-known framework.

Second, we formalize the dynamic coordination game among carry traders
using the tools developed by Frankel and Pauzner (2000) and Burdzy, Frankel,
and Pauzner (2001) in order to obtain a unique predictable outcome. We
show that their setup can be adapted to the situation in which strategic
complementaries among agents coexist with congestion effects. This is im-
portant because most financial models with strategic complementarities also
feature congestion effects. We also show that the equilibrium paths result-
ing from this model square well, at least qualitatively, with many empirical
patterns of carry-trade returns.

1 A perfect-foresight model of destabilizing carry
trades

Time is discrete and is indexed by t ∈ Z. There are two types of agents,
international investors deemed ”carry traders”, and households populating
a small open economy. There is a single tradable good that has a fixed unit
price in the world currency. Carry traders consume only this tradable good.

Households

The households live in a small open economy. They use a domestic currency
that trades at St units of the world currency per unit at date t. At each
date, a unit mass of households are born. Households live for two dates,
consume when young and old, and work when old. The cohort that is born
at date t has quasi-linear preferences over bundles of consumption and labor
(Ct, Ct+1, Nt+1)

lnCt +
Ct+1 −N1+η

t+1

R
, (1)

where η,R > 0. Domestic consumption services Ct are produced combining
the tradable good CT

t and two nontradable goods CN1
t and CN2

t according
to the technology

Ct =

(
CT
t

)α (
CN1
t

)β (
CN2
t

)γ
ααββγγ

, (2)

where α, β, γ ∈ (0, 1) and α+ β + γ = 1. Domestic firms set by old house-
holds use labor input to produce. The exact specification of the production
processes are immaterial for our analysis. All that is needed is that both
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nontradable goods are produced in finite, non zero quantities at each date.
Households’ endowment is their labor income, and the profits from their
firms, that they both collect when old.

The first important ingredient of the model is that the prices of nontrad-
able goods are less flexible than that of the tradable good. We introduce
rigidity in the pricing of nontradable goods in the straightforward following
way. The first nontradable good has a fully flexible price. A technology
enables the transformation of each date-t unit of this first nontradable good
into F units of the tradable good, where F > 0. The second nontradable
good has a fully rigid price that we normalize to 1 without loss of generality.
Thus, the parameter γ measures the degree of price rigidity in the domestic
economy. The case γ = 0 corresponds to the fully flexible benchmark.

Carry traders

The unit mass of carry traders have access to investments denominated both
in the world and in the domestic currency. The gross per period return on
those denominated in the world currency is Re−δ.

The financing of households by carry traders

Households and carry traders trade risk-free one-period bonds in zero net
supply that are denominated in the domestic currency. The nominal interest
rate is set by the domestic central bank according to a rule described below.

Each carry trader can take any position in the bond market within[
Pte

l, Pte
l
]
, where these limits are denominated in the domestic currency,

Pt is the domestic consumption price level, and

l < 0 < l.

We denote Lt the aggregate real borrowing by young households at date t.
A natural interpretation of our model is that the carry traders are do-

mestic banks that finance loans to the domestic economy by investing their
own equity Pte

l, and if they wish to do so by borrowing in the world currency
from the global banking sector. The domestic prudential regulation imposes
a capital requirement Pte

l−l - a minimum fraction of their assets that banks
must finance with their own capital. Thus banks can lend at most Pte

l. This
interpretation of carry traders as local banks funded in foreign currencies
by the global banking sector squares well with recent analyses of the role
of international credit flows in destabilizing carry trades (Bruno and Shin,
2014; Rey, 2013).
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Alternatively, one may also simply interpret Pte
l as an exogenous endow-

ment received by households at birth, and
[
0, Pt

(
el − el

)]
as the trading

limits of the carry traders.2

Perfect-foresight equilibria

We are interested in determining the excess return that carry traders earn
from lending to the households rather than investing in world-currency de-
nominated assets in the perfect foresight equilibria of this economy. We
simply deem it the ”return on carry trades”. This return between two dates
t and t+ 1 is

Θt+1 =
St+1It+1

Re−δSt
, (3)

where It+1 is the domestic nominal interest rate. A perfect-foresight equi-
librium must be such that carry traders exhaust their lending limit when
the return on carry trades (3) is strictly larger than 1, lend the minimum
amount if it is strictly smaller than 1, and are indifferent otherwise.3 The
rest of the equilibrium is determined by four standard conditions. First,
we impose that households optimally allocate their resources across dates,
which yields a Fisher relation:

It+1 =
RPt+1

LtPt
, (4)

The Euler equation (4) depends only on date-t real borrowing Lt because
preferences are quasi-linear. Second, we also impose that households opti-
mally spend across goods at each date, which implies:

Pt = (P T
t )α(PN1

t )β(PN2
t )γ , (5)

or

Pt =
(
P T
t

)1−γ
F β , (6)

where P T
t is the price level of the tradable good. Relation (6) stems from

our assumptions about the price levels of the nontradable goods:

2Setting lending limits in real terms simplifies the exposition but is not crucial. Nominal
rigidities in trading limits would actually amplify our results.

3In this perfect-foresight model, returns on carry trades different from 1 are pure arbi-
trage opportunities. This is the reason the preferences of the carry traders are irrelevant,
and also the reason we must impose exogenous limits on carry-trade sizes.
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PN2
t = 1, (7)

and

PN1
t = FP T

t . (8)

Third, we assume that purchasing power parity holds for the pure trad-
able good (”PPP at the dock”):

P T
t St = 1. (9)

Finally, we assume that the domestic monetary authority follows an
interest-rate rule of the form:

It+1 = R

(
Pt

Pt−1

)1+Φ

(10)

where
Φ > 0. (11)

Rule (10) is a textbook interest-rate rule that follows the Taylor principle
from (11).4 It responds to carry-trade inflows only insofar as these flows
affect domestic inflation. This is the other important ingredient of the model
together with rigidity in nontradables prices. The interpretation is that the
central bank does not respond to the asset price fluctuations induced by
flows of“hot money.”

We introduce

r = lnR,

θt = lnΘt,

it = ln It,

st = lnSt,

lt = lnLt,

πt+1 = ln

(
Pt+1

Pt

)
.

4Rule (10) sets a zero-inflation target for notational simplicity only, this plays no role
in the analysis.
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As is standard, the Fisher relation (4) and the interest-rate rule (10) define
a linear-difference system for the path of inflation that has a unique non-
exploding solution:

πt = −
∑
k≥0

lt+k

(1 + Φ)k+1
. (12)

The current price level reflects all future expected ”shocks” caused by carry
trades on the real rate (lt+k)k≥0. Using (6) and (9), one has

st+1 − st = − 1

1− γ
πt+1. (13)

Plugging (13) and (4) in (3) yields

θt+1 = st+1 − st + it+1 − r + δ,

= − 1

1− γ
πt+1 + πt+1 − lt + δ, (14)

=
γ

1− γ

∑
k≥0

lt+k+1

(1 + Φ)k+1
− lt + δ. (15)

Suppose for simplicity that δ = 0. We now determine the steady-states
in which the debt level l is constant over time. We have:

Lemma 1. There exists a steady-state l = 0 in which the domestic real rate
is R, the nominal exchange rate and the price level are constant, and the
carry trade earns no excess return (θ = 0).

If Φ(1− γ) > γ, this is the only steady-state.
If Φ(1 − γ) < γ, there also exists a steady-state with maximum lending

(l = l) in which the excess return on the carry trade is positive, and the
nominal exchange rate constantly appreciates. There also exists a steady-
state with minimum lending (l = l), a negative excess return on the carry
trade, and a constant depreciation of the exchange rate.

Proof. For δ = 0 and a fixed l, expression (15) becomes

θ =
γ − Φ (1− γ)

(1− γ) Φ
l. (16)

Thus the steady-state l = 0 is unique if Φ(1− γ) > γ, it is not otherwise.�
The situation Φ(1 − γ) < γ in which there are multiple steady-states

may be interpreted as one that is prone to destabilizing speculation. In this
situation, the stable steady-state in which carry traders earn the same return
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on all investments, and in which domestic nominal variables are constant is
only one possibility. Because current and future capital inflows reinforce
each other, there is also the possibility that carry traders create and exploit
a self-justified arbitrage opportunity. They may also enter into the self-
defeating strategy of lending too little. Notice that the only steady-state is
the one in which l = 0 regardless of the monetary rule when prices are fully
flexible (γ = 0).

The intuition behind Lemma 1 is best seen from the return on carry trade
as given in equation (14). This expression decomposes the impact of current
lending lt and that of future lending (lt+k)k≥1 on the current excess return
on carry trade θt+1. Current lending has a negative impact on the current
return on carry trade simply because it lowers the real interest rate (term −lt
in (14)). In contrast, the return on carry trade increases in future lending for
the following reason. First, future anticipated carry trades are deflationary,
very much like future positive policy shocks would be. This deflationary
effect reduces the nominal domestic exchange rate and thus the profitability
of the current carry trade (term πt+1 decreasing in future lending). This
is more than offset, however, by the impact of future lending on nominal
exchange rate appreciation (term −πt+1

1−γ increasing in future lending). Future
lending leads to a current nominal exchange rate appreciation that is larger
than the reduction in the CPI because of the assumption that nontradable
prices are less flexible than that of the tradable good. Thus, the nominal
exchange rate is more sensitive to shocks on the real rate than the CPI.

In sum, there are multiple steady-states when lending by other carry
traders makes lending more appealing to each carry trader. This occurs
when exchange rate appreciation due to anticipated future lending more
than offsets the negative impact of current lending on the real rate. This is
in turn the case when the nominal exchange rate is sensitive to future capital
inflows because nontradables prices are rigid (γ large), and the official rate
does not respond too aggressively to realized inflation (Φ small).

This multiplicity of steady-states sheds light on the circumstances under
which carry trades reinforce each other and are destabilizing in a simple
perfect-foresight environment. Yet this environment is admittedly problem-
atic along several dimensions:

1. The multiplicity of steady-states leaves unclear how agents can coor-
dinate on any equilibrium behavior at all.

2. If carry traders hold the same position forever, then domestic prices
and the real-rate target of the central bank should eventually adjust.
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3. Perhaps more important, in this environment, the interest-rate dif-
ferential plays no role in setting off steady-states with excessive or
insufficient capital inflows. To see this, notice that the total return on
the carry trade is:

− 1

1− γ
πt+1︸ ︷︷ ︸

exchange-rate appreciation

+ πt+1 − lt + δ︸ ︷︷ ︸
interest-rate differential

. (17)

Thus, either steady-state can be sustained regardless of the value of
the interest-rate differential provided γ is sufficiently close to 1, so
that the sign of (17) is entirely driven by that of the exchange rate
fluctuation regardless of the value of the interest-rate differential.

The next section develops a model that addresses these three issues.
Loosely speaking for now, we will write down a version of the model in which
carry traders switch from maximum to minimum lending at points that are
uniquely determined by the paths of a stochastic interest rate differential.

2 Destabilizing carry trades

We now assume that time is continuous. The fixed integer dates of the
previous section are replaced by the arrival times of a Poisson process with
intensity 1. Namely, at each arrival time Tn, a new cohort of households are
born, and die at the next arrival time Tn+1. They value consumption and
labor only at these two dates, with preferences that are the same as that in
the previous section:5

lnCTn +
1

R
ETn

[
CTn+1 −N1+η

Tn+1

]
.

At each arrival date Tn, the central bank sets a nominal rate ITn+1 between
Tn and Tn+1 according to the rule:

ITn+1 = R

(
PTn

PTn−1

)1+Φ

. (18)

Carry traders also value consumption at these arrival dates (Tn)n∈Z only.
They are risk-neutral, and have the same discount rate R as that of the

5Replacing integer dates with dates that arrive at a constant rate is only for tractabil-
ity. It entails that the carry traders’ problem studied below is time homogeneous. That
households do not care about the length of the time interval during two arrival dates
slightly simplifies the exposition.
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households between two arrival dates. They are penniless but have the
ability to borrow in the world currency against bonds denominated in the
domestic currency.

We depart from the perfect foresight model developed in the previous
section in two important ways.

First, we assume that the interest rate at which carry traders borrow in
the world currency between two arrival dates Tn and Tn+1 is given by

R (1− wTn) , (19)

where wt is a Wiener process with no drift and volatility σ2. In other
words, we introduce an exogenous stochastic component in the interest rate
differential.6

Second, we assume that the capital supplied by carry traders is slow-
moving in the following sense. Each carry trader can revise his lending
policy only at switching dates that are generated by a Poisson process with
intensity λ. These switching dates are independent across carry traders. In
between two switching dates, each carry trader commits to lend a fixed real

amount within
[
el, el

]
to each new cohort of households. We deem ”active”

a carry trader who committed to maximum lending el at his last switching
date, and ”inactive” one who commited to the minimum lending el.7

This model of slow-moving capital has two key properties that will yield
equilibrium uniqueness. First, the aggregate supply of foreign capital obeys
a continuous process. Second, every carry trader knows that some other
carry traders will revise their lending strategy almost surely between his
current switching date and the next one.

Suppose that a carry trader has a chance to revise his position at a date
t such that

Tn−1 < t < Tn. (20)

Denoting Tλ his next switching date, his expected unit return from the carry
trade—the expected value from committing to lend one additional real unit
to each future cohort until Tλ—is

6Clearly, the world interest rate (19) is determined outside the model. We could al-
ternatively introduce exogenous shocks to the domestic economy such as policy shocks at
the cost of some analytical complexity.

7Risk-neutral carry traders choose corner strategies. As in the previous section, we
could alternatively interpret el as the young households’ endowment and suppose that
carry traders cannot borrow in the domestic currency.

12



Θt = Et

⎡
⎣∑
m≥0

1{Tλ>Tn+m}PTn+m

Rm+1

(
STn+m+1ITn+m+1 − STn+mR

(
1− wTn+m

))⎤⎦ .
(21)

Expression (21) states that the carry trader earns the carry-trade return
associated with each cohort that borrows until he gets a chance to revise his
position.

We let xt denote the fraction of active carry traders at date t. Note
that the paths of the process (xt)t∈R must be Lipschitz continuous, with a
Lipschitz constant smaller than λ. The aggregate real lending LTn taking
place at an arrival date Tn is then equal to

LTn = xTne
l + (1− xTn)e

l. (22)

The evolution of the economy is fully described by two state variables,
the exogenous state variable wt that measures the interest rate differential,
and the endogenous state variable xt. The exogenous state variable affects
only the expected return on carry trade Θt while the endogenous one affects
both the carry trade return and the equilibrium variables (LTn , ITn , PTn , STn)
of the domestic economy. We are now equipped to define an equilibrium.

Definition. An equilibrium is characterized by a process xt that is adapted
to the filtration of wt and has Lipschitz-continuous paths such that:

LTn = xTne
l + (1− xTn)e

l, (23)

ITn+1 = R

(
PTn

PTn−1

)1+Φ

, (24)

PTn =
(
P T
Tn

)1−γ
F β , (25)

P T
Tn
STn = 1, (26)

ETn

[
ITn+1PTn

PTn+1

]
=

R

LTn

, (27)

dxt
dt

=

{
−λxt if Θt < 0,

λ(1− xt) if Θt > 0.
(28)

Equations (24) to (27) state that the domestic economy is in equilibrium
given the paths of xt. Equation (28) states that carry traders make optimal
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individual decisions. They become active at switching dates at which the
expected return on the carry trade is positive (or remain active if this was
their previous positions), and inactive if this is negative.

Notice that relations (24) to (26) are identical to their counterparts in
the perfect foresight case except for the re-labelling of dates. They are in
particular log-linear. Conversely, the Fisher relation (27) now features an
expectation over the inverse of inflation given the stochastic environment.
We will assume for the remainder of the paper that l and l are sufficiently
close to 0 that we can write

lnEt

[
PTn

PTn+1

]
� −Et

[
ln

PTn+1

PTn

]
. (29)

This implies of course that we restrict the analysis to the impact of
relatively small capital inflows. Up to this log-linearization, we have

Proposition 2. Suppose that

γ > Φ (1− γ) . (30)

For λ sufficiently small, there exists a unique equilibrium defined by a de-
creasing Lipschitz function f such that

dxt
dt

=

{
−λxt if wt < f(xt),

λ(1− xt) if wt > f(xt).
(31)

Figure 1 illustrates the equilibrium dynamics described in Proposition 2.

[Figure 1 here]

The frontier f divides the (w, x)-space into two regions. Proposition 2 states
that in the unique equilibrium, any trader decides to be active when the
system is to the right of the frontier f at his switching date, and inactive
when it is on the left of the frontier. Thus, lending positions (and therefore
the exchange rate) will tend to rise in the right-hand region, and tend to fall
in the left-hand region, as indicated by the arrows in Figure 1. The expected
return on the carry trade at date t is zero if and only if wt = f(xt). It is
positive if (wt, xt) is on the right of the frontier f in the (w, x)-space and
negative if it is on the left of f .

The dynamics of xt implied by the unique equilibrium are given by:

dxt = λ
(
1{wt>f(xt)} − xt

)
dt, (32)
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where 1{.} denotes the indicator function that takes the value 1 when the
condition inside the curly brackets is satisfied. These processes are known
as stochastic bifurcations, and are studied in Bass and Burdzy (1999) and
Burdzy et al. (1998). These mathematics papers establish in particular
that for almost every sample path of wt, there exists a unique Lipschitz
solution xt to the differential equation (32) defining the price dynamics for
f Lipschitz decreasing.

The main features of these dynamics can be seen from Figure 1. Starting
on the frontier, a positive shock on w will pull the system on the right of it.
Unless the path of wt is such that a larger negative shock brings it back on
the frontier immediately, a more likely scenario is that lending grows for a
while so that xt becomes close to 1, in which case dxt

dt becomes close to 0. If
cumulative negative shocks on w eventually lead the system back to the left
of the frontier, then there are large outflows

dxt
dt

� −λ.

Condition (30) is the same as the one that generates multiple steady-
states in the perfect-foresight case. It is worthwhile commenting on the ad-
ditional condition that capital move sufficiently slowly (λ sufficiently small).
This condition guarantees that the frontier f is decreasing, and thus that
carry trades are destabilizing. To better grasp its role, notice that if a carry
trader expects other carry traders to become active in the future, then he
expects the exchange rate to appreciate. This implies that on one hand,
the currency will be expensive when he will purchase it to lend. On the
other hand, it will keep appreciating over the duration of the loan, thereby
generating a positive return. The former effect is akin to a congestion ef-
fect. Other traders make the trade more expensive and thus less desirable.
Conversely, the latter effect is destabilizing as future carry trades make be-
coming active more appealing. That λ be sufficiently small ensures that this
latter effect offsets the former congestion effect because aggregate lending
does not converge too quickly to its maximum value. Thus the carry trader
with a current switching date is more likely to have a chance to lend before
the currency becomes too expensive, and its upside potential too small. This
congestion effect is the salient difference between our setup and that studied
by Burdzy, Frankel, and Pauzner.

Proof of Proposition 2

The proof of Proposition 2 essentially extends to this stochastic environment
the logic leading to the perfect-foresight results in Lemma 1. In a first
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step, we solve for the nominal exchange rate and domestic interest rate as
a function of future capital inflows. This will yield an expression of the
expected return on carry trades (21) as a function of these inflows and of
the interest-rate differential wt that is the stochastic counterpart of equation
(15). Second, we use this expression to solve for a Lipschitz process that
satisfies (28). This latter step is the equivalent of the one that consisted in
solving for feasible steady-states given the expected return for carry traders
(15) under perfect foresight.

More precisely, the first step consists in using relations (24) to (27) to
express the nominal exchange rate and interest rate as functions of the
expected future paths of capital inflows Lt. This yields in turn a relatively
simple expression for the expected return on the carry trade Θt as a function
of these expected capital inflows:

Lemma 3. At first-order, the expected return on the carry trade is

Θ(wt, xt) =

∫ +∞

0

((
χω

ω − ρ− λ
− 1

)
e−(λ+ρ)v − χω

ω − ρ− λ
e−ωv

)
Et [lt+v] dv

+
wt

λ+ ρ
, (33)

where

lt = lnLt � xtl + (1− xt) l, (34)

ρ = 1− 1

R
, (35)

ω =
Φ

1 + Φ
, (36)

χ =
γ

(1− γ) Φ
. (37)

Proof. See the Appendix. �
The factor that discounts future capital inflows in (33):(

χω

ω − ρ− λ
− 1

)
e−(λ+ρ)v − χω

ω − ρ− λ
e−ωv, (38)

is first negative, then positive as v spans [0,+∞].8 This formalizes the above
comment that future active traders create congestion effect for the current
trader. The earliest inflows have a negative impact on Θ because they make
the domestic currency expensive. The more remote inflows are desirable

8Notice that this is so regardless of the sign of ω − λ− ρ.
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as the current trader is more likely to have lent before they push up the
exchange rate. The following lemma establishes conditions under which the
congestion effect is not too important.

Lemma 4. Suppose that χ > 1. There exists λ such that for all λ ≤ λ, the
following is true. Suppose that two processes x1t and x2t satisfy

0 < x10 ≤ x20 < 1,

For i = 1, 2, dxit = λ
(
1{wt>f i(xi

t)} − xit

)
dt,

where f i is decreasing Lipschitz and f2 ≤ f1. Then

Θ(wt, x
2
0) ≥ Θ(wt, x

1
0). (39)

The inequality is strict if f1 �= f2 and/or x10 �= x20.

Proof. See the Appendix. �
Lemma 4 states that if (30) holds and λ is sufficiently small, then future

carry trades make current carry trades more attractive because the rein-
forcing effect overcomes the congestion effect. In the balance of the paper,
we suppose that the conditions in Lemma 4 are satisfied. We now show
that there is in this case a unique Lipschitz process xt that satisfies the
equilibrium conditions.

First, the proof of Lemma 4 also shows that the case in which xt obeys
dxt
dt = −λxt for all u ≥ 0 corresponds to a lower bound on the expected
carry-trade return. When xt obeys such dynamics, there exists a frontier f0
such that

wt = f0(xt) =⇒ Θ(xt, wt) = 0 (40)

The frontier f0 is decreasing from Lemma 4 (with f1 = f2 = +∞) and is
clearly affine and thus Lipschitz.9 Thus an admissible equilibrium process
must be such that traders who have a chance to switch when the system is
on the right of f0 become active.

Define now f1 such that

wt = f1(xt) =⇒ Θ(xt, wt) = 0 (41)

if for all u ≥ 0,

9The frontier simply obtains from writing Et [lt+v] = l +
(
l − l

)
xte

−λv in (33).
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dxt+u

du
=

{
−λxt+u if wt+u < f0(xt+u),

λ(1− xt+u) if wt+u > f0(xt+u).
(42)

That is, f1 is such that a carry trader is indifferent between being active or
inactive when the system is on f1 at his switching date if he believes that
other traders become active if and only if they are on the right of f0. This
function f1 must be decreasing. Suppose otherwise that two points (w, x)
and (w′, x′) on f1 satisfy

x′ > x,

w′ ≥ w.

Then applying Lemma 4 with f2 = f0, f
1 = f0 + w′ − w contradicts that

both points generate the same expected carry trade return. We also show
in the appendix that f1 is Lipschitz, with a Lipschitz constant smaller than
that of f0.

By iterating this process, we obtain a limit f∞ of the sequence of fron-
tiers (fn)n≥0 that is decreasing Lipschitz as a limit of decreasing Lipschitz
functions with decreasing Lipschitz constants. The process

dxt
dt

=

{
−λxt if wt < f∞(xt),

λ(1− xt) if wt > f∞(xt).
(43)

is an admissible equilibrium since by construction, if all traders switch to
inactivity to the left of f∞ and to activity to the right, the indifference point
for a trader also lies on f∞. We now show that this is the only equilibrium
process.

Consider a translation to the left of the graph of f∞ in (w, x) so that the
whole of the curve lies in a region where wt is sufficiently small that inactivity
is dominant regardless of the dynamics of xt. Call this translation f ′

0. To
the left of f ′

0, inactivity is dominant. Then construct f ′
1 as the rightmost

translation of f
′
0 such that a trader must choose inactivity to the left of f

′
1

if he believes that other traders will play according to f
′
0. By iterating this

process, we obtain a sequence of translations to the right of f
′
0. Denote by

f ′∞ the limit of the sequence. Refer to Figure 2.

[Figure 2 here]

The boundary f ′∞ does not necessarily define an equilibrium strategy,
since it was merely constructed as a translation of f

′
0. However, we know
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that if all others were to play according to the boundary f ′∞, then there is
at least one point A on f ′∞ where the trader is indifferent. If there were no
such point as A, this would imply that f ′∞ is not the rightmost translation,
as required in the definition.

We claim that f ′∞ and f∞ coincide exactly. The argument is by contra-
diction. Suppose that we have a gap between f ′∞ and f∞. Then, choose
point B on f∞ such that A and B have the same height - i.e. correspond to
the same x. But then, since the shape of the boundaries of f ′∞ and f∞ and
the values of x are identical, the paths starting from A must have the same
distribution as the paths starting from B up to the constant difference in the
initial values of w. This contradicts the hypothesis that a trader is indiffer-
ent between the two actions both at A and at B. If he were indifferent at A,
he would strictly prefer maximum lending at B, and if he is indifferent at B,
he would strictly prefer minimum lending when in A. But we constructed A
and B so that traders are indifferent in both A and B. Thus, there is only
one way to make everything consistent, namely to conclude that A = B.
Thus, there is no “gap”, and we must have f ′∞ = f∞. �

Proposition 2 shows that adding exogenous shocks wt to the carry return
eliminates the indeterminacy of the perfect-foresight case. More precisely,
equilibrium uniqueness stems from the interplay of these shocks with the
fact that each carry trader, when he receives a switching opportunity, needs
to form beliefs about the decisions of the carry traders that will have an
opportunity to switch between now and his next switching date. Suppose
that (wt, xt) is close to a dominance region in which carry traders would
prefer a course of action for sure, but just outside it. If wt was fixed, it
may be possible to construct an equilibrium for both actions, but when
wt moves around stochastically, it will wander into the dominance region
between now and the next opportunity that the trader gets to switch with
some probability. This gives the trader some reason to hedge his bets and
take one course of action for sure. But then, this shifts out the dominance
region, and a new round of reasoning takes place given the new boundary,
and so on.

Remark 1. We model the interest-rate differential as a Brownian mo-
tion for expositional simplicity. It is easy to see that we could write it as
d(wt), where wt is a standard Brownian motion, and d a Lipschitz increasing
function, possibly bounded as long as there are still dominant actions for wt

sufficiently large or small.
Remark 2. While a strong persistence in target rates is undoubtedly

realistic, extensions of this framework can also accommodate for various
forms of mean-reversion (Burdzy, Frankel, and Pauzner, 2001, or Frankel
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and Burdzy, 2005).
Remark 3. The condition that λ be sufficiently small seems particu-

larly relevant for the carry trades that involved many retail investors, such
as those targeting New Zealand dollar or Icelandic krona. The glacier bonds
denominated in Icelandic krona or the uridashi bonds used by Japanese in-
vestors to invest in New Zealand had a typical maturity of 1 to 5 years, and
were principally purchased by retail investors. More generally, Bacchetta
and van Wincoop (2009) claim an average two-year rebalancing frequency
to be plausible in FX markets in general, and assume it in order to quan-
titatively explain the forward discount bias. Also, well-documented price
pressure and illiquidity in currency markets, especially for small currencies,
may force professional FX speculators to build-up or unwind large positions
more gradually than they would like to.10

The case of small shocks

The limiting case in which the volatility σ of the interest-rate differential
tends to zero yields useful insights. It is possible to characterize the shape
of the frontier f in this case.

In this section we denote the frontier fσ to emphasize its dependence on
σ. Suppose the economy is in the state (fσ(xt) , xt) at date t. That is, it is
on the equilibrium frontier. For some arbitrarily small ε > 0, introduce the
stopping times

T1 = inf
u≥0

{xt+u /∈ (ε, 1− ε)} ,
T0 = sup

0≤u<T1

{wt+u �= fσ (xt+u)} .

In words, T1 is the first date at which xt gets close to 0 or 1, and T0 is
the last date at which xt crosses the frontier before T1. If T0 is small in
distribution, it means that the economy is prone to bifurcations. That
is, it never stays around the frontier for long. Upon hitting it, it quickly
heads towards extreme values of x. The next proposition shows that this
is actually the most likely scenario when σ is small. This, in turn, yields a
simple explicit determination of the frontier.

Proposition 5.

10In fact, our model is identical to one in which a single large carry trader can move his
capital only at the rate λ.
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1. As σ → 0, T0 converges to 0 in distribution, and the probability that
dxt
dt > 0 (respectively dxt

dt < 0) over [T0, T1] converges to 1 − xt (xt
respectively).

2. As σ → 0, the frontier fσ tends to an affine function. For λ sufficiently
small, the slope of this function is increasing in Φ and decreasing in
γ.

Proof. See the Appendix.�
First, Proposition 5 clears the concern that in equilibrium, x would only

exhibit small fluctuations around a fixed value because Brownian paths cross
the frontier too often. As σ becomes smaller, the system exhibits more fre-
quent bifurcations towards extremal values of x. When the system reaches
the frontier, it is all the more likely to bifurcate towards capital outflows
when cumulative inflows have been large (x large). Thus the model does gen-
erate ”destabilizing carry trades,” whereby carry traders generate durable
self-justified excess returns on the carry trade followed by large reversals.

The second point in Proposition 5 relates the slope of the frontier fσ to
the monetary parameters of the model Φ and γ in this case of small shocks.
The slope of the frontier affects the dynamics of capital inflows and in turn
the exchange-rate dynamics. If the graph of the frontier is closer to being
horizontal in the (w, x) plane, then the system should cross the frontier less
often, and thus do so only for more extreme values of x. Carry-trade returns
should in this case exhibit more serial correlation and fatter tails. Point 2
states that, at least for λ sufficiently small, the frontier is flatter when Φ is
smaller, and γ larger. In other words, if the central bank fails to respond
to inflows by sufficiently reducing its official rate, then carry trade returns
should exhibit more skewness.

3 Empirical content

The model generates a rich set of qualitative empirical predictions. This
suggests that a coordination motive among carry traders may be a com-
mon force behind several well-documented empirical findings on carry-trade
returns.

Profitability of FX momentum strategies

Proposition 5 shows that as σ → 0, the system often bifurcates in one
direction. This implies that, at least at a sufficiently short horizon, returns
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are positively autocorrelated, so that momentum strategies in FX markets
should generate a positive excess return.

It is important to stress that the profitability of momentum strategies
is not a mechanical consequence of the assumption of slowly moving capital
(λ sufficiently small). Returns on the carry trade are still positively auto-
correlated if the system bifurcates quickly towards extreme values of activity
x. The key economic force behind this profitability of momentum strategies
is that once carry traders coordinate on a course of action, they stick to it
until a sufficiently large reversal of the interest-rate differential leads them to
switch to a different strategy. Such a rationalization of momentum returns
with coordination motives is novel to our knowledge.

Profitability of FX carry trades

Lemma 4 implies that the equilibrium expected return on the carry trade
Θ(w, x) increases with respect to x. It also implies that Θ(w, x) increases
with respect to w, because an increase in w is equivalent to a leftward
translation of the frontier f in the graph (w, x). On the other hand, the
interest-rate differential increases in w and decreases in x. We have indeed:

Lemma 6. At first-order, the interest-rate differential at a given arrival
date Tn is given by

R

(
wTn − lTn − 1

1 + Φ

∫ +∞

0
e−ωsETn [lTn+s] ds

)
. (44)

Proof. See the Appendix.�
The interest-rate differential increases w.r.t. w but decreases w.r.t. l

(and thus x) because the current domestic real rate is lower and future
deflation more likely when l is large. Thus the expected return on the carry
trade is not unambiguously increasing in the interest-rate differential. For
l, l sufficiently small, however, most of the interest-rate differential is due to
the exogenous component w rather than to the endogenous actions of the
carry traders l. In this case, when the interest-rate differential is sufficiently
large in absolute terms, it must be that the system is on the right (left) of
the frontier when the differential is positive (negative). In other words, we
have the following interesting prediction:

A positive (negative) interest-rate differential predicts a positive (neg-
ative) return on the carry-trade only for sufficiently large absolute differ-
entials. The exchange rate must be more volatile when the interest-rate
differential is small.
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When w is small, so is the interest-rate differential, and the differential
may correspond to values of (w, x) that are either on the left or on the right
of the frontier. The expected return on the carry trade is thus unclear.
Since the system is closer to the frontier in this case, future crossings of the
frontier are more likely and thus the exchange rate should be more volatile.
This is because close to the frontier, for a finite σ, it takes more time to
carry traders to coordinate on a given course of action and bifurcate in
one direction. This nonlinear impact of the interest-rate differential on the
carry-trade return has not been tested to our knowledge.

The profitability of FX momentum and carry-trade strategies that we
predict has been established in a large empirical literature, reviewed for
example in Burnside, Eichenbaum, and Rebelo (2011).

Peso problem

A large literature argues that the return on the carry trade partly reflects a
risk premium for rare and extreme events that may not show in finite samples
(see, e.g., Burnside, Eichenbaum, Kleshchelski, and Rebelo, 2011, Farhi and
Gabaix, 2013, Jurek, 2014, or Lewis, 2007, and the references herein.) We
closely connect to this literature as follows. Fix ε > 0 small. The expected
return on the carry trade is 0 starting both from (f(ε), ε) and (f(1−ε), 1−ε)
in the (w, x) plane. Yet from Proposition 5, as σ becomes small, most
paths starting from (f(ε), ε) will exhibit long periods of appreciation of the
domestic currency ended with rare (and large) depreciations, while paths
starting from (f(1−ε), 1−ε) will feature a symmetric prolonged depreciation.
The interest-rate differential is positive in the former case and negative in
the latter. Thus, finite samples should yield that a positive interest-rate
differential predicts a positive excess return on the carry trade even when
the true return is zero.

Leverage and currency appreciation predict financial crises

Gourinchas and Obstfeld (2011) find that credit expansion and appreciation
of the domestic currency predict financial crises. The build up of leverage
and currency appreciation correspond to paths in which x increases for a long
time in our model. Such paths are the ones in which sharp deleveraging and
important capital outflows are most likely to occur soon other things being
equal.
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Monetary policy and carry-trade returns

In addition to relating to the above existing empirical findings, the model
also generates a new range of predictions on the relationship between the
stance of monetary policy and the distribution of the returns on momentum
and carry trade strategies. Proposition 5 suggests that the frontier is flatter
when Φ is smaller and γ larger. In words, the frontier is flatter when the
central bank is more reluctant to respond to a surge in carry-trade activity
with a large reduction in the official rate. This is in turn more likely to be
the case when the prices of nontradables are very sticky. Otherwise stated,
if an economy is such that the CPI is not too sensitive to the exchange
rate, and/or the central bank not too aggressive, then this economy should
be more prone to large fluctuations in carry-trade activity because it will
experience more prolonged bifurcations. Thus the returns on carry-trade
and momentum strategies should have fatter tails. These predictions are
novel, to our knowledge.

Concluding remarks

As a conclusion, we briefly discuss two interesting avenues for future re-
search.

• More general preferences. Assuming that households are risk-neutral
over late consumption dramatically simplifies the analysis, because it
implies that the impact of capital inflows on the real rate is straight-
forward. With strictly concave preferences, the current real rate would
depend on consumption growth, so that we could no longer abstract
from the impact of foreign lending on quantities and thus production
in the domestic economy as we are able to do here. We find it useful
to derive our novel mechanism for self-fulfilling profitable carry trades
in a highly tractable framework that delivers clear intuitions. An in-
teresting avenue for future research is the study of the impact of such
carry trades on quantities under more standard preferences. For such
a study, one should also introduce a more standard modelling of price
adjustment.

• Repelling carry traders. We assume here that the domestic central
bank does not use an appropriate rule. An interesting avenue for fu-
ture research consists in explicitly modelling the commitment issues or
welfare costs that prevent the monetary authority from using a larger
Φ. This would pave the way to a normative analysis. Notice that the
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central bank can repell carry traders in this framework in three other
ways: using a measure of inflation that is tilted towards tradables,
adding a term that is sufficiently decreasing in the exchange rate ap-
preciation to the interest-rate rule, or simply targeting the realized
real rate r − lt. It is easy to see from the perfect-foresight model that
these three measures are strictly equivalent in this simple environ-
ment, because they all amount to sufficiently reducing the official rate
in response to carry-trade activity, therereby discouraging it. These
different policies would probably each come with distinctive costs in
a more general environment. In any case, a clear implication from
this framework is that a decrease in the official rate is the appropriate
response when foreign speculative inflows bid up domestic asset prices.
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Appendix

Proof of Lemma 3

Using the first-order approximation (29) in (27), relations (24) and (27)
yield domestic inflation as a function of future expected inflows as in the
perfect-foresight case:

ln
PTn

PTn−1

= −
∑
k≥0

ETn

[
lTn+k

]
(1 + Φ)k+1

, (45)

where lt = lnLt. As in the perfect-foresight case, (25) and (26) yield in turn:

ETn

[
ln

STn+1ITn+1

RSTn

]
=

γ

1− γ

∑
k≥0

ETn

[
lTn+k+1

]
(1 + Φ)k+1

− lTn (46)

One can write (21) as

Θt = Et

⎡
⎣∑
m≥0

1{Tλ>Tn+m}STn+mPTn+m

Rm

(
STn+m+1ITn+m+1

RSTn+m

− 1 + wTn+m

)⎤⎦ .
(47)

At first-order w.r.t. lt,

PTn+mSTn+mETn+m

[
STn+m+1ITn+m+1

RSTn+m

− 1

]
= ETn+m

[
ln

STn+m+1ITn+m+1

RSTn+m

]
(48)

=
γ

1− γ

∑
k≥0

ETn+m

[
lTn+m+k+1

]
(1 + Φ)k+1

− lTn+m . (49)

Thus,

Θt = Et

⎡
⎣∫ +∞

0

∑
m≥1

( s

R

)m−1 e−(λ+1)s

(m− 1)!

[∫ +∞
0

γ
1−γ

∑
k≥1

uk−1

(k−1)!
e−u

(1+Φ)k
lt+s+udu

−lt+s + wt

]
ds

⎤
⎦ ,

(50)

= Et

[∫ +∞

0
e−(λ+ρ)s

(∫ +∞

0
χωe−ωult+s+udu− lt+s + wt

)
ds

]
, (51)

=

∫ +∞

0
e−(λ+ρ)v

(
χω

∫ v

0
e−(ω−λ−ρ)udu− 1

)
Et [lt+v] dv +

wt

λ+ ρ
, (52)

and integrating yields the result.

28



Proof of Lemma 4

Suppose χ > 1. Consider two processes x1t and x2t that satisfy the conditions
stated in Lemma 4 with x10 < x20. Lemma 2 in Burdzy, Frankel and Pauzner
(1998) states that almost surely,

x2t ≥ x1t for all t ≥ 0. (53)

This implies in particular that whenever traders switch to being active along
a sample path of (wt, x

1
t ), so do they along the sample path of (wt, x

2
t ) that

corresponds to the same sample path of wt. This is because it must be that
(wt, x

2
t ) is on the right of the frontier f2 whenever (wt, x

1
t ) is on the right of

the frontier f1. Thus, the process

yt = x2t − x1t (54)

satisfies

0 < y0 < 1, (55)

dyt
dt

= λ(εt − yt), (56)

where εt ∈ {0; 1}.

In order to prove the Lemma, we only need to find λ such that for all λ ≤ λ,

Δ =

∫ +∞

0

((
χω

ω − ρ− λ
− 1

)
e−(λ+ρ)v − χω

ω − ρ− λ
e−ωv

)
yvdv ≥ 0. (57)

for all deterministic process yt that obeys (55) and (56). The result then
obtains from taking expectations over all paths of wt.

To prove (57), we introduce the function ζ that satisfies{dζ(v)

dv = −
((

χω
ω−ρ−λ − 1

)
e−(λ+ρ)v − χω

ω−ρ−λe
−ωv
)
,

lim+∞ ζ = 0.
Integrating by parts, we have

Δ = ζ(0)y0 +

∫ +∞

0
ζ(v)

dyv
dv

dv, (58)

= ζ(0)y0 + λ

∫ +∞

0
ζ(v)(εv − yv)dv. (59)
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Further,

yv = y0e
−λv + λ

∫ v

0
e−λ(v−u)εudu, (60)

and thus,

Δ = y0

(
ζ(0)− λ

∫ +∞

0
ζ(v)e−λvdv

)
(61)

+ λ

[∫ +∞

0
εv

(
ζ(v)− λ

∫ +∞

v
ζ(u)e−λudu

)]
. (62)

We have

lim
λ→0

ζ(0) =
χ− 1

ρ
> 0, (63)

ζ is increasing then decreasing beyond a value that stays bounded as λ tends
to zero, and

∫ +∞
0 ζ converges. Thus for λ sufficiently small,

ζ(v)− λ

∫ +∞

v
ζ(u)e−λudu (64)

is positive for all v ≥ 0, which yields that Δ is positive, and concludes the
proof.

Complement to the proof of Proposition 2

We prove here that f1 is Lipschitz with a constant that is smaller than that
of f0, that we denote K0. Suppose by contradiction that two points (wt, xt)
and (w′

t, x
′
t) on f1 satisfy

x′ > x, (65)

x′t − xt
wt − w′

t

<
1

K0
. (66)

We compare the paths x′t+u and xt+u corresponding to pairs of paths of w′
t+u

and wt+u that satisfy for all u ≥ 0

wt+u − w′
t+u = wt − w′

t. (67)

It must be that for such pairs of paths:

x′t+u − xt+u ≤ (x′t − xt)e
−λu. (68)
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Otherwise it would have to be the case that (w′, x′) can be on the right of
f0 when (w, x) is not. Let T denote the first time at which this occurs. It
must be that

K0e
−λT (x′t − xt) ≥ wt+T − w′

t+T = wt − w′
t, (69)

a contradiction with (66).
Thus along such paths of w′

t+u − wt+u, x
′
t+u − xt+u shrinks at least as

fast as when traders switch to inactivity all the time. Together with (66),
this implies that the expected return on the carry trade cannot be the same
in (wt, xt) and (w′

t, x
′
t), a contradiction.

Proof of Proposition 5

The first point is a particular case of Theorem 2 in Burdzy, Frankel, and
Pauzner (1998). To prove the second point, notice that as σ → 0, starting
from a point on the frontier,

Et [xt+v] � (1− xt)
(
1− (1− xt)e

−λv
)
+ x2t e

−λv (70)

because the system bifurcates upwards with probability 1 − xt and down-
wards with probability xt in the limit. Plugging this in (33) and writing
that the expected return is zero yields a slope of the frontier equal to

− (l − l)(λ+ ρ)

⎡
⎣
(

χω
ω−λ−ρ − 1

)(
2

2λ+ρ − 1
λ+ρ

)
− χω

ω−λ−ρ

(
2

ω+λ − 1
ω

)
⎤
⎦ , (71)

which tends to

− (l − l)(χ− 1) (72)

as λ → 0. This means that the absolute value of the slope of the frontier
varies as χ w.r.t. γ, Φ for σ, λ sufficiently small.
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Proof of Lemma 6

We have

ITn+1 −R(1− wTn) = R

((
PTn

PTn−1

)1+Φ

− 1 + wTn

)
, (73)

� R

⎛
⎝wTn − ETn

⎡
⎣∑
k≥0

lTn+k

(1 + Φ)k

⎤
⎦
⎞
⎠ , (74)

= R

⎛
⎝wTn − lTn −

∫ +∞

0

∑
k≥1

sk−1e−s

(k − 1)!(1 + Φ)k
ETn [lTn+s] ds

⎞
⎠ ,

(75)

= R

(
wTn − lTn − 1

1 + Φ

∫ +∞

0
e−ωsETn [lTn+s] ds

)
.

(76)
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w = f (x)

x

w 

dx = λ 1− x( )dt

dx = −λxdt
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