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1. Introduction 

 

In empirical studies of the term structure of interest rates, the affine Gaussian term 

structure model (AGTM), one of the affine term structure models originally introduced 

by Duffie and Kan [1997], is the model most commonly applied, due to the ease of 

estimation it offers. In the AGTM, the short rate is represented as the affine function of 

state variables following Gaussian processes. Together with the above setting, the 

no-arbitrage condition leads to yields that are also represented as the affine function of 

these Gaussian state variables. Model parameters and state variables are readily 

estimated, since this model has a Gaussian affine feature. The maximum likelihood 

method with the Kalman filter is often applied to estimate the AGTM. This method is 

analytically precise and does not require approximations. This is one likely reason why 

many empirical studies of yield curves are based on the AGTM.  

The AGTM has certain drawbacks. The best-known is that it cannot ensure the 

non-negativity of theoretical yields. This suggests the AGTM would be hard to use to 

accurately analyze yield curves for countries with low interest rates. We can resort to an 

affine term structure model with a square root diffusion process to circumvent this 

problem. However, as pointed out by Dai and Singleton [2000], the square root affine 

model imposes non-negative correlations between state variables to generate 

well-defined bond prices. This constraint is restrictive and makes the model less flexible 

for application to actual data. 

Ahn, Dittmar, and Gallant [2002] and Leippold and Wu [2003] developed the 

quadratic Gaussian term structure model (QGTM) to address the drawbacks of the 

AGTM. In the QGTM, the short rate is represented by the quadratic form of the state 

variables that follow Gaussian processes. The authors of the preceding two papers 

derived an analytical pricing formula for bonds under the no-arbitrage condition based 

on this setting. Several empirical studies based on the QGTM have appeared recently 

(Kim and Singleton [2011] and Nyholm and Vidova-Koleva [2010]). If we attempt to 

estimate the QGTM, the Kalman filter is invalid, since theoretical yields are the 

nonlinear functions of state variables in the model. Instead, nonlinear filtering methods 

such as the extended Kalman filter and the unscented Kalman filter developed by Julier 

and Uhlmann [1997] are used to estimate the model parameters and state variables of 
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the model. 

The QGTM results in non-negative yields, an advantage over the AGTM. However, 

the QGTM is unlikely to adequately capture the fat-tailed feature of changes in yields. 

This feature is often observed in bond and interest rate markets. In fact, monthly 

changes in Japanese government bond (JGB) yields exhibit the fat-tailed feature shown 

as a normal Q-Q plot in Figure 1.  

Figure 1: Normal Q-Q plot of monthly changes in 10-year JGB yields 
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Note: In this plot, monthly changes in 10-year JGB yields  

are standardized to mean zero and unit variance for  
the period from January 1996 to December 2010.  
The straight line with a 45 degree slope in the above  
figure indicates the data follows a normal distribution. 

This study extends the QGTM to explicitly incorporate this fat-tailed feature into the 

term structure model. In our model, the short rate is represented by the quadratic form 

of the state variables whose future conditional distributions follow a mixture of normal 

distributions. We call this model the quadratic mixture of Gaussian term structure model 

(QMGTM). Under the no-arbitrage condition, we derive the bond pricing formula based 

on the QMGTM using a log-linear approximation. The model generates non-negative 

yields and exhibits the fat-tailed feature of changes in yields.  

Our model provides more accurate yield estimates from actual data. Moreover, 

because it lets us capture probability distributions for future interest rates under the 

physical probability measure, our model lets us analyze market views on interest rates. 

We applied this model to investigate market views on JGB yields, simulating future 

interest rate probability distributions under the physical measure and decomposing 
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interest rates into expected future short rates and term premia. 

The remainder of this paper is organized as follows. Section 2 describes our model, 

the QMGTM, as well as the AGTM and the QGTM. Section 3 describes the estimation 

methodology. Section 4 presents a performance comparison of the AGTM, QGTM, and 

QMGTM and the results of an empirical study for JGB yields. Section 5 presents our 

conclusions. 

 

2. Term Structure Models 

 

This section describes the structures of the AGTM, QGTM, and our model, the 

QMGTM. It also describes detailed settings for parameters in the discrete time 

framework for each model. 

 

2.1 Affine Gaussian Term Structure Model 

In the AGTM, the short rate is represented as the affine function of state variables 

following Gaussian processes. To extract market views from observed yields, it is 

convenient to represent state variable processes under both the risk neutral measure Q  

and the physical measure P  as follows: 

 ),0(...~, 111 INdiiXaX tttt
QQQQ
   , 

),0(...~, 111 INdiiXaX tttt
PPPP
   , 

(1) 

(2) 

where tX  denotes an 1N  vector of state variables at time t and ),0( IN  is the 

normal distribution with zero mean and covariance matrix I, the NN   unit matrix. We 

denote shock at time t under Q  by Q
t  and shock at time t under P  by P

t . The 

shock Q
t  and the shock P

t  have the following relationship mediated by market price 

of risk t : 

 
ttt  PQ  . (3) 

Throughout this paper, as in Duffee [2002], we assume that t  is a linear function 

of a vector of state variables tX : 

 tt X10   . (4) 
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This is the “essentially affine” assumption.  

From equations (1)–(4), we find that  

 
10,  QPQP aa .  

In the AGTM, the short rate tr  is represented as the affine function of tX  as 

shown below: 

 
tt Xr '10   , (5) 

where 0  is a scalar and 1  an 1N vector. In addition, '1  represents the transpose 

of 1 . Hereafter, we assume that 'A  denotes the transpose of a vector or a matrix A.  

Under the no-arbitrage condition, in addition to the above setting, the following 

relation must hold between a zero coupon bond price n
tP  with n period maturity at time 

t and a zero coupon bond price 1
1


n

tP  with n − 1 period maturity at time t + 1: 

 ][ 1
1




 n

t
r

t
n

t PeEP tQ , (6) 

where ][Q
tE  denotes the conditional expectation operator under measure Q  

conditioned on information obtained at time t. 

The boundary condition of equation (6) is 10 tP . Taking into consideration this 

boundary condition, we can derive the following analytical bond pricing formula (7) 

from equation (1), (5), and (6). 

 

.,''

,0,''
2
1

),'exp(

011

011110

0
Q

Q











bbb

abbabaa

XbaP

nn

nnnnn

tnn
n

t



  (7) 

Therefore, the theoretical yield n
ty  with n period maturity is written as the affine 

function of tX  in the AGTM: 

 
tnn

n
t Xb

n
a

n
y '11

 . 
(8) 

As implied by the form of the yields in equation (8), yields under the AGTM are likely 

to be negative. 

When we attempt an estimate based on actual observed yields, we interpret the 
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observed yield n
ty~  as the sum of the theoretical yield n

ty  and Gaussian noise n
t  with 

zero mean. That is,  

 n

t

n

t

n

t yy ~ . (9) 

We will proceed to specify detailed parameter settings for the AGTM required for 

estimates of model parameters.  

The number of factors for all models analyzed in this paper is assumed to be three. 

Using the invariant transformation discussed by Dai and Singleton [2000], we can set 

several parameters for the AGTM without loss of generality as follows: 
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Furthermore, the parameters for the market price of risk, 0  and 1  in equation 

(4) are assumed to be a three-dimensional full vector or a full matrix: 
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(11) 

 

2.2 Quadratic Gaussian Term Structure Model 

As pointed out above, yields obtained from the AGTM can take negative values. To 

address this drawback, Ahn, Dittmar, and Gallant [2002] and Leippold and Wu [2003] 

developed the QGTM. 

We assume that the stochastic process of the vector of state variables tX  is of the 

same form as equations (1) and (2). We also assume that the market price of risk of tX  

is the same as equation (4). This is the essentially affine market price of risk. In this 

model, the short rate tr  is represented by the following quadratic form of tX : 

 ttt AXXr ' . (12) 



6 

 

To ensure the non-negativity of the short rate, the NN   matrix A  in equation (12) is 

assumed to be positive semi-definite. 

Under the no-arbitrage condition, we can derive the bond pricing formula from 

equations (1), (6), and (12), as follows: 

.2)'(where

,0,'2'5.0

)2('2|'|log5.0||log5.0'

,,)2('2'2'

,,)2('

),''exp(
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Q

QQQ

QQQQ

Q

0
 (13) 

Theoretical yield n
ty  with n period maturity under the QGTM is written as the 

quadratic form of tX , using nA , nb , and nc , defined in equation (13) as follows: 

 
ntntnt

n
t c

n
Xb

n
XAX

n
y

1'1'1
 . (14) 

As implied by the form of the yields in equation (14), the yields must be non-negative. 

We will specify detailed parameter settings for the QGTM required by the estimate. 

Using an invariant transformation for the QGTM discussed by Leippold and Wu [2003], 

we can set several parameters without loss of generality as follows: 
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Based on the singular value decomposition of the positive semi-definite matrix, we 

represent A  in equation (12) as the product of certain matrices: 
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where TS  denotes the transpose of matrix S . 

For the parameters of market price of risk in the QGTM, we assume that the setting 
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is the same as equation (11). 

 

2.3 Our Model: Quadratic Mixture of Gaussian Term Structure Model 

In this subsection, we propose a new term structure model, an extension of the QGTM. 

While the QGTM ensures non-negative yields, the model may not capture extremely the 

large changes in yields infrequently observed in bond markets. Thus, we model the 

stochastic process of a vector of state variables not as a Gaussian process, but as a 

process whose marginal densities follow a mixture of normal distributions. More 

specifically, the process of a vector of state variables tX  is defined using a new 

stochastic process ts  under the physical measure P , as follows: 

 

.0)1(
, , . are,1)|2(,)|1(
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INdiiXaX

ttttttt

ttstst tt

P

PPPP

PP  (17) 

We denote the information set obtained at time t by tI . Equation (17) implies that 

one-period conditional distributions of future state variables at time t under P  follow a 

mixture of normal distributions. This model lets us incorporate the fat-tailed feature of 

yields into a term structure model. Lemke [2006] assumes the same setting for tX ’s 

dynamics in equation (17). However, the short rate there is assumed to be an affine 

function; in contrast, we set tr  as the quadratic function of tX .  

We assume that the market price of risk of our model also follows the essentially 

affine form of equation (4), as with the AGTM and the QGTM. Equations (3), (4), and 

(17) give the dynamics of a vector of state variables under the risk neutral measure Q , 

as follows: 
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 (18) 

In addition, we assume that the conditional probability for 1ts  under Q  at time t 

follows equation (19): 
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We also assume that the short rate has the same form as equation (12) in the QGTM. 

This assumption allows the short rate to remain non-negative. 

Under the certain assumptions indicated above and the no-arbitrage condition, we 

seek to derive the zero coupon bond pricing formula. However, we must rely on an 

approximation due to the difficulty of deriving the closed-form solution within this 

framework. Thus, we use the log-linear approximation used by Bansal and Zhou [2002], 

who studied the affine term structure model in regime switching. 

First, we assume that a zero coupon bond price can be described 

)''exp( ntntnt
n

t cXbXAXP  . Under this assumption and the no-arbitrage condition 

(equation (6)), we obtain the following equation, 

)].''[exp()'exp(

)]''exp()[exp()''exp(

111111

111111









ntntntttnt

ntntntttntntnt

cXbXAXEXAX

cXbXAXrEcXbXAX

Q

Q

 (20) 

Next, when we try to derive the recursive relationship of coefficients nnn cbA and,,  

from equation (20), we substitute equation (18) into the right hand side of equation (20). 

Here, we use a log-linear approximation, xx 1)exp( , to solve equation (20). 

Appendix 1 gives the recursive solutions of coefficients nnn cbA and,,  based on this 

approximation. As the maturity of yield is longer, this degrades the precision of the 

approximation.1 Nevertheless, since yields estimated from our model demonstrate a 

good fit with observation yields with maturities of six months and two, five, 10, and 20 

years, as indicated in Section 4, we see that it suffices for our model to extract 

information included in the observed yields. For this reason, our use of the 

approximation formula is valid for analyses of short rate and 10-year yields over the 

next six months and term premia of two and 10-year yields in Section 4. 

Hereafter, we refer to our model as the quadratic mixture of Gaussian term structure 

model (QMGTM). 

We will now proceed to specify the details of the QMGTM to estimate model 

parameters and state variables tX .  

First, the parameters in equation (17) are set using the following invariant 
                                                   
1 We compared yields based on our model approximation formula to those given by Monte Carlo 
simulations using state variables and parameters estimated from JGB zero coupon yields indicated in 
Appendix 2. Error ratios averaged during the sample period were 0.40% for six-month yields, 0.50% 
for two-year yields, 0.74% for five-year yields, 2.31% for 10-year yields, and 5.52% for 20-year 
yields. 



9 

 

transformation proposed by Leippold and Wu [2002]: 
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The invariant transformation enables 1and,, PPa  in equation (18) to turn into the 

form of equation (21). Note that 2  is generally represented as a triangular matrix. 

Next, we assume that the “mixture” probability p  of the state variable transition in 

equation (17) is a fixed value close to 1, not a free parameter. This is because dealing 

with p  as a free parameter destabilizes model parameter estimates.2 Specifically, we 

set 95.0p  as a fixed value close to 1. This allows us to capture the fat-tailed feature 

of changes in yields with a low probability of occurrence.3 Based on this, in Section 4, 

we compare QMGTM performance to AGTM and QGTM performance.  

Finally, for the parameters of market price of risk in the QMGTM, we assume that 

the setting is the same as for equation (11). 

Section 4 applies these models to actual data and compares the performance of our 

model to the two other models. We will also consider estimates of parameters and state 

variables of the models from the actual data. 

 

3. Estimation Methodology 

 

As is well-known, when the term structure model is described as a state space model 

with an affine Gaussian structure, the maximum likelihood estimation with a Kalman 

filter is useful for simultaneous estimation of latent state variables and model 

parameters. However, once the state space model is non-Gaussian or nonlinear, we 

                                                   
2 In the QMGTM setting, the case in which 10,21,01  p  and the other case in 
which 1or0  pp  both represent the QGTM. These two cases are indistinguishable in the 
estimation. If the QGTM captures actual data accurately, we confront the problem of distinguishing 
between model parameters in the QMGTM. 
3 We also estimated the model parameters of the QMGTM when 9.0p , aside from the case in 
which 95.0p . The results with 9.0p  and 95.0p  were near-identical. 
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cannot use the maximum likelihood estimation with a Kalman filter. We must rely 

instead on a nonlinear filtering method. A nonlinear filtering method is required for 

estimates of the QGTM and QMGTM, since these two models are not affine. In this 

study, we use the unscented Kalman filter developed by Julier and Uhlmann [1997] for 

estimations of the QGTM and QMGTM.  

The three models described in the previous section are all regarded as state space 

models. State transition equations for the AGTM and the QGTM are written in the 

following general form: 

 ),0(...~~,~)( 111 INdiiXfX tttt
PP
   , (22) 

where )(Xf  denotes some affine function of X. 

The state transition equation for the QMGTM is nearly identical to equation (22). 

However, it depends on the random state variable 1ts , which takes the value of 1 with 

probability p or 2 with probability p1 . The state dynamics of the QMGTM is 

represented as follows: 

 

.~
,...,1)|2(,)|1(

),,0(...~~,~)(

11

111 11

P

PP

PP

tt

ttttt

ttstst

s

diispIspIs

INdiiXfX
tt













 

 (23) 

The observation equations for the AGTM, QGTM, and QMGTM are written in the 

following common form: 

 ),0(...~,)(~ 2INdiiXGY tttt  , (24) 

where tY
~  is a vector with elements of some yields observed in bond markets or 

computed from bond prices; )(XG  is a vector with elements of theoretical yields 

corresponding to observational yields; and t  is an observational error vector that 

follows a multivariate normal distribution. Here, we note that the form of the above 

function )(XG  varies depending on the choice of models. For the AGTM, )(XG  is 

the affine function of X. For the QGTM and the QMGTM, )(XG  is the nonlinear 

function of X. 

We will discuss the unscented Kalman filter algorithm, taking the QMGTM as an 

example.  

The first step of the algorithm is an initialization: 
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 ])ˆ)(ˆ[(:],[:ˆ
0000000

TXXXXEPXEX  PP . (25) 

In this initialization step, we compute the unconditional expectation ][ˆ
00 XEX P  and 

variance 0P  of state variable tX . 

Next, we calculate sigma points. We denote the state dimension by N . For 

Tk ,,2,1   where T  is the number of sample periods, we calculate 12 N  points 

called sigma points:  

 ]ˆ,ˆ,ˆ[ 111111   kkkkkk PXPXX  , (26) 

where 1k  is an )12(  NN  matrix and 1kP  represents the square root matrix of 

1kP . For example, the square root matrix is computed using Cholesky decomposition. 

We define 11
ˆ

  kk PX   of equation (26) as follows: 

 111111 )ˆ,,ˆ,ˆ(:ˆ
  kkkkkk PXXXPX   , 

where )(2   N is called the scaling parameter. We define 11
ˆ

  kk PX  , 

similarly. For the estimation presented in this paper, we assume that 2and1   .  

The next step is the time update of state variables. In the time update, we transform 

sigma points in equation (26) through equation (23). 
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Using elements of the matrices in equation (27), we calculate the “mean” and 

“covariance” of the state variables as below, 
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where weights are assigned as follows: 



12 

 

 

,2,,1
)(2

1

),1(,
)(

)(

2
)()(

2)(
0

)(
02

2
)(

0

Ni
N

WW

WW
N

NN
W

c
i

m
i

mcm



















 (29) 

where   above is a nonnegative weighting parameter introduced to adjust the 

weighting of the first sigma point for the covariance. This parameter can be used to 

incorporate knowledge of higher order distribution moments. In this paper, we set 

0 . We define sigma points of the predicted state variables as follows: 

 ]ˆ,ˆ,ˆ[1|


  kkkkkkk PXPXX  . (30) 

Next, we transform those sigma points 1| kk  to predicted sigma points of the 

yields. 
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Finally, we obtain the following measurement update equations: 
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 1
kkkk YYYXk PPK , (34) 

 )ˆ(ˆ   kkkkk YYKXX , (35) 

 T
kYYkkk KPKPP

kk
  . (36) 

The unscented Kalman filter approximates the distribution of state variables 

relatively accurately, since it uses more information through the sigma points, as 

indicated above. Some previous studies have validated the performance of the unscented 

Kalman filter in empirical studies (e.g., Christoffersen et al. [2008]). 

Through the unscented Kalman filter, we can compute the conditional expectation 

and covariance matrix of the yield vector at time t, )(: tt XGY   conditioned on an 

observation at 1t . Using the conditional expectation and covariance matrix of tY , we 
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then apply the quasi-maximum likelihood method to parameter estimations. The log 

likelihood function )(L  is computed as follows: 

 ))~()()~(||(log
2
1)( 11

1
11
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, (37) 

where T  denotes the number of observations and vector 1
~

kY  consists of observed 

yields at time 1k . We choose the model parameters to maximize the above log 

likelihood of the data series. 

 

4. Estimation Results 

 

In this section, we apply the AGTM, QGTM, and the QMGTM to Japanese government 

bond (JGB) yield data and discuss the results of the estimation. We first compare how 

different models fit the data, then simulate the probability distributions of future interest 

rates under the physical measure using estimated latent variables and model parameters. 

In particular, we examine the expectation as well as percentile points of the future 

interest rate for the past JGB interest rate, which in turn are calculated from the 

simulated distributions. Finally, we investigate the development of the JGB yields by 

decomposing them into expected future short rates and term premia for the sample 

period. 

 

4.1 Data and Model Fit 

We use monthly data from January 1996 through December 2010 for JGB zero coupon 

yields. This data is computed from the Broker’s Broker JGB prices by the method 

presented in McCulloch [1975]. The maturities included are six months and two, five, 

10, and 20 years. 

Parameter and state variable estimations for the AGTM, QGTM, and the QMGTM 

are implemented based on the unscented Kalman filter with the quasi-maximum 

likelihood method specified in the previous section. Although the maximum likelihood 

method estimate with the Kalman filter with for the AGTM can be theoretically 

possible, we also apply the unscented Kalman filter to the AGTM to compare the three 

models. Tables A, B, and C in Appendix 2 display the estimated parameters for each 

model. Figure A in Appendix 2 gives the time series of the estimated state variables for 
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each model. 

We compare the fit to the data for the three models. Table 1 presents comparative 

statistics of fit for the three models. We compare models not just through likelihood, but 

two information criteria. These information criteria are determined based on the way in 

which the log-likelihood is penalized by the number of model parameters. Table 1 

indicates that the QMGTM by any criterion gives the best performance of the three 

models:  

Table 1: Comparative statistics for fit 

 AGTM QGTM QMGTM 

)log( L  8219.85 8246.37 8296.35 

AIC  -16393.7 -16436.7 -16518.7 

BIC -16320.3 -16347.3 -16400.6 

Note: L is likelihood. AIC is Akaike information criterion. BIC is Bayesian information criterion. 

 

Next, we see the results of model fitting for each maturity. Table 2 presents statistics 

on prediction errors between observed yields and predicted yields for each maturity. 

Comparing model fits for the three models, we find that the mean squared error (MSE) 

of the QMGTM for each maturity is the lowest of the three models. This is attributable 

to a low standard deviation of the prediction error of the QMGTM for each maturity 

compared to those of the two other models. The maximum value and the absolute value 

of the minimum value of the QMGTM prediction errors are also significantly lower 

than for the two other models.  

 

Table 2: Prediction error statistics 
Six-month  Two-year 

 AGTM QGTM QMGTM   AGTM QGTM QMGTM 

Mean 0.0757 0.00104 -0.00658  Mean -0.447 -1.110 -0.809 

Stdev 7.94 7.88 7.83  Stdev 11.7 11.3 11.2 

Max 25.9 27.4 23.2  Max 48.9 43.8 39.5 

Min -33.1 -44.4 -37.9  Min -41.1 -51.3 -40.4 

MSE 0.00628 0.00624 0.00614  MSE 0.0137 0.0130 0.0124 
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Five-year  10-year 

 AGTM QGTM QMGTM   AGTM QGTM QMGTM 

Mean 0.628 -1.645 -0.813  Mean 0.146 -0.756 -0.958 

Stdev 15.5 15.3 15.2  Stdev 15.6 15.9 15.2 

Max 82.0 72.7 65.0  Max 88.0 79.1 75.6 

Min -35.5 -47.9 -35.3  Min -56.9 -64.5 -58.1 

MSE 0.0239 0.0238 0.0230  MSE 0.0241 0.0254 0.0230 

 

20–year  

 AGTM QGTM QMGTM  

Mean 0.315 -0.675 1.13  

Stdev 16.6 17.1 15.5  

Max 89.6 76.3 78.8  

Min -64.2 -75.1 -67.7  

MSE 0.0274 0.0291 0.0240  

Note: Stdev is the standard deviation of the prediction errors. MSE is the mean squared error. Units 

excluding MSE are basis points. The unit for MSE is square of percent. 

 

 

4.2 Probability Distributions for Future Interest Rates under the 

Physical Measure 

This subsection discusses simulations of probability distributions for future interest 

rates under the physical measure based on estimated state variables and model 

parameters. The QGTM and QMGTM are more likely to capture future interest rates 

accurately than the AGTM because they ensure the non-negativity of yields. Moreover, 

the AGTM is clearly undesirable for this analysis since distributions for the future 

interest rate always follow the normal distribution in the AGTM, and its standard 

deviations also remain constant for the whole period represented by the data sample. 

Hence, we exclude the AGTM from our analysis and address only the QGTM and the 

QMGTM to simulate probability distributions of future interest rates. 

Simulations of probability distributions for interest rates over the next six months 

under the physical measure are implemented based on estimates of model parameters 

and filtered state variables ][ tt XEP . The simulation process is described as follows. 
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First, we simulate the future shocks of tX , PPP
621 ,,,  ttt    at time t. Here, the 

number of simulations is set to 30,000. The next step for the QGTM is to compute 6tX  

from the simulated shocks PPP
621 ,,,  ttt    based on equation (2). In contrast, for the 

QMGTM, the next step is to compute 6tX  from the simulated shocks 
PPP

621 ,,,  ttt    and the simulated variables 621 ,,,  ttt sss   using equation (17). 

Once we obtain the simulated latent variable 6tX , we can compute simulated yields 

over the next six months based on the zero coupon bond pricing formula (equation (13) 

for the QGTM and equation (20) for the QMGTM).  

  Figure 2: Distributions for 10-year yields over the subsequent six months  

as of December 2010 
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Figure 2 displays probability distributions under P  for 10-year yields over the next 

six months under the QGTM and the QMGTM evaluated on December 2010 as 

histograms. Computing the kurtosis for each distribution, we find that the QGTM’s 

distribution kurtosis is equal to 3.21, while that of QMGTM is equal to 5.09. This 

implies that the probability distribution under the QMGTM has fatter tails than that of 

the QGTM. This is consistent with our prediction that the QMGTM captures a fat-tailed 

feature of changes in yields. 

Figure 3 displays the time series not just of expectations, but 1st and 99th percentile 

points of probability distributions under the physical measure P  for one-month yields 

over the next six months, based on two models. We focus on the rise in the expected 

one-month yields in summer 2003 under the QGTM. During this period, prospects for 

short-term interest rates in the near future did not almost change. This increase in 
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expectation in the QGTM appears strange in light of contemporary market conditions. 

In contrast, the expectation obtained based on the QMGTM at that time is near-zero. 

This appears better than the QGTM result. Looking at the QMGTM 99th percentile 

points from the latter half of 2001 to the first half of 2005, which accounts for most of 

the period during the time of quantitative easing, we find that it remained nearly steady. 

This means the potential risks assumed by market participants for the short term interest 

rate over the next six months did not change during this period. 

Figure 3: Expectations and percentile points of distributions  
for one-month yields over the subsequent six months 
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4.3 Expected Short Rate and Term Premium 

This subsection discusses the modified version of the expectations hypothesis, which 

incorporates the time-varying term premium. Under this hypothesis, the medium to 

long-term interest rates are decomposed into the average of expected future short rates 

under the physical measure P  and the term premium. We decompose two- and 10-year 

yields into the expected short rates and the term premia under this hypothesis for the 

QMGTM and the QGTM and investigate the development of JGB yields and the 

decomposed elements. 

Figure 4: Two-year yield decomposition  
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Figure 4 shows the decompositions of two-year yields. One feature of Figure 4 is 
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that the development of the expected future short rates and the term premia differs 

significantly between the QGTM and the QMGTM from the latter half of 2005 up to the 

latter half of 2007. Both the expected future short rate and the term premium of the 

QMGTM rose from July 2005 to May 2006. In contrast, the expected future short rate 

of the QGTM rose during this period, while the term premium of the QGTM remained 

near-zero.  

From June 2006 until July 2007, the expected future short rate of the QMGTM rose 

while that of the QGTM moved within a narrow range. In particular, the expected future 

short rate for the QGTM in July 2007 was nearly at the same level as the estimate in 

March 2006, when the quantitative easing policy ended. This appears strange, since the 

Bank of Japan raised the policy rate twice during this period; many market participants 

believed the Bank of Japan would raise the policy rate at a pace paralleling economic 

recovery over the next one or two years. Decomposition using the QMGTM would 

therefore appear more valid than the QGTM. Regarding the term premium, we can 

interpret the development of the term premium from July 2005 to July 2007 as follows: 

First, the increase in the QMGTM term premium from July 2005 to May 2006 could be 

attributable to the increase in uncertainties concerning the development of the short term 

interest rate after the end of quantitative easing. The decrease in the term premium from 

June 2006 to July 2007 may imply that uncertainties about the development of the short 

term interest rate in fact declined after the end of the quantitative easing and zero 

interest rate policies. 

Figure 5 shows decompositions of 10-year yields under the modified version of 

expectations hypothesis for the QGTM and the QMGTM. In summer 2003, medium- to 

long-term interest rates rose sharply as a result of one-side selling by the banks which 

breached the internal risk limits in terms of value at risk (VaR) due to the increase in the 

JGB volatility. This episode is called “the VaR shock”. Figure 5 shows that 10-year 

yields changes before and after the VaR shock was caused by the development of term 

premium under both two models. In those days, economic conditions showed little 

change; therefore, the above mentioned development of term premium appears 

consistent with the reality. 

The developments in the first half of 2009 (Figure 5) point to a key difference 

between the QGTM and the QMGTM. In the QGTM, the expected future short rate and 
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the term premium stayed nearly constant. In contrast, in the QMGTM, the expected 

future short rate rose, while the term premium declined. According to Bank of Japan 

[2009], the sharp deterioration in economic conditions applied downward pressure, 

while the supply and demand conditions of JGBs reflecting the growing fiscal deficit 

applied an upward pressure on JGB long term interest rates. The decrease in the 

expected future short rate in the QMGTM can be explained by the sharp deterioration in 

economic conditions. The increase in the term premium in the QMGTM may reflect the 

imbalance between supply and demand conditions of JGBs. 

 
Figure 5: 10-year yield decomposition  
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5. Conclusion 

 

Our paper proposes a new term structure model that allows interest rates to remain 

non-negative and captures the fat-tailed feature of changes in interest rates. In our 

model, the short rate is formulated as the quadratic form of the state variables whose 

future probability distributions follow a mixture of normal distributions under both risk 

neutral and physical measures in a discrete time setting. In this framework, we derived 

the approximated pricing formula for zero coupon bond prices by a log-linear 

approximation. We then estimated state variables and model parameters using the 

unscented Kalman filter joint with the maximum likelihood method. 

Our estimation results showed the QMGTM has the greatest likelihood. It also 

provided the best AIC and BIC of all three models. The QMGTM also accounted for the 

smallest mean squared error for each observed maturity. The estimates of the latent state 

variables and model parameters allow us to compute decompositions of JGB interest 

rates into expected future short rates and term premia and to simulate probability 

distributions of future interest rates under the physical measure.  

Our model appears to explain actual trends better than other models. For example, 

the decomposition of a two-year yield based on our model showed a continually 

increasing expected short rate from June 2006 to July 2007. The expected short rate 

under the QGTM did not change during this time. During this period, the Bank of Japan 

raised the policy rate twice. Our model’s expected short rate throughout this period 

appears at least to reflect actual market views. Several other examples discussed in this 

paper indicate that our model appears to capture actual market conditions more 

accurately than the other models. 

With regard to the empirical aspects of past JGB interest rates, estimation results 

suggest the following observations. First, both the 99th percentile point and the 

expectation of the short rate over a six-month period remained steady during most of the 

quantitative easing policy period from 2001 to 2006. This implies the policy duration 

was highly effective in stabilizing market expectations regarding the future short rate. 

Second, much of the development of the JGB long term interest rate in summer 2003 is 

explained by changes in its term premium, not by changes in its expected short rate. 

Third, the term premium with a two year yield rose from June 2005 to May 2006 and 
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declined from June 2006 through summer 2007. The rise may reflect uncertainties 

regarding future policy rate developments after the end of the period of quantitative 

easing. The decline in the term premium from June 2006 may be attributable to receding 

uncertainties regarding the future policy rate against the backdrop of the actual end of 

quantitative easing and zero interest rate policies. Finally, in the first half of 2009, the 

expected short rate of a 10-year yield declined, while its term premium increased. This 

may be because the sharp deterioration in economic conditions applied downward 

pressure on the expected short rate while the deteriorating supply and demand 

conditions of JGB applied an upward pressure on the term premium. 

Although our study focused on the JGB yield, our model can be applied to yields in 

other countries. In particular, our model should be highly effective for examining yields 

in countries with low interest rates. The United States and European countries have 

maintained an expansionary monetary policy since the emergence of the financial crisis 

in 2007, and interest rates in these countries remained low. One possible direction for 

future research is to explore the effects of unconventional monetary policies in recent 

years, based on our model, by simulating probability distributions of the future interest 

rate under the physical measure or by decomposing the interest rate into the expected 

short rate and term premium. 
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Appendix 1 

 

We derive the approximated pricing formula for the zero coupon bonds based on the 

QMGTM. 

The model is represented from equations (12), (18), and (19), as follows: 

 ttt AXXr '  (A-1) 
 ),,0(...~, 111 111

INdiiXaX ttstsst ttt
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Under the no-arbitrage condition, the following formula must hold: 
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From equation (A-1)-(A-4), we want to derive the closed pricing formula for n

tP ; 

however, it is not possible to do that. Thus, we derive the approximated pricing formula 

for n

tP . 

The price for n

tP  is assumed to have the form )''exp( ntntnt

n

t cXbXAXP  . 

Substituting this into equation (A-4), we obtain the following equation: 
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 The following formula is helpful in resolving the right-hand side of equation (A-5): 



26 

 

 
5.015.0

11

111 |2)'(||'|

2)'('
2
1exp

)]'''[exp(
K

dKd

dKE tttt



















QQQQ  , (A-6) 

where ),0(~1 INt

Q

 . 

Using equation (A-6), equation (A-5) is computed as follows: 
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Introducing the log-linear approximation used in Bansal and Zhou [2000] in 

equation (A-7), we obtain: 
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(A-8) 

Hence, we obtain the following recursive equations for coefficients nnn cbA ,, : 
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Appendix 2 

 

Here we begin by showing estimation results for model parameters. We then show the 

estimated state variables for each model. 

Tables A, B, and C, respectively, give the estimated parameters for the AGTM, 

QGTM, and the QMGTM. 

Table A: Estimated Parameters of the AGTM 

P : 



























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)00154.0(934.0)10229.2(00123.0)10598.3(0432.0

0)10649.5(945.0)10246.3(0832.0

00)10981.2(953.0

85

57

5

 

0 : )10853.4(000121.0 5
  

'1 : 




 

 )10107.9(000101.0)10444.5(000325.0)10146.9(000244.0 676  

0 : 
















)0930.0(184.1

)122.0(607.1

)0718.0(403.0

 

1 : 






























)0959.0(323.0)10450.2(206.0)10370.3(981.0

)0157.0(510.0)10607.1(780.0)00718.0(233.0

)000798.0(250.0)00203.0(0516.0)10405.1(545.0

65

5

5

 

Note: Standard errors are given in parentheses. 
 
 

Table B: Estimated Parameters of the QGTM 

Pa : 























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

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
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0)1053.7(972.0)1022.6(0820.0
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
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
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
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



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
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
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00)1048.5(1093.3

105

77

87

 



29 

 

0 : 


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Note: Standard errors are given in parentheses. 
 
 

Table C: Estimated Parameters of the QMGTM 
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






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00)1033.7(929.0

5
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S  



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

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

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




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
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2  


















)00640.0(276.0)00861.0(243.0)000205.0(067.0
0)00755.0(673.0)00905.0(083.0
00)0110.0(105.0

 

Note: Standard errors are given in parentheses. 

 
 

  Figure A gives the estimated state variables for each model. 
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Figure A: Estimated State Variables ][ tt XE P  
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