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of the ex post spell of the adverse shocks. Consequently, the time-inconsistency 
problem does not increase even if the ex post spell of the adverse shocks lengthens, 
and policy rates are expressed in an extremely simple, explicit form. Simulation 
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1 Introduction

In this paper, I propose a time-invariant duration policy under the zero lower bound (ZLB)

on nominal interest rates as a practical policy using a theoretical framework. A number of

theoretical papers have studied optimal commitment policy to enhance the e¤ectiveness of

monetary policy under the ZLB.1 Under optimal commitment policy, a central bank commits

itself to maintaining low interest rates for some duration even after adverse shocks disappear.

Such policy has a policy duration e¤ect on in�ation expectations, mitigating de�ation while

the adverse shocks hit the economy.2 This paper follows the lines of previous research, but I

propose a policy that is easier to implement and communicate while retaining e¤ectiveness in

in�ation stabilization.

To this end, I begin by pointing out that the optimal commitment policy derived from

a micro-founded model is highly complex and time-inconsistent. This is because the optimal

duration to maintain accommodative policy is time-variant, depending on the ex post spell of an

adverse shock. To illustrate this, consider the price-level targeting policy that is known to be a

close approximation to the optimal commitment policy.3 Under the price-level targeting policy,

as the ex post spell of the adverse shock lengthens, the price deviation from the target level

expands. It yields a need for higher in�ation after the adverse shock disappears. A central bank

should thus commit itself to a more accommodative policy by maintaining low interest rates for

a longer duration. In a stochastic economy, such a commitment policy with variant duration

worsens the problems of time-inconsistency and complexity. The central bank may announce,

�If the economy normalizes half a year from now, we will maintain the accommodative policy

for the duration of one year. If the economy normalizes a year from now, we will maintain the

accommodative policy for the duration of two years, and so on.�Clearly, such an announcement

entails complexity, and the central bank has an incentive to renegotiate its commitment after

half a year if the adverse shock continues to a¤ect the economy, because it entails high in�ation

after the adverse shock disappears.

To mitigate the aforementioned problems, I propose a time-invariant duration policy. Under

this policy, the duration of maintaining low interest rates is time-invariant, independent of the

ex post spell of the adverse shock. Policy is accordingly simpli�ed; even in a stochastic economy,

the time-invariant duration policy is expressed in an extremely simple, explicit form. A central

1See Reifschneider and Williams (2000), Eggertsson and Woodford (2003a, b), Jung, Teranishi, and Watanabe
(2005), Kato and Nishiyama (2005), Sugo and Teranishi (2005), Adam and Billi (2006, 2007), Nakov (2008),
Fujiwara, Sudo, and Teranishi (2010), and Levin, Lopez-Salido, Nelson, and Yun (2009). Other policy measures
are also proposed such as quantitative easing, credit easing, and capital injection policy, but the interest rate
continues to be the main policy instrument for central banks.

2See Fujiki and Shiratsuka (2002).
3See Eggertsson and Woodford (2003a, b).

1



bank�s announcement is expressed as follows: �After the economy normalizes, we will maintain

the accommodative policy for the duration of one year.�Practically, the time-invariant duration

policy resembles actual policy conducted by central banks in Japan, the United States, and

Canada.4

Mathematically, the time-invariant duration policy is described as the optimal policy under

which the Lagrange multiplier for the ZLB constraint is restricted to be non-zero and constant.

Because the Lagrange multiplier is time-invariant, the duration of maintaining low interest

rates after the adverse shock disappears is also time-invariant, and an incentive to deviate

from the policy does not increase with the ex post spell of the adverse shock. The Lagrange

multiplier under the commitment policy, on the other hand, begins with zero and increases

over time. This suggests that the duration of maintaining low interest rates after the adverse

shock disappears is time-variant, and an incentive to deviate from the policy increases with

the ex post spell of the adverse shock. Under discretionary policy, the predetermined Lagrange

multiplier is zero. In other words, the discretionary policy is not constrained by the history.

Using a simple stochastic New Keynesian model, I simulate the model and compare the

degree of in�ation stability among various policies. Simulation results reveal that ex ante, the

time-invariant duration policy achieves virtually the same degree of in�ation stability as the

commitment policy. On the contrary, if the ex post spell of the adverse shock is su¢ ciently long,

the time-invariant policy achieves greater in�ation stability than the commitment policy. This

is because unlike the commitment policy, even if the ex post spell of the adverse shock lengthens,

the time-invariant duration policy does not require increasingly high in�ation after the adverse

shock disappears. Moreover, simulation results suggest that the time-invariant duration policy

performs virtually as e¤ectively as the optimal commitment policy in stabilizing in�ation, and

far better than other policies. Three other policies, that is, discretionary policy, a non-inertial

interest rate rule, and an inertial interest rate rule, are nearly the same, in terms of in�ation

stability.

As for related literature, the idea of the time-invariant duration policy is analogous to that of

the fully timeless commitment policy as analyzed by Jensen and McCallum (2002), McCallum

(2005), and Damjonovic, Damjonovic, and Nolan (2008). Under fully timeless commitment

policy, a central bank minimizes the unconditional expectation of welfare loss across stochastic

steady states, rendering endogenous variables such as the Lagrange multiplier constant. Unlike

this policy, however, the time-invariant duration policy guarantees the time-consistency only

while the adverse shock hits the economy and thus retains the time-inconsistency when the

adverse shock disappears.

4For details of the policy, see Section 3.6.
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The concept of the time-invariant duration policy is �rst discussed in Fujiwara, Sudo, and

Teranishi (2010). The policy in their paper is described as a special form of the time-invariant

duration policy, committing to a low policy rate only during the period when adverse shocks

disappear. In this paper, I touch upon the properties of their policy, what I call the one-period

duration policy, by comparing them with those of the time-invariant duration policy.

This paper is structured as follows. In Section 2, I present a model. In Section 3, I consider

various policies, and derive the discretionary and time-invariant duration policy in a simple,

explicit form, in addition to the commitment policy and simple interest rate rules. In Section 4,

I simulate my model to compare a welfare loss among various policies, and check the sensitivity

of the results. Section 5 concludes.

2 Model Setup

2.1 Basic Equations

The Phillips curve and IS curve are described as

�t = 
xt + �Et�t+1; (2.1)

it = Et f� (xt+1 � xt) + �t+1 + rnt g ; (2.2)

where �t, xt, and it are an in�ation rate, output gap, and a nominal interest rate at period t;

respectively: rnt is a real interest rate shock. � is a discount factor, 
 represents the elasticity

of in�ation to output and � represents the inverse of the elasticity of output to real interest

rates. Eliminating xt; I can simplify these two equations as

it = Et

�
� 1


=�
(��t+2 � (1 + � + 
=�)�t+1 + �t)

�
+ rnt : (2.3)

2.2 Markov Process

The economy is stochastic with respect to the real interest rate shock rnt . The shock obeys an

absorbing Markov process as in Eggertsson and Woodford (2003a, b).5 De�ning the current

state at t as st = fz; ng; the real interest rate shock rnt takes the value of r< 0 at state z and
5See Adam and Billi (2006, 2007) and Nakov (2008) for more general shock processes. Basic properties of

commitment policy under ZLB, such as history dependence, hold true in their general model. Their model,
however, enables us to consider preemptive policy, which is beyond the scope of this paper.
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r > 0 at state n. The conditional probabilities are represented as

Pr(st = zjst�1 = z) = p; (2.4)

Pr(st = zjst�1 = n) = 0: (2.5)

The adverse shock does not reoccur, once it disappears.

A stochastic model is the key to the time-invariant duration policy in relation to the com-

mitment policy. In a deterministic model,6 the spell of the adverse shock is known, and the

duration of maintaining low interest rates is uniquely speci�ed. That makes the time-invariant

duration policy the same as the commitment policy.

2.3 Welfare

The loss of utility Ut at period t is described as follows:

Ut = �x
2
t + �

2
t ; (2.6)

where � is the weight of output variability to in�ation variability. A welfare loss Lt becomes

Lt =
P
�t+i

�
�x2t+i + �

2
t+i

�
: (2.7)

2.4 State

The whole state at t that includes the past state is de�ned as St = fs0; � � � ; st�1; stg. Because
of equation (2.5), the whole state at t is expressed as the set of

S
(k)
t � f

t+1z }| {
z; z; � � � ; z| {z }
t+1�k

; n; n; � � � ; n| {z }
k

g; (2.8)

where k = 0; 1; 2; � � � .
k represents the length of periods after the real interest rate shock turns positive. The

spell of the negative shock equals t� k + 1: For example, k = 0 means that the shock remains
negative. Corresponding to S(k)t , I de�ne the values of other endogenous variables Xt with the

superscript of (k); X(k)
t , such as i(k)t , �

(k)
t , x

(k)
t :

With the notation, I describe my model as

i
(k)
t = Et

�
� 1


=�

�
��

(j2)
t+2 � (1 + � + 
=�)�

(j1)
t+1 + �

(k)
t

�
+ rnt

�
; (2.9)

6See, for example, Jung, Teranishi, and Watanabe (2005) and Levin, Lopez-Salido, Nelson, and Yun (2009).
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where j1 and j2 are determined by the Markov process.

If k = 0, the above equation becomes

0 = � 1


=�
�
n
p2�

(0)
t+2+m + p(1� p)�

(1)
t+2+m + (1� p)�

(2)
t+2+m

o
+
1


=�
(1 + � + 
=�)fp�(0)t+1+m + (1� p)�

(1)
t+1+mg

� 1


=�
�
(0)
t+m + r: (2.10)

The left-hand side of the equation is zero because i(0)t = 0. The �rst term in the �rst row of the

right-hand side represents the value when the state z continues until t+2, whose probability is

given by p2. The second term in the �rst row represents the value when the state stays z until

t+ 1; and changes to n at t+ 2, whose probability is given by p(1� p). The third term in the

�rst row represents the value when the state z continues until t; and at t+1 the state changes

to n; whose probability is given by 1� p.
For k � 1; equation (2.9) is given by

i
(k)
t =

�
� 1


=�

�
��

(k+2)
t+2 � (1 + � + 
=�)�(k+1)t+1 + �

(k)
t

�
+ r

�
: (2.11)

2.5 Assumptions

For simplicity, I assume the following.

Assumption 1: A central bank aims to minimize the following welfare loss:

Lt =
P
�t+i�2t+i:

The loss of utility is given by � = 0 in equation (2.6). Utility does not depend on output vari-

ations, but only on in�ation variations. That assumption is introduced to make my analysis

easier. Owing to Assumption 1, I do not need two separate equations, the IS and the Phillips

equations. Possible defences of the assumption are that calibrated � is as small as 0.05 (Wood-

ford [2003]) and that the assumption does not necessarily lose generality. With respect to the

latter point, in general, a supply shock in the Phillips curve yields trade-o¤ between output

variations and in�ation variations, so the parameter � plays an important role. However, in

this paper I do not consider the e¤ects of the supply shock. I consider only the e¤ects of the real

interest rate shock in the IS equation, and in response to this type of the shock, both in�ation

and output typically move in the same direction, so the trade-o¤ between output variations

and in�ation variations is small. Instead, in the wake of a negative real interest rate shock, the
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lack of intertemporal optimization due to the ZLB becomes more important.

Assumption 2: Parameters satisfy

p2� � p(1 + � + 
=�) + 1 > 0: (2.12)

This assumption yields negative output and in�ation when the current state is z under discre-

tionary policy.

Assumption 3: All of the policies are credible.

Although I consider policies that di¤er in simplicity and time-inconsistency, I assume that

all the policies are credible. In this sense, my focus is not on how credible the policy should be or

how the credibility can be improved.7 Instead, I focus on how simple and less time-inconsistent

the policy can be without sacri�cing too much stability.

3 Analytical Solutions under Various Policies

In this section, I consider various kinds of monetary policy under the ZLB and their e¤ects on

the economy. The policies I consider are commitment policy, discretionary policy, and simple

interest rate rules as well as time-invariant duration policy. Simple interest rate rules include

a non-inertial interest rate rule and an inertial interest rate rule.

3.1 Commitment Policy

First, I derive optimal commitment policy. The policy has a variant duration of maintaining

low interest rates dependent on the spell of the adverse shock.

A central bank minimizes the welfare loss subject to the IS and Phillips curves and the ZLB

condition. A welfare loss is described as

L
(0)
t = (�

(0)
t )

2 + �fpL(0)t+1 + (1� p)L
(1)
t+1g

=
P1
k=0 p

k(1� p)
hPk

j=0 �
j(�

(0)
t+j)

2 +
P1
j=k+1 �

j(�
(j�k)
t+j )2

i
=

P1
m=0 p

m�m(�
(0)
t+m)

2 +
P1
m=3(1� p)�

mfpm�3(�(3)t+m)2

+pm�2(�
(2)
t+m)

2 + pm�1(�
(1)
t+m)

2g+ (1� p)�2f(�(2)t+2)2 + p(�
(1)
t+2)

2g

+(1� p)�(�(1)t+1)2 +�(�
(k)
t+l); (3.1)

7See, for example, Jeanne and Svensson (2007) and Schaumburg and Tambalotti (2007). The former considers
a way to make the commitment policy credible taking account of the central bank�s balance sheet. The latter
analyzes the welfare e¤ect of monetary policy under di¤erent degrees of credibility, calling it a quasi-commitment.
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where �(�(k)t+l) is a function for k � 4 and l � 3.
Using the constraint given by equation (2.10), I can de�ne the Lagrangian as

$t =
P1
m=0 p

m�m(�
(0)
t+m)

2

+
P1
m=3(1� p)�

mfpm�3(�(3)t+m)2 + pm�2(�
(2)
t+m)

2 + pm�1(�
(1)
t+m)

2g

+(1� p)�2f(�(2)t+2)2 + p(�
(1)
t+2)

2g+ (1� p)�(�(1)t+1)2 +�(�
(k)
t+l)

�2
P1
m=0 p

m�m�t+m

�
� 1


=�
�fp2�(0)t+2+m

+p(1� p)�(1)t+2+m + (1� p)�
(2)
t+2+mg

+
1


=�
(1 + � + 
=�)fp�(0)t+1+m + (1� p)�

(1)
t+1+mg �

1


=�
�
(0)
t+m + r

�
: (3.2)

�t+m represents the Lagrange multiplier, where �t�1 = 0.

As Appendix A.1 demonstrates, provided i(1)t is non-negative, I obtain the following �rst-

order conditions:

0 = �
(0)
t+m + �t+m�2

1


=�
��1 � �t+m�1

1


=�
(1 + � + 
=�)��1 + �t+m

1


=�
: (3.3)

0 = �
(2)
t+m +

1


=�
��1�t+m�2: (3.4)

0 = �
(1)
t+m +

1


=�
��1�t+m�2

� 1


=�
(1 + � + 
=�)��1�t+m�1: (3.5)

0 = � 1


=�
�fp2�(0)t+2+m + p(1� p)�

(1)
t+2+m + (1� p)�

(2)
t+2+mg

+
1


=�
(1 + � + 
=�)fp�(0)t+1+m + (1� p)�

(1)
t+1+mg

� 1


=�
�
(0)
t+m + r: (3.6)

For n � 3; I obtain
�
(n)
t+m = 0: (3.7)

The policy for n � 3 is the same as the discretionary policy below. In other words, optimal

commitment policy does not need to optimize over the in�nite time horizon after the adverse

shock disappears. If the adverse shock is not too big, a two-period commitment is su¢ cient.

See Appendix A.1 for the case in which i(1)t is negative and longer commitment is required.
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From the four equations, equations (3.3), (3.4), (3.5), and (3.6), I can calculate the optimal

commitment solution with respect to f�(0)t+m; �
(1)
t+m; �

(2)
t+m; �t+mg.

3.2 Discretionary Policy

I turn now to discretionary policy. This is the policy that optimizes equation (3.2) by imposing

an additional condition on the predetermined Lagrange multipliers

�t+m�1 = �t+m�2 = 0; (3.8)

at t +m: The discretionary policy is not constrained by the past Lagrange multipliers. The

previous �rst-order conditions (3.3), (3.4), (3.5), and (3.6) are valid.

From these conditions, I can obtain the following properties of the discretionary policy.

Note that, for the same k = 0; 1; :::, all endogenous variables become constant: X(k)
t = X

(k)
t+1:

So I can omit the subscript of t and express variables only with k. For k � 1; that is, when the
current state is n, discretionary policy yields

�(k) = x(k) = 0: (3.9)

Equation (2.9) yields

i(k) = r: (3.10)

The loss of utility at this case is zero.

For k = 0, that is, when the current state is z, the nominal interest rate is

i(0) = 0: (3.11)

From equation (3.6), the in�ation rate becomes

�(0) = fp2� � p(1 + � + 
=�) + 1g�1
=�r (3.12)

< 0: (3.13)

The inequality arises from Assumption 2.

The welfare loss when the current state is z is described as

LD = U0 + �pLD =
1

1� p� (�
(0))2

=
1

1� p�

�

=�r

p2� � p(1 + � + 
=�) + 1

�2
: (3.14)
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Such a policy is equivalent to the policy that minimizes only the present loss function

Ut = �
2
t ; (3.15)

subject to equation (2.10) and it � 0; with �t+2 and �t+1 given.

3.3 Time-Invariant Duration Policy

I next consider a time-invariant duration policy. Under the policy, the duration of low interest

rates after the adverse shock disappears is independent of the spell of the adverse shock.

Mathematically, the time-invariant duration policy is expressed as the one that optimizes

equation (3.2) by imposing an additional condition:8

�
(k)
t+m+1 = �

(k)
t+m: (3.16)

This condition suggests that in�ation rates are independent of time t as long as k is the same.

In particular, in�ation rates are constant during k = 0; that is, while the adverse shock hits the

economy. Because the ex post spell of the adverse shock is described as t + 1 � k; for a given
k; in�ation rates are independent of the ex post spell of the adverse shock. As is shown just

below, it implies that the optimal duration to maintain low interest rates and the Lagrange

multiplier are independent of the ex post spell of the adverse shock.

As Appendix A.2 demonstrates, provided i(1)t+m+1 is non-negative, I can obtain the following

�rst-order conditions

0 = �
(0)
t+m � C�t+m; (3.17)

0 = (1� p)�2�(2)t+m+2 �A�t+m; (3.18)

0 = (1� p)��(1)t+m+1 �B�t+m; (3.19)

0 = A�
(2)
t+m+2 +B�

(1)
t+m+1 + C�

(0)
t+m + r; (3.20)

8 In theory, the time-invariant duration policy is analogous to the fully timeless or unconditional commit-
ment policy analyzed by Jensen and McCallum (2002), McCallum (2005), and Damjonovic, Damjonovic, and
Nolan (2008). Fully timeless commitment policy minimizes the unconditional expectation of welfare loss across
stochastic steady states. Like equation (3.16), the policy is characterized by the unconditional expectations of
E(Xt+m+1) = E(Xt+m): Unconditional expectations are thus timeless, reducing the time-inconsistency problem.
A di¤erence from the unconditional commitment policy is, however, that the time-invariant duration policy
is not entirely timeless. When the state shifts from z to n, a central bank has an incentive not to keep the
time-invariant duration policy but to conduct the discretionary policy.
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where

A = �(1� p)�

=�

< 0

B =
(1� p)f1 + 
=� + �(1� p)g


=�
> 0 (3.21)

C = �p
2� � p(1 + � + 
=�) + 1


=�
< 0:

These equations imply that, for the same k = 0; 1; :::, all endogenous variables, �(k)t+m, x
(k)
t+m,

�t+m, and i
(k)
t+m, become constant. Policy rates are independent of the spell of the adverse

shock. The Lagrange multiplier is constant and positive as

�t+m = � = �
�

A2

(1� p)�2
+

B2

(1� p)� + C
2

��1
r > 0: (3.22)

Nominal interest rates as well as in�ation rates can be written in an extremely simple

explicit form. Properties of the policy can be simply examined analytically. Provided i(1) � 0,
which is de�ned below, the invariant duration policy yields

�(3) = �(4) = � � � = 0; (3.23)

�(2) =
1

�2(1� p)

�
A

C

�
�(0) < 0; (3.24)

�(1) =
1

�(1� p)

�
B

C

�
�(0) > 0; (3.25)

�(0) = �
�

A2

(1� p)�2
+

B2

(1� p)� + C
2

��1
Cr < 0; (3.26)

The optimal set of nominal interest rates is given by

i(3) = i(4) = � � � = r; (3.27)

i(2) = r � 1


=�
�(2) > r; (3.28)

i(1) = r � 1


=�
f�(1 + � + 
=�)�(2) + �(1)g < r

i(0) = 0: (3.29)
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The welfare loss when the current state is z is

L(0) =
1

1� p�

h
(�(0))2 + �(1� p)f(�(1))2 + �(�(2))2g

i
: (3.30)

3.4 One-Period Duration Policy

I showed above that unless the adverse shock is too big or persistent, it is su¢ cient to make

a commitment of up to two periods under the commitment and the time-invariant duration

policy after the adverse shock disappears.

In this subsection, as a special case of the time-invariant duration policy, I consider a one-

period duration policy.9 This policy commits up to only one period after the state becomes

n. Afterward, a central bank conducts the discretionary policy. Because it is closer to the

discretionary policy, it is less time-inconsistent than the commitment and the time-invariant

duration policy. A drawback is, however, an increase in welfare losses when the adverse shock

is big or persistent. In such a case, a longer commitment is required to mitigate the large-scale

de�ation during the adverse shock. The one-period duration policy may not be su¢ ciently

e¤ective in stabilizing in�ation.

As Appendix A.3 shows, the one-period duration policy is expressed as follows:

�(2) = �(3) = � � � = 0; (3.31)

�(1) = �
(
1 +

1

�(1� p)

�
B

C

�2)�1 B=C2r
�(1� p) > 0; (3.32)

�(0) =

(
1 +

1

�(1� p)

�
B

C

�2)�1 �
� r
C

�
< 0; (3.33)

i(1) = � 1


=�
�(1) + r < r; (3.34)

i(2) = i(3) = � � � = r: (3.35)

The welfare loss when the current state is z is

L(0) =
1

1� p�

h
(�(0))2 + �(1� p)(�(1))2

i
: (3.36)

9One-period duration policy is �rst introduced in Fujiwara, Sudo, and Teranishi (2010). This paper supports
their approach by showing that the welfare loss from using the policy compared with commitment policy is not
large quantitatively.
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3.5 Simple Interest Rate Rules

Finally, I consider simple interest rate rules. These are described as

it = max(i
�
t ; 0); (3.37)

where imaginary interest rates i�t that can be negative are

i�t = �i
�
t�1 + (1� �)(r + ���t): (3.38)

This policy rule is motivated by Reifschneider and Williams (2000), who propose that a pol-

icymaker delays a rise or reduces an increase in nominal interest rates by the amount that

the policymaker should have reduced if there were no ZLB. Its law of motion is analyzed in

Appendix A.4.

Alternatively, I also consider the policy rule of the following form:

i�t = �it�1 + (1� �)(r + ���t): (3.39)

I call this inertial rule 2. This rule is similar to the above rule, but di¤ers in policy responses

at the exit period. This policy does not care about i� at state z:

3.6 Discussion

Before simulating the model, I discuss the properties of the policies, in particular, focusing on

the commitment policy and the time-invariant duration policy.

3.6.1 Commitment Policy

The optimal interest rates under the commitment policy depend on the spell of the adverse

shock. At the beginning of optimal commitment policy t, the predetermined Lagrange mul-

tiplier, �t�1; is zero. It then changes over time. For di¤erent �t+m; subsequent policy rates

di¤er, so the optimal interest rates under the commitment policy depend on the timing when

the state changes from z to n. Thus, the optimal durations of low interest rates after the shock

turns to n vary.

Such time-variant duration policy increases a time-inconsistency problem. Over time, the

Lagrange multiplier �t+m deviates increasingly from zero. Since the optimal commitment

policy solution is derived conditional on �t�1 = 0; the deviation of �t+m loses the bene�ts from

conducting the commitment policy. Over time, the incentive to deviate from the commitment

policy increases.
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Moreover, the commitment policy becomes complex. That makes policy implementation

and communication with the public di¢ cult. Suppose, for example, the current economy re-

mains at state z in 2009:Q1. Under the commitment policy, a central bank needs to contemplate

all the future timing of recovery and determine the optimal subsequent path of interest rates.

The central bank may announce that if the economy normalizes in 2010:Q1, it will maintain

an accommodative policy for one year until 2010:Q4, and raise interest rates above a natural

rate at 2011:Q1. It also needs to announce all other possibilities: if the economy normalizes in

2011:Q1, it will maintain an accommodative policy for one and a half year until 2012:Q2, and

raise interest rates above a natural rate at 2012:Q3; and if the economy normalizes in 2012:Q1,

it will maintain an accommodative policy for two years until 2013:Q4, and raise interest rates

above a natural rate at 2014:Q1. All the interest paths are not parallel. Considering the sto-

chastic nature of the economy, therefore, policy implementation and communication become

extremely di¢ cult.

3.6.2 Time-Invariant Duration Policy

Under the time-invariant duration policy, interest rates and in�ation rates are independent of

time t as long as k is the same. It implies that the optimal duration to maintain low interest

rates is independent of the ex post spell of the adverse shock.

Compared with the commitment policy, the time-invariant duration policy is less complex

and time-inconsistent. First, regarding the time-inconsistency, the Lagrange multiplier under

the time-invariant duration policy remains constant. An incentive to deviate from the promised

policy does not increase, even if the economy is trapped in an adverse state for a long spell. It

helps increase the credibility of the policy, relative to the commitment policy.

Second, the time-invariant duration policy is simple. It is expressed in an extremely sim-

ple, explicit form. Policy implementation and communication with the public are easier than

under the commitment policy. For example, a central bank�s announcement under the ZLB

is described as follows: �After the economy normalizes, we will maintain an accommodative

policy for the duration of one year. In the following period, we will raise policy rates above a

natural rate.�

Actual policy measures adopted by several central banks can be compared with the time-

invariant duration policy. In Japan, the Bank of Japan announced in March 2001 under the

ZLB that quantitative easing policy was to �continue to be in place until the consumer price

index (excluding perishables, on a nationwide statistics) registers stably a zero percent or an

increase year on year.�In October 2005, when the recovery of the Japanese economy began to
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support the end the quantitative easing policy in the near future,10 the Bank announced that

�a change of the policy framework itself does not imply an abrupt change in terms of e¤ects

of policy. Conceptually, the course of monetary policy after the change of the framework will

be a period of very low short-term interest rates followed by a gradual adjustment to a level

consistent with economic activity and price developments.� Policy measures adopted in the

United States and Canada are also relevant.11

Those statements resemble the time-invariant duration policy. In them, time-variant dura-

tion does not appear. Duration to maintain accommodative policy depends on the state of the

economy (economic activity and in�ation in Japan and the outlook for in�ation in Canada),

similar to the time-invariant duration policy that depends on the state of the real interest rate

shock. The duration is, however, not speci�ed so as to depend on the spell of the adverse shock.

These policies are not discretionary policy, either. The central banks commit to maintaining

an accommodative policy for some duration even after the adverse shock disappears.

3.6.3 Other Properties

Although slightly less important, there are other consequential properties. The above analysis

suggests that, provided i(1) � 0, the time-invariant duration policy is su¢ cient to make a

commitment up to two periods after the adverse shock disappears. That property is not unique

to the the time-invariant duration policy; it is observed also in the commitment policy. Such

a property arises mainly for two reasons. The �rst is Assumption 1, which neglects welfare

losses from output deviations. The second is a condition that guarantees i(1) � 0: If an adverse
shock is large or persistent, the optimal level of i(1) becomes negative, which requires a longer

accommodative policy duration than two periods. See Appendix A.2 for the solution in such a

case.

Because the time-invariant duration policy is simple, it clari�es the basic pattern of optimal

policy rate adjustments. When the state shifts from z to n, the optimal interest rate i(1) should

be below r: That helps increase �(0) under z; close to the optimal zero in�ation, but a sacri�ce

is that �(1) increases above zero. During the next period, the optimal interest rate i(2) should

overshoot so as to be above r: That helps constrain the overshooting of in�ation �(1) during

the previous period, but a sacri�ce is that �(2) falls below zero. Such a pattern of interest rates

10 It was in March 2006 that ended the quantitative easing policy.
11 In March 2009, the U.S. Federal Reserve announced �The Committee will maintain the target range for the

federal funds rate at 0 to 1/4 percent and anticipates that economic conditions are likely to warrant exceptionally
low levels of the federal funds rate for an extended period.� In April 2009, Bank of Canada introduced a
conditional commitment, stating �Conditional on the outlook for in�ation, the target overnight rate can be
expected to remain at its current level until the end of the second quarter of 2010 in order to achieve the
in�ation target. The Bank will continue to provide such guidance in its scheduled interest rate announcements
as long as the overnight rate is at the e¤ective lower bound.�
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is similar to that shown by Eggertsson and Woodford (2003a, b). After the following periods,

the optimal interest rates can be r; which makes in�ation rates at the optimal rate zero. Such a

policy is optimal to achieve a balance between de�ation during the adverse shock and in�ation

afterward.

Because I obtain the analytical solution, I can prove the following properties:

@

@r
i(1) > 0;

@

@r
i(2) > 0 (3.40)

@

@r
i(1) > 0;

@

@r
i(2) < 0 (3.41)

@

@p
i(1) < 0;

@

@p
i(2) > 0 for p� 1 (3.42)

@

@(
=�)
i(1) > 0;

@

@(
=�)
i(2) < 0 for p� 1: (3.43)

Those inequalities suggest two things. First, if the persistence of the adverse shock increases

too much or the size of the shock becomes too big, then a commitment duration longer than

two periods is needed. This is because the optimal interest rate when the real interest rate

shock becomes positive, i(1), should be lower as r is lower or p is higher. Similar conditions are

applied to the case where either r or 
=� is too low. Second, the adjustments of interest rates

are required to be more volatile, as the persistence of the adverse shock is higher, the size of

the shock is bigger, the elasticity of in�ation to output is lower, and the elasticity of output to

interest rates is lower.12

4 Numerical Comparison of Policies

4.1 Parameters for Simulation

In this section, I simulate my model to compare economic behaviors and welfare losses among

various policies. I use standard parameter values. See Table 1 for details. The discount factor

� is 0.99, the elasticity of in�ation to output 
 is 0.024, and the inverse of the elasticity of

output to real interest rates � is one. The size and persistence of the adverse real interest rate

shock are modest. That allows policymakers to set a positive but lower interest rate than a

natural rate when the state becomes n (i.e., k = 1). The persistence of the adverse shock, p, is

0.5. A positive real interest rate r is 0.01 (4 percent annually) and a negative real interest rate

r is -0.0025 (-1 percent annually). Later I will check the sensitivity of the results by changing

these parameter values.

12This �nding is consistent with Levin, Lopez-Salido, Nelson, and Yun (2009), who argue that the e¤ectiveness
of a commitment policy is sensitive to the real interest rate elasticity of aggregate demand.
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4.2 Simulation Results

Commitment Policy Figure 1 demonstrates the economic behaviors under the commitment

policy. The pattern of interest rates resembles that found in the analysis of the time-invariant

duration policy. Interest rates when the state becomes n are set lower than the natural rate of

4 percent. It leads to milder de�ation during the adverse shock. During the following period,

the interest rate surpasses the natural rate. It prevents in�ation during the previous period

from overshooting.

Di¤erent from the time-invariant duration policy, the paths of interest rates, in�ation, and

the output gap vary, depending on the timing of the recovery. When the state becomes n at

t = 2, the interest rate at t = 2 becomes 2.6 percent, lower than the natural rate. When the

state becomes n at t = 3, the interest rate at t = 3 becomes even lower, 1.9 percent. Over time,

the interest rate at the timing of the recovery converges to a certain level around 1.6 percent.13

Because the commitment policy maintains low interest rates when the state becomes n (i.e.,

k = 1), in�ation overshoots during the period. Furthermore, because the interest rate during

the period decreases over time, the overshooting of in�ation grows as the spell of the adverse

shock lengthens. The deviation of the output gap during the period also becomes bigger.

Such responses of interest rates, in�ation, and the output gap enhance the time-inconsistency

problem. The top panel of Figure 2 demonstrates the paths of the Lagrange multiplier �t: The

solid line represents the paths under the commitment policy. The thick solid line with dots

represents the paths under the time-invariant duration policy, which will be discussed below.

Under the commitment policy, starting from zero, the Lagrange multiplier increases over time.

Since the optimal commitment policy solution is derived conditional �1 = 0; the deviation of �t

from zero means a loss of bene�ts from conducting commitment policy. The loss of bene�ts is

captured by the bottom panel of Figure 2. The �gure demonstrates the path of expected welfare

losses at t conditional on that the state at t is still z. The expected welfare losses increase from

t = 1 to t = 3, suggesting that an incentive to deviate from the commitment policy increases.

From t = 4, expected welfare losses decrease, indicating that the time-inconsistency problem is

mitigated. Such mitigation is, however, modest, not su¢ cient to dominate the time-invariant

duration policy.14

13Equation (3.3) suggests that the Lagrange multiplier �t+m converges to a certain positive level. In�ation
rates during the adverse shock, �(0)t+m, also converge to a certain level, and the level is positive. Because the
price level does not continue to fall, the positiveness relaxes a need for higher in�ation when the adverse shock
disappears. For this reason, changes in in�ation rates and interest rates are not monotonous.
14Although the expected welfare losses increase under the commitment policy, they are still lower than those

under the discretionary policy. In this sense, the commitment policy is sustainable, as long as the state is z (see
Kurozumi [2008]).
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Dynamics under Various Policies Figures 3 and 4 demonstrate the dynamic paths of the

economy under various policies. Except for the commitment policy, dynamics under all the

policies are independent of when the state becomes n. In the graphs, therefore, I specify the

timing when the adverse shock disappears to be t = 5: Note, however, that it is not predicted

ex ante because the shock is stochastic.

I consider discretionary policy. As the dotted lines in Figure 3 indicate, under the discre-

tionary policy, the interest rate has no history dependence. There is no policy duration. The

interest rate quickly reverts to the steady state level, 4 percent. The size of de�ation at state z

is relatively big, as low as -0.1 percent annually. The drop in the output gap is also relatively

big.

Under the time-invariant duration policy, the interest rate falls below the steady-state level

at the time of exit (t = 5) and surpasses it at the next period (t = 6). The in�ation rate at

state z is close to zero, which is optimal. Its path is extremely close to the path under the

commitment policy.

Under the one-period duration policy, there is no overshooting in the interest rate during

the following period of the exit (t = 6). It causes a higher in�ation rate at the time of exit

(t = 5), even though the rise in the interest rate is higher than that under commitment policy.

However, at state z, one-period duration policy yields a similar in�ation rate to the commitment

policy and the time-invariant duration policy.

Figure 4 demonstrates the economy under simple interest rate rules, compared with that

under time-invariant duration policy. I consider three policy rules. These are a non-inertial

policy rule with � = 0; the inertial rule of equation (3.38), and inertial rule 2 given by equation

(3.39). The latter two policy rules have the inertia of � = 0:8: I �nd that the non-inertial policy

rule yields exactly the same outcome as the discretionary policy.

Regarding inertial rules, the (�rst) inertial policy rule yields a slight improvement of in�ation

rates relative to the discretionary policy and the non-inertial policy rule. It is counterintuitive

that the path of interest rates is almost the same. This is because, under the inertia rule,

in�ation rates are higher than those under the non-inertial rule. Responding to high in�ation

rates, the inertia rule sets high interest rates and this o¤sets a persistence of interest rate

adjustments. This inertial rule is inferior to the time-invariant duration policy in terms of

in�ation stability. The time-invariant duration policy sets a lower interest rate during the exit

period (t = 5) than the non-inertial and inertial rules, which helps mitigate de�ation at state

z.

In terms of in�ation and output stability, inertial rule 2 appears to destabilize the economy.

Although I do not show it in Figure 4, both in�ation and the output gap at state z become
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highly positive. The reason for this is understood as follows. As is shown in the top panel

of Figure 4, at state n, nominal interest rates are raised slowly due to the policy inertia. It

increases in�ation and output at state z. If this goes too far, the imaginary interest rate i�

becomes positive. But since the zero interest rates are maintained at state z and inertial rule

2 does not raise interest rates su¢ ciently during the exit period (t = 6) by reacting to the past

i�, inertial rule 2 cannot stop in�ation and output from being destabilized.

Welfare Loss Comparison Table 2 reports the comparison of welfare losses under various

policies. The time-invariant duration policy can achieve almost the same level of in�ation

stability as the commitment policy. The discretionary policy and the simple interest rate rules

are worse by far than the commitment policy. Clearly, the commitment policy achieves the

lowest welfare loss. This amounts to a permanent deviation of in�ation rates by 0.0024 percent.

Among other policies, the time-invariant duration policy and the one-period duration policy

achieve almost the same welfare as the commitment policy. The welfare losses are 0.0026

percent and 0.0031 percent, respectively. The fourth-best policy is the inertial rule, but there

is a big gap. The welfare loss is 0.0091 percent annually, almost three times as big. The welfare

losses under the discretionary policy and the non-inertial rule are both 0.0140 percent annually.

Inertial rule 2 has by far the worst welfare.

Although the commitment policy achieves the lowest welfare loss at t = 1; this does not

mean it is so at later dates. Reexamining Figure 2, I �nd that the commitment policy is

dominated by the time-invariant duration policy after t = 2. The invariant duration policy has

less time-inconsistency than the commitment policy. However, the commitment policy is still

far better than the discretionary policy.

4.3 Sensitivity

I examine the sensitivity of my results to various parameters.15 Figures 5 to 8 demonstrate

sensitivity to the real interest rate at state z (r), the persistence of the adverse shock (p),

the real interest rate at state z (r), and the elasticity of in�ation to real interest rates (
=�),

respectively. In each �gure, welfare loss, interest rates during the exit period (i(1)), and during

the next period (i(2)) are presented. Since the commitment policy, the time-invariant duration

policy, and the one-period duration policy yield similar welfare loss, I magnify them in the

upper-right panel.

Regarding the real interest rate at state z (r), according to Figure 5, welfare losses are

almost the same under the commitment policy, the time-invariant duration policy, and one-

15Regarding sensitivity to models, I con�rm the good performance of the time-invariant duration policy in a
model with capital and with hybrid Phillips and IS curves.
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period duration policy, while the discretionary policy and the inertial rule yield larger welfare

losses. As r falls, the interest rate during the exit period (i(1)) needs to fall.

When the adverse shock is large, the performance of the one-period duration policy worsens

compared with the commitment policy and the time-invariant duration policy. For a su¢ ciently

low r that makes i(1) zero under one-period duration policy, welfare losses from conducting

the one-period duration policy becomes nonlinearly larger than that from the commitment or

the time-invariant duration policy. Such a result arises because the one-period duration policy

increases the interest rate too quickly, even though a longer period commitment is needed. Both

the commitment policy and the time-invariant duration policy lower the interest rate during

the next period (i(2)). Such longer-duration commitment policy helps soften the de�ation at

the ZLB. Under the one-period duration policy, however, a central bank commits only up to

one period, setting the interest rate during the next period (i(2)) equal to the natural rate. It

brings serious de�ation at the ZLB.

Regarding the persistence of the adverse shock (p), Figure 6 suggests that welfare loss is

almost the same under the commitment policy, the time-invariant duration policy, and the

one-period duration policy. Compared with them, the discretionary policy and the inertial

rule yield a larger welfare loss. Its deviation becomes wider as p becomes larger. Under the

commitment policy and the time-invariant duration policy, the interest rate during the exit

period (i(1)) needs to fall as p increases to mitigate de�ation at state z. When p exceeds a

certain threshold, i(1) needs to be negative, but because of the ZLB it becomes zero. In such

a case, both the commitment policy and the time-invariant duration policy lower the interest

rate during the next period (i(2)). As Figures 7 and 8 show, similar results can be obtained

regarding the real interest rate at state z (r) and the elasticity of in�ation to real interest rates

(
=�).

I next examine the e¤ect of Assumption 1 that neglects output volatility. The bottom panels

of Figures 1, 3, and 4 demonstrate the path of the output gap. The graph shows that the output

gap is stabilized when in�ation is stabilized. I also calculate the welfare loss when � is not zero

but 0.05. Under the commitment policy, the discretionary policy, the time-invariant duration

policy, and the one-period duration policy, the welfare loss amounts to 0.0361, 0.0675, 0.0386,

and 0.0360 percent (annualized) measured by permanent changes in in�ation, respectively.

Regarding simple interest rate rules, the welfare loss from conducting the non-inertial rule, the

inertial rule, and inertial rule 2 amounts to 0.0675, 0.0563, and 0.5732. The order of welfare loss

among the four policies does not change except that the one-period duration policy is shown

to be superior.
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5 Conclusion

In this paper, I have explored optimal interest rate policy under the ZLB. In particular, I have

proposed the time-invariant duration policy, which is simpler and less time-inconsistent than

the commitment policy. The duration to maintain accommodative policy is time-invariant,

independent of the ex post spell of the adverse shock. Even if the ex post spell of the adverse

shock lengthens, it does not increase the incentive to deviate from the policy, unlike the com-

mitment policy. The time-invariant duration policy can be expressed in an extremely simple,

explicit form. It facilitates policy implementation and communication in a stochastic economy.

Under the policy, the central bank maintains a lower interest rate for some duration after the

adverse shock disappears, and sets a higher interest rate during the following period. I report

that the time-invariant duration policy performs virtually as e¤ectively as the optimal com-

mitment policy in stabilizing in�ation, and far better than a discretionary policy and simple

interest rate rules with or without inertia.

For the future research, �rst, it is important to relax the assumption of full credibility.

Commitment policy including the time-invariant duration policy is not fully time-consistent,

so the credibility is not easily guaranteed. For the success of the policy, communication to the

public is crucial, and in this respect the time-invariant duration policy discussed in this paper

has a virtue due to its simplicity and less time-inconsistency. Second, as a measure of central

bank policy, I consider only interest rate policy. In the presence of the ZLB, other measures

such as quantitative easing and credit easing, capital injection, and coordination with �scal

policy increase their importance. Interest rate policy, however, remains the key instrument for

central banks, so the implementation of interest rate policy that is as good as possible never

loses its importance despite the ZLB. Last but not least, regarding central banks�objective, I

focus only on in�ation stability, but other factors such as output stability and the stability of

the �nancial markets and �nancial system cannot be underestimated. Investigation of those

factors is an extremely important task.
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A Appendix

A.1 Commitment Policy

Under commitment policy, I de�ne the Lagrangian as
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; (A.1)

where ��(k)t+l is a function of �
(k)
t+l for k � 4 and l � 3. With respect to �

(n)
t+m and �t+m; I write

down the �rst-order conditions. Here, I introduce a timeless perspective following Woodford
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(2003) and McCallum and Nelson (2004). The derivative of �(0)t+m becomes

0 = pm�m�
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This becomes
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1
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��1

��t+m�1
1


=�
(1 + � + 
=�)��1 + �t+m
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=�
: (A.2)

For n � 3, the derivative of �(n)t+m is written by

0 = �
(n)
t+m: (A.3)

The derivative of �(2)t+m is written by

0 = (1� p)�mpm�2�(2)t+m
+
1


=�
�(1� p)pm�2�m�2�t+m�2:

This becomes

0 = �
(2)
t+m +

1


=�
��1�t+m�2: (A.4)

The derivative of �(1)t+m is written by

0 = (1� p)�mpm�1�(1)t+m
+
1


=�
�p(1� p)pm�2�m�2�t+m�2

� 1


=�
(1 + � + 
=�)(1� p)pm�1�m�1�t+m�1:

This becomes

0 = �
(1)
t+m +

1


=�
��1�t+m�2

� 1


=�
(1 + � + 
=�)��1�t+m�1: (A.5)
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The derivative of �t+m is written by

0 = � 1


=�
�fp2�(0)t+2+m + p(1� p)�

(1)
t+2+m + (1� p)�

(2)
t+2+mg

+
1


=�
(1 + � + 
=�)fp�(0)t+1+m + (1� p)�

(1)
t+1+mg

� 1


=�
�
(0)
t+m + r: (A.6)

The above four equations, the �rst-order conditions with respect to �(0)t+m; �
(1)
t+m; �

(2)
t+m; and

�t+m; yield the optimal commitment policy.

Once I obtain f�(0)t+m; �
(1)
t+m; �

(2)
t+m; �t+mg; I can derive nominal interest rates at state n (or

k � 1) using equation (2.9):

i
(k)
t = � 1


=�

h
��

(k+2)
t+2 � (1 + � + 
=�)�(k+1)t+1 + �

(k)
t

i
+ r: (A.7)

Since �(n)t+m = 0 for n � 3; I �nd i
(k)
t = r for k � 3.

Commitment Policy When i(1) Is Zero Consider the case when i(1) calculated above

becomes negative. Due to i(0) = i(1) = 0; a minimization problem is restricted by two conditions

represented by equation (2.9) for k = 0 and 1. Therefore, I de�ne the Lagrangian as

$t =
P1
m=0 p

m�m(�
(0)
t+m)

2

+
P1
m=3(1� p)�

mfpm�3(�(3)t+m)2 + pm�2(�
(2)
t+m)

2 + pm�1(�
(1)
t+m)

2g

+(1� p)�2f(�(2)t+2)2 + p(�
(1)
t+2)

2g

+(1� p)�(�(1)t+1)2 +�(�
(k)
t+l)

�2
P1
m=0 p

m�m�
(0)
t+m

�
� 1


=�
�fp2�(0)t+2+m + p(1� p)�

(1)
t+2+m + (1� p)�

(2)
t+2+mg

+
1


=�
(1 + � + 
=�)fp�(0)t+1+m + (1� p)�

(1)
t+1+mg �

1


=�
�
(0)
t+m + r

�
�2
P1
m=1 p

m�m�
(1)
t+m

1


=�

h
���(3)t+2+m + (1 + � + 
=�)�

(2)
t+1+m � �

(1)
t+m + 
=�r

i
:(A.8)

With respect to �(n)t+m, �
(0)
t+m; and �

(1)
t+m; I write down the �rst-order conditions. Again, I

introduce a timeless perspective following Woodford (2003) and McCallum and Nelson (2004).
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The derivative of �(0)t+m becomes

0 = �
(0)
t+m + �

(0)
t+m�2

1


=�
��1

��(0)t+m�1
1


=�
(1 + � + 
=�)��1 + �

(0)
t+m

1


=�
: (A.9)

For n � 4, the derivative of �(n)t+m is written by

0 = �
(n)
t+m: (A.10)

The derivative of �(3)t+m becomes

0 = (1� p)��(3)t+m +
1


=�
p�
(1)
t+m�2: (A.11)

The derivative of �(2)t+m become:

0 = (1� p)��(2)t+m +
1� p

=�

�
(0)
t+m�2 �

p


=�
(1 + � + 
=�)�

(1)
t+m�1: (A.12)

The derivative of �(1)t+m becomes

0 = (1� p)��(1)t+m +
1� p

=�

�
(0)
t+m�2

�1� p

=�

(1 + � + 
=�)�
(0)
t+m�1 +

p�


=�
�
(1)
t+m: (A.13)

The derivative of �(0)t+m is written by

0 = � 1


=�
�fp2�(0)t+2+m + p(1� p)�

(1)
t+2+m + (1� p)�

(2)
t+2+mg

+
1


=�
(1 + � + 
=�)fp�(0)t+1+m + (1� p)�

(1)
t+1+mg

� 1


=�
�
(0)
t+m + r: (A.14)

The derivative of �(1)t+m is written by

0 = � 1


=�
��

(3)
t+2+m +

1


=�
(1 + � + 
=�)�

(2)
t+1+m �

1


=�
�
(1)
t+m + r: (A.15)

The above six equations, the �rst-order conditions with respect to �(0)t+m; �
(1)
t+m; �

(2)
t+m; �

(3)
t+m;

�
(0)
t+m; and �

(1)
t+m yield the optimal commitment policy subject to i

(0)
t+m = i

(1)
t+m = 0:
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A.2 Time-Invariant Duration Policy

Under the time-invariant duration policy, I impose

�
(k)
t+m+1 = �

(k)
t+m: (A.16)

Then, the Lagrangian, de�ned as

$t =
P1
m=0 p

m�m(�
(0)
t+m)

2

+
P1
m=3(1� p)�

mfpm�3(�(3)t+m)2 + pm�2(�
(2)
t+m)

2 + pm�1(�
(1)
t+m)

2g

+(1� p)�2f(�(2)t+2)2 + p(�
(1)
t+2)

2g

+(1� p)�(�(1)t+1)2 +�(�
(k)
t+l)

�2
P1
m=0 p

m�m�t+m

�
� 1


=�
�fp2�(0)t+2+m + p(1� p)�

(1)
t+2+m + (1� p)�

(2)
t+2+mg

+
1


=�
(1 + � + 
=�)fp�(0)t+1+m + (1� p)�

(1)
t+1+mg �

1


=�
�
(0)
t+m + r

�
; (A.17)

is transformed into

$t =
P1
m=0 p

m�m(�
(0)
t+m)

2

+
P1
m=3(1� p)�

mfpm�3(�(3)t+m)2 + pm�2(�
(2)
t+m)

2 + pm�1(�
(1)
t+m)

2g

+(1� p)�2f(�(2)t+2)2 + p(�
(1)
t+2)

2g

+(1� p)�(�(1)t+1)2 +�(�
(k)
t+l)

�2
P1
m=0 p

m�m�t+m

�
� 1


=�
�fp2�(0)t+m + p(1� p)�

(1)
t+1+m + (1� p)�

(2)
t+2+mg

+
1


=�
(1 + � + 
=�)fp�(0)t+m + (1� p)�

(1)
t+1+mg �

1


=�
�
(0)
t+m + r

�
: (A.18)

With respect to �(n)t+m and �t+m; I write down the �rst-order conditions. The derivative of

�
(0)
t+m becomes

0 = pm�m�
(0)
t+m + p

m�m�t+m
1


=�
�p2

�pm�m�t+m
1


=�
(1 + � + 
=�)p+ pm�m�t+m

1


=�
:

This becomes

0 = �
(0)
t+m � C�t+m; (A.19)
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where

C = �p
2� � p(1 + � + 
=�) + 1


=�
< 0: (A.20)

For n � 3, the derivative of �(n)t+m is written by

0 = �
(n)
t+m: (A.21)

The derivative of �(2)t+m+2 is written by

0 = (1� p)�m+2pm�(2)t+m+2
+
1


=�
pm�m�t+m(1� p)�:

This becomes

0 = (1� p)�2�(2)t+m+2 �A�t+m; (A.22)

where

A = �(1� p)�

=�

< 0: (A.23)

The derivative of �(1)t+m+1 is written by

0 = (1� p)�m+1pm�(1)t+m+1
+
1


=�
pm�m�t+m�p(1� p)

� 1


=�
(1 + � + 
=�)pm�m�t+m(1� p):

This becomes

0 = (1� p)��(1)t+m+1 �B�t+m; (A.24)

where

B =
(1� p)f1 + 
=� + �(1� p)g


=�
> 0: (A.25)

The derivative of �t+m is written by

0 = � 1


=�
�fp2�(0)t+m + p(1� p)�

(1)
t+1+m + (1� p)�

(2)
t+2+mg

+
1


=�
(1 + � + 
=�)fp�(0)t+m + (1� p)�

(1)
t+1+mg

� 1


=�
�
(0)
t+m + r

= A�
(2)
t+2+m +B�

(1)
t+1+m + C�

(0)
t+m + r: (A.26)
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The above four equations, the �rst-order conditions with respect to �(0)t+m; �
(1)
t+m; �

(2)
t+m; and

�t+m; yield the solution for the time-invariant duration policy. Expressing �
(0)
t+m; �

(1)
t+m; and

�
(2)
t+m with �t+m; I can rewrite the �rst-order condition with respect to �t+m as

0 =
A2

(1� p)�2
�t+m +

B2

(1� p)��t+m + C
2�t+m + r:

Therefore, �t+m becomes

�t+m = � = �
�

A2

(1� p)�2
+

B2

(1� p)� + C
2

��1
r (A.27)

> 0: (A.28)

Clearly, �t+m is constant.

In�ation rates, �(k)t ; are also constant given the same k, being described as

�(0) = �
�

A2

(1� p)�2
+

B2

(1� p)� + C
2

��1
Cr < 0; (A.29)

�(2) =
1

�2(1� p)

�
A

C

�
�(0) < 0; (A.30)

�(1) =
1

�(1� p)

�
B

C

�
�(0) > 0: (A.31)

Once I obtain f�(0)t+m; �
(1)
t+m; �

(2)
t+m; �t+mg; I can derive nominal interest rates at state n (or

k � 1) using equation (2.9):

i
(k)
t = � 1


=�

h
��

(k+2)
t+2 � (1 + � + 
=�)�(k+1)t+1 + �

(k)
t

i
+ r:

Because all endogenous variables are constant, it becomes

i
(k)
t = i(k) = � 1


=�

h
��(k+2) � (1 + � + 
=�)�(k+1) + �(k)

i
+ r: (A.32)

Since 0 = �(k)t+m for k � 3, I have
i(3) = i(4) = � � � = r: (A.33)

For k = 2 and 1, I have

i(2) = � 1


=�

�
��(4) � (1 + � + 
=�)�(3) + �(2)

�
+ r; (A.34)

i(1) = � 1


=�

�
��(3) � (1 + � + 
=�)�(2) + �(1)

�
+ r: (A.35)
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This becomes

i(2) = r � 1


=�
�(2) > r; (A.36)

i(1) = r � 1


=�
f�(1 + � + 
=�)�(2) + �(1)g < r: (A.37)

Finally, I need to check if i(1) and i(2) are equal to zero or positive. Clearly, i(2) is positive.

Regarding i(1); I explicitly write it down as

i(1) = r � 1


=�
f�(1 + � + 
=�)�(2) + �(1)g

= r � 1


=�

�
�(1 + � + 
=�) 1

�2(1� p)

�
A

C

�
�(0) +

1

�(1� p)

�
B

C

�
�(0)

�
= :r � 1


=�

�
�(1 + � + 
=�) 1

�2(1� p)

�
A

C

�
+

1

�(1� p)

�
B

C

��

�
(
1 +

1

�2(1� p)

�
A

C

�2
+

1

�(1� p)

�
B

C

�2)�1�
� 1
C
r

�
: (A.38)

From the IS equation, the output gap is described as

x(0) =
1



f�(0) � �(p�(0) + (1� p)�(1))g; (A.39)

x(k) =
1



(�(k) � ��(k+1)); (A.40)

for k � 1. Since �(2) = �(3) = � � � = 0; I obtain x(k) = 0 for for k � 2:

Another Solution Method Because I impose �(k)t+m+1 = �
(k)
t+m; I can easily infer that other

endogenous variables are also constant. It simpli�es the form of welfare losses and enables

us to derive the invariant duration policy without explicitly de�ning the Lagrangian. This

alternative solution method is convenient to apply to other policy valuations.

Consider how equation (2.9) can be expressed. For k � 1; equation (2.9) becomes

i(k) = � 1


=�

�
��(k+2) � (1 + � + 
=�)�(k+1) + �(k)

�
+ r: (A.41)
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For k = 0, equation (2.9) becomes

0 = p2
�
� 1


=�

�
��(0) � (1 + � + 
=�)�(0) + �(0)

��
+p(1� p)

�
� 1


=�

�
��(1) � (1 + � + 
=�)�(0) + �(0)

��
+(1� p)

�
� 1


=�

�
��(2) � (1 + � + 
=�)�(1) + �(0)

��
+r: (A.42)

0 = A�(2) +B�(1) + C�(0) + r; (A.43)

where

A = �(1� p)�

=�

< 0

B =
(1� p)f1 + 
=� + �(1� p)g


=�
> 0 (A.44)

C = �p
2� � p(1 + � + 
=�) + 1


=�
< 0:

The welfare loss at k � 1 is described as

L(k) = U (k) + �L(k+1)

= (�(k))2 + �f(�(k+1))2 + �L(k+2)g

= (�(k))2 + �(�(k+1))2 + �2(�(k+2))2 + � � � : (A.45)

The welfare loss when the current state is z is described as

L(0) = U (0) + �fpL(0) + (1� p)L(1)g

=
1

1� p�

n
(�(0))2 + �(1� p)L(1)

o
=

1

1� p�

h
(�(0))2 + �(1� p)f(�(1))2 + �(�(2))2 + �2(�(3))2 + � � � g

i
: (A.46)

The time-invariant duration policy chooses the optimal set of nominal interest rates fi(0) =
0; i(1); i(2); � � � g to minimize the welfare loss L(0) subject to equations (A.41) and (A.43) and
i(k) � 0. This problem can be reduced to the problem of choosing the optimal set of nominal

in�ation rates f�(0); �(1); �(2); � � � g to minimize the welfare loss L(0) subject to equation (A.43)
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provided i(k) � 0. Substituting equation (A.43) into equation (A.46), I obtain

argf�(0);�(1);�(2);��� gminL
(0)

= argf�(0);�(1);�(2);��� gmin
1

1� p�

h
(�(0))2 + �(1� p)f(�(1))2 + �(�(2))2 + �2(�(3))2 + � � � g

i
= argf�(0);�(1);�(2);��� gmin

1

1� p�

24 �A�(2) +B�(1) + r
C

!2
+�(1� p)f(�(1))2 + �(�(2))2 + �2(�(3))2 + � � � g

i
:

I then check if i(k) � 0 is satis�ed.
With respect to �(k) (for k � 3); the �rst-order condition is

0 =
@

@�(k)
L(0) = �(k): (A.47)

For �(2) and �(1); the �rst-order conditions are

0 =
@

@�(2)
L(0) = �A

C
�(0) + �2(1� p)�(2); (A.48)

0 =
@

@�(1)
L(0) = �B

C
�(0) + �(1� p)�(1): (A.49)

Substituting �(2) and �(1) in the above equations into equation (A.43), I obtain

�(0) =

(
1 +

1

�2(1� p)

�
A

C

�2
+

1

�(1� p)

�
B

C

�2)�1�
� 1
C
r

�
< 0: (A.50)

Also, I obtain

�(2) =
1

�2(1� p)

�
A

C

�
�(0) < 0; (A.51)

�(1) =
1

�(1� p)

�
B

C

�
�(0) > 0: (A.52)

Time-Invariant Duration Policy When i(1) Is Zero If i(1) calculated above becomes

negative, i(1) is set at zero. The time-invariant duration policy therefore has longer persistence.

Assume i(2) is positive. Due to i(0) = i(1) = 0; a minimization problem is restricted by two

conditions. These are equation (A.43),

0 = A�(2) +B�(1) + C�(0) + r; (A.53)
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and equation (A.41),

0 = � 1


=�

�
��(3) � (1 + � + 
=�)�(2) + �(1)

�
+ r: (A.54)

It yields

�(1) = ���(3) + (1 + � + 
=�)�(2) + 
=�r; (A.55)

�(0) = �A�
(2) +B�(1) + r

C

= ��B��
(3) + fA+B(1 + � + 
=�)g�(2) +B
=�r + r

C
: (A.56)

A minimization problem is therefore given by

argf�(0);�(1);�(2);��� gminL
(0)

= argf�(0);�(1);�(2);��� gmin[(�
(0))2 + �(1� p)f(�(1))2 + �(�(2))2 + �2(�(3))2 + � � � g]

= argf�(0);�(1);�(2);��� gmin24 ��B��(3) + fA+B(1 + � + 
=�)g�(2) +B
=�r + r
C

!2
+�(1� p)f(���(3) + (1 + � + 
=�)�(2) + 
=�r)2

+�(�(2))2 + �2(�(3))2 + � � � g
i
:

With respect to �(3) and �(2); the �rst-order conditions are

0 =
@

@�(3)
L(0) =

B�

C
�(0) � �2(1� p)�(1) + �3(1� p)�(3); (A.57)

0 =
@

@�(2)
L(0)

= �A+B(1 + � + 
=�)
C

�(0) + �(1� p)(1 + � + 
=�)�(1) + �2(1� p)�(2): (A.58)

Equations (A.55) to (A.58) yield the solution of �(3); �(2) �(1); and �(0). With respect to

�(k) (for k � 4); the �rst-order condition is

0 =
@

@�(k)
L(0) = �(k):
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Nominal interest rates are derived from equation (A.41):

i(k) = � 1


=�

�
��(k+2) � (1 + � + 
=�)�(k+1) + �(k)

�
+ r: (A.59)

Provided i(2) � 0; the time-invariant duration policy is su¢ cient to make a commitment of up
to three periods after the shock becomes normal.

A.3 One-Period Duration Policy

Under one-period duration policy, for k � 2; discretionary policy is conducted so that in�ation
is completely stabilized as

�(2) = �(3) = � � � = 0: (A.60)

Since �(2) = 0, when the current state is z (for k = 0), equation (2.9) or more simply equation

(A.43) becomes

0 = B�(1) + C�(0) + r; (A.61)

where

B =
(1� p)f1 + 
=� + �(1� p)g


=�
> 0 (A.62)

C = �p
2� � p(1 + � + 
=�) + 1


=�
< 0:

The welfare loss when the current state is z is described as

L(0) =
1

1� p�

h
(�(0))2 + �(1� p)(�(1))2

i
: (A.63)

The in�ation rates under one-period commitment policy are the solutions to minimize the

welfare loss subject to equation (A.61). Interest rates are derived from equation (A.41):

i(1) = � 1


=�
�(1) + r: (A.64)

One-Period Duration Policy When i(1) Is Zero If i(1) calculated above becomes negative,

i(1) is zero. Under one-period duration policy, for the period of k � 2, the policy becomes

discretionary. Therefore,

�(2) = �(3) = � � � = 0: (A.65)
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From equation (A.41), �(1) is given by

i(1) = 0 = � 1


=�
�(1) + r:

That is, I obtain

�(1) = 
=�r: (A.66)

Equation (A.61) yields

�(0) = �B
=�r + r
C

: (A.67)

A.4 Simple Interest Rate Rules

For k � 2, the inertial policy rule is written as

i(k) = �i(k�1) + (1� �)(r + ���(k)): (A.68)

I assume that i(k) � 0 for k � 1: Then, for k = 1, I have

i(1) = �i�(0) + (1� �)(r + ���(1)); (A.69)

and for k = 0,

i�(0) = �i�(0) + (1� �)(r + ���(0)): (A.70)

Thus, i(1) is simpli�ed as

i(1) = �(r + ���
(0)) + (1� �)(r + ���(1))

= r + ��f��(0) + (1� �)�(1)g: (A.71)

Other equations are equation (A.41)

i(k) = � 1


=�

�
��(k+2) � (1 + � + 
=�)�(k+1) + �(k)

�
+ r; (A.72)

for k � 1 and equation (A.43),

0 = A�(2) +B�(1) + C�(0) + r; (A.73)

for k = 0.

These equations give the path of in�ation and interest rates. For k � 2, equations (A.41)
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and (A.68) are simpli�ed as0@ i(k) � r
�(k)

1A =

0@ D1

D2

1A (i(k�1) � r): (A.74)

Matrix D satis�es

D1 = �+ (1� �)��D2; (A.75)

D1 = �
1


=�

�
D2D

2
1 � (1 + � + 
=�)D2D1 +D2

�
: (A.76)

The other three variables of {i(1); �(1); �(0)} are calculated from the following three equations,

(A.41), (A.43), and (A.71) respectively:

i(1) = � 1


=�
f�D2D1(i(1) � r)

�(1 + � + 
=�)D2(i(1) � r) + �(1)g+ r; (A.77)

0 = AD2(i
(1) � r) +B�(1) + C�(0) + r; (A.78)

i(1) = r + ��f��(0) + (1� �)�(1)g: (A.79)
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Table 1: Parameters for Simulations

Markov process

p 0.5 Persistence of the adverse shock

r 0.01 Real interest rate at n

r -0.0025 Real interest rate at z

Structured parameters

� 0.99 Discount factor


 0.024 Elasticity of in�ation to output

� 1 Inverse of the elasticity of output to real interest rates

Policy rule parameters

� 0 or 0.8 Inertia

�� 1.5 Coe¢ cient on in�ation
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Table 2: Welfare Loss

Commitment policy 0.0024

Time-invariant duration policy

Two-periods duration policy
0.0026

One-period duration policy 0.0031

Inertial rule 0.0091

Discretionary policy 0.0140

Non-inertial rule 0.0140

Inertial rule 2 0.2748

Measured by permanent changes in in�ation (annualized, percent)
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Figure 1: Commitment Policy
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Figure 2: Time-Inconsistency of Commitment Policy and Time-Invariant Duration Policy
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Figure 3: Optimal Policy (1)
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Figure 4: Optimal Policy (2)
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Figure 5: Sensitivity to r (Real Interest Rate at z)
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Figure 6: Sensitivity to p (Persistence of the Adverse Shock)
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Figure 7: Sensitivity to r (Real Interest Rate at n)
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