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I Introduction

The advanced internal ratings approach proposed under Basel II requires internation-

ally active banks to estimate a recovery rate that adequately reflects the downturn

in economic conditions (see Basel Committee on Banking Supervision [2005]). The

regulations are based on empirical studies of the negative correlation between default

rates and recovery rates (see Altman et al. [2005]). In the recent financial turmoil,

regulators have paid much attention to the negative correlation associated with the

counter-cyclicality of default rates and pro-cyclicality of recovery rates. In this paper,

we evaluate the expected loss of a collateralized loan in a closed form, focusing on this

negative correlation.

There are two major approaches to modeling credit risk in mathematical finance.

One is a structural approach in which the default probability is determined endoge-

nously based on debt-to-asset ratios. The other is a default intensity approach in which

the default event is assumed to arise stochastically according to exogenous stochastic

intensity.

In the structural approach, the probability that a firm will default is defined by

the probability that asset values are less than debt amounts at a given time. The

asset value is often assumed to follow a geometric Brownian motion, while the debt

amount is assumed to be a constant. In other words, the debt-to-asset ratio determines

the default probability, and the debt amount is the default boundary. In evaluating

the value of a collateralized loan, Pykhtin [2003] assumed the collateral value process

correlates positively with the firm’s asset value process. This assumption implies a

negative correlation between default probability and recovery value. Although Pykhtin

[2003] derives a solution for the expected loss of the collateralized loan, Pykhtin’s one-

period structural model is implausible because the default event is assumed to occur,

if at all, only when the loan comes to maturity. One way to sidestep this implausible

assumption is to introduce a first passage time model with a default boundary (Black

and Cox [1976]). However, a simple first passage time model is still unable to explain

short-term credit spreads. The model implies a near-zero spread for a firm with a low

debt-to-asset ratio despite the wide credit spread in a market. Incorporating incomplete

information for the asset value or the default boundary is one possible solution to the

problem proposed by Duffie and Lando [2001]. Chen, Collin-Dufresne, and Goldstein

[2009] identify a large discrepancy between observed credit spreads and estimates based

on historical default and recovery rates, dubbing this the “credit spread puzzle,” and

suggest the pro-cyclicality of recovery rates as one of the factors leading to the puzzle.

In the default intensity approach (see Duffie [2005] for examples), the likelihood of

the default event is assumed to be linked to exogenous default intensity. This implies

that the default event can happen at any point in time until maturity, a more realistic
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approach than that of the one-period structural model. However, in default intensity

models, recovery rates are often unrealistically assumed to be constant. Some models

deal with the stochastic recovery rate by the default intensity approach. For example,

Bakshi, Madan, and Zhang [2006] discuss a general framework of stochastic recovery

and show a class of closed-form pricing model for defaultable debt in which the recovery

rate is given by a deterministic function of the default intensity. Guo, Jarrow, and Zeng

[2009] introduce a double stopping time to describe post-default recovery processes.

Chen and Joslin [2009] develop a generalized transform model for affine processes and

introduce recovery risk as an application of their model. They derive a closed-form

pricing model for defaultable debt focusing on correlations among risk-free interest

rates, default intensity, and recovery rate. In their model, the negative correlation

between short-term market interest rates and default intensity are expressed by a two-

dimensional state vector, one of whose elements is default intensity. The recovery rate

is assumed to be a deterministic function of default intensity as described by Bakshi,

Madan, and Zhang [2006].

In contrast to Bakshi, Madan, and Zhang [2006] and Chen and Joslin [2009], Kijima

and Miyake [2004] derive a closed-form pricing model for loans collateralized with real

property focusing on the negative correlation between default intensity and collateral

value. In their model, short-term market interest rates, default intensity, and the

logarithmic value of the collateral follows a correlated Ornstein-Uhlenbeck process.

This assumption poses the mathematical problem that the intensity which should be

non-negative may become negative.

In this paper, we adopt a default intensity model for collateralized loans. To make

a solution to the negative intensity problem associated with the Ornstein-Uhlenbeck

process, we assume a square-root process for the default intensity, referred to Cox,

Ingersoll, and Ross [1985]. We obtain an analytical solution for the expected loss and

n-th moment of loss that simultaneously satisfies the following three requirements:

a) The default event can happen at any point in time up to loan maturity according

to a stochastic process of default intensity.

b) Default intensity and collateral value are negatively correlated.

c) Default intensity and collateral value are non-negative.

The solution is obtained within the extended affine model introduced by Duffie, Pan,

and Singleton [2000], who derive generalized Riccati equations characterizing extended

affine models. The Riccati equations do not necessarily have explicit solutions. A

more general version of this extended affine model is described by Chen and Joslin

[2009]. However, with either model, whether the derived Riccati equations have explicit

solutions is determined by the case in question.
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In addition to the assumption of a square-root process for default intensity, we

assume that the two-dimensional state vector consisting of default intensity and the

logarithm of the collateral value follows an affine diffusion process. We assume a

negative correlation between the driving Brownian motion of default intensity and

that of the collateral value. In this setting, the expected loss consists of the survival

probability and the time integral of the loan’s expected recovery value. The survival

probability is reduced to a basic affine model, and the solution is the same as the

discount bond price in Cox, Ingersoll, and Ross [1985]. The integrand of expected

recovery value is reduced to an extended affine model. The Riccati equations derived

can be solved explicitly. The time integral of the expected recovery value is given as a

Stieltjes integral with measure-changed survival probability.

Following this introduction, Section II describes our model of the stochastic pro-

cesses for default intensity and collateral value. Section III derives solutions for ex-

pected loss and the n-th moment of loss. Section IV gives numerical examples of

expected loss and the standard deviation of loss. Section V concludes this paper.

The Appendix describes in detail the derivation of the explicit solutions for survival

probability and the n-th moment of loss.

II Our model

Assume that a bank supplies collateralized loan D to a firm with maturity T . The

collateral value is denoted At. For the sake of simplicity, we assume the loan to be

supplied as a discount bond with zero interest rate. Despite this assumption, our

following model can be directly extended for valuing a defaultable loan with a fixed

interest rate.

Let default time τ be a non-negative random variable defined on a probability space

(Ω,F , P ). We assume that the loss incurred by the bank at time τ is given by:1

Lτ = D − δAτ , (1)

where δ is a constant denoting the recovered portion of the collateral value.

The default intensity or hazard rate of the firm ht is assumed to be governed by

the following square-root process:

dht = κ(h̄ − ht)dt + σh

√
htdW h

t , (2)

where κ, h̄, and σh are positive real number. h̄ denotes mean the reversion level

of default intensity. κ denotes the speed of mean reversion. The intensity process (2)

remains non-negative if the initial value h0 is positive, since the instantaneous volatility

1This implies that the recovery rate may exceed 100%.
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of the intensity is given by σh

√
ht. The intensity is always positive if 2κh̄ ≥ σ2

h (see

Cox, Ingersoll, and Ross [1985]).

Let collateral value At also be a non-negative random variable defined on the prob-

ability space (Ω,F , P ). The collateral value is assumed to be governed by the following

diffusion process2:

dAt = µAAtdt + σAAt

√
htdWA

t . (3)

Furthermore, the Brownian motions in equations (2) and (3) are assumed to be corre-

lated as follows:

cov(dWA, dW h) = d[WA,W h] = ρdt. (4)

Mathematically, correlation ρ can be either negative or positive. Given real-world

circumstances, we focus on a negative correlation ρ.

We evaluate the expected value and n-th moments of loss (1). Let (Ht)t≥0 be a

filtration generated by Ht = σ(1{τ≤t}). Let (Ft)t≥0 be an auxiliary filtration Ft =

σ({W h
s , WA

s : s ≤ t}) generated by the Brownian motions in equations (2) and (3). We

also define an augmented filtration (Gt)t≥0 by

Gt = Ft ∨Ht. (5)

The default time τ is assumed to be a doubly stochastic random variable with re-

spect to the filtration Ft = σ({W h
s ,WA

s : s ≤ t}),3 and default time is assumed to

have a hazard rate process defined by equation (2). Assuming the integrability of∫ T

t
|Lshs| exp(−

∫ s

t
hudu)ds, the expected loss for the bank is given by:

E[Lτ1{t<τ≤T}|Gt] = DE[1{t<τ≤T}|Gt] − δE[Aτ1{t<τ≤T}|Gt]

= 1{t<τ}D(1 − Pr[τ > T |t < τ ])

− 1{t<τ}δE[

∫ T

t

exp

(
−

∫ s

t

hudu

)
hsAsds|Ft].

(6)

In the first term of the right-hand side of equation (6), Pr[τ > T |t < τ ] is the survival

probability until time T if the firm is not in default at time t. The second term of the

right-hand side of equation (6),

δ

∫ T

t

E[exp

(
−

∫ s

t

hudu

)
hsAs|Ft]ds, (7)

2The difference between process (3) and the geometric Brownian process dAt = µAAtdt+σAAtdWA
t

lies in the instantaneous volatility parts: σA

√
ht and σA. That is, the instantaneous variance in

equation (3) is proportional to default intensity and not constant.
3McNeil, Frey, and Embrechts [2005] discuss technical conditions for doubly stochastic random

variables.
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is the time integral of expected recovery. In Section III, we evaluate the survival

probability Pr[τ ≤ T |t < τ ] and the expected recovery (7) and derive a solution for

expected loss (6).4

These stochastic processes (2)–(4) are summarized as an affine diffusion process

with a two-dimensional state vector, Xt = (ht, ln At)
⊤. Using Ito’s lemma, we can

transform the collateral value process (3) to:

d ln At = (µA − σ2
Aht/2)dt + σA

√
htdWA

t . (8)

Introducing independent Brownian motions W1,t and W2,t, we express the correlation

of the Brownian motion (4) by:

WA
t = W1,t, W h

t = ρW1,t +
√

1 − ρ2W2,t. (9)

We can reduce equations (2), (8), and (9) to the following two-dimensional diffusion

process:

dXt = d

(
ht

ln At

)
= µ(Xt)dt + σ(Xt)d

(
W1,t

W2,t

)
, (10)

where

µ(Xt) =

(
κh̄

µA

)
+

(
−κ 0

−σ2
A/2 0

) (
ht

ln At

)
, (11)

σ(Xt) =

(
σh

√
ht 0

σAρ
√

ht σA

√
1 − ρ2

√
ht

)
. (12)

The diffusion process (10) is affine for two reasons. First, the drift term µ(Xt) is affine

with respect to the state vector Xt shown as equation (11). Second, the instantaneous

variance-covariance matrix is

σ(Xt)σ(Xt)
⊤ =

(
σ2

hht ρσAσhht

ρσAσhht σ2
Aht

)
, (13)

all of whose elements are linear with respect to the state vector Xt.

III Solution for expected loss and n-th moment of

loss

First, we derive a solution for the expected loss, shown as equation (6). Second, we

extend the solution for the n-th moment of loss.

4Here, we evaluate the expected loss in physical probability without discounting by any interest
rate. Evaluating discounted expected value with a fixed interest rate in risk-neutral probability is a
direct application of our result.
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A. Expected loss

Now, we evaluate the expected loss (6) under the stochastic process for the hazard rate

and collateral value expressed by equations (2)–(4).

The expected loss is composed of survival probability Pr[τ > T |t < τ ] and the time

integral of the expected recovery, shown as equation (7).

The survival probability is given by:

Γ(T − t|ht) ≡ E[exp

(
−

∫ T

t

hsds

)
|Ft]. (14)

The survival probability (14) is reduced to a basic affine model using one-dimensional

state variable ht whose process is affine, as shown by equation (2). The survival prob-

ability is given by

Γ(T − t|ht) =

[
2γhe

(γh+κ)(T−t)/2

(γh + κ)eγh(T−t) + γh − κ

] 2κh̄

σ2
h

exp(
2(1 − eγh(T−t))ht

(γh + κ)eγh(T−t) + γh − κ
), (15)

where

γh =
√

κ2 + 2σ2
h. (16)

See Appendix 1 for details. The survival probability is the expressed in the same way

as the discount bond price in the Cox-Ingersoll-Ross model. (See Cox, Ingersoll and

Ross [1985], Nakagawa [1999].) Introducing the two-dimensional state vector Xt =

(ht, ln At)
⊤, we can reduce the integrand of the time integral of the expected recovery

ζ(t, s) ≡ E[exp

(
−

∫ s

t

hudu

)
hsAs|Ft], (17)

to an extended affine form as follows:

ζ(t, s) = E[exp

(
−

∫ s

t

hudu

)
eln Ashs|Ft], (18)

for a fixed s and varying t. ζ(t, s) is reduced to an extended affine model because the

state vector Xt has an affine diffusion process.5 As Duffie, Pan, and Singleton [2000]

show, the solution for equation (18) is given by:

ζ(t, s) = (C(t) + B(t) · Xt) exp(α(t) + β(t) · Xt). (19)

Coefficients C(t), B(t), α(t), and β(t) satisfy Riccati equations. In this case, the Riccati

5Using notation proposed by Dai and Singleton [2000], we can indicate this process as A1(2) affine
diffusion.
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equations derived from the model can be solved explicitly as follows:

α(t) = µA(s − t) +
2κh̄

σ2
h

ln
2γe

γ+κ̃
2

(s−t)

(γ + κ̃)eγ(s−t) + (γ − κ̃)
,

β(t) ≡ (β1(t), β2(t))
⊤, β1(t) =

2(1 − eγ(s−t))

(γ + κ̃)eγ(s−t) + (γ − κ̃)
, β2(t) = 1,

B(t) ≡ (B1(t), B2(t))
⊤, B1(t) =

4γ2eγ(s−t)

{(γ + κ̃)eγ(s−t) + (γ − κ̃)}2
, B2(t) = 0,

C(t) =
2κh̄(eγ(s−t) − 1)

(γ + κ̃)eγ(s−t) + (γ − κ̃)
,

(20)

where

κ̃ = κ − ρσhσA, γ =
√

κ̃2 + 2σ2
h. (21)

Here, we note the term

η(s − t|ht) ≡ exp(α̃(s − t) + β̃(s − t)ht)

=

[
2γe(γ+κ̃)(s−t)/2

(γ + κ̃)eγ(s−t) + (γ − κ̃)

] 2κh̄

σ2
h

exp

{
2(1 − eγ(s−t))ht

(γ + κ̃)eγ(s−t) + (γ − κ̃)

}
,

(22)

where

α̃(s − t) ≡ α(t) − µA(s − t), β̃(s − t) ≡ β1(t). (23)

We see that η(s− t|ht) has the same form as survival probability Γ(T − t|ht). The first

derivative of η(s − t|ht) with respect to s is given by:

dη(s − t|ht)

ds
= (C̃(s − t) + B̃(s − t)ht) exp(α̃(s − t) + β̃(s − t)ht), (24)

where

C̃(s − t) ≡ C(t), B̃(s − t) ≡ B1(t). (25)

This leads to:

ζ(t, s) = −Ate
µA(s−t) dη(z|ht)

dz

∣∣∣∣
z=s−t

. (26)

See Appendix 2 for a detailed derivation.

Comparing equations (15) and (22), we see that η(T − t|ht) can be interpreted as

a measure-changed survival probability. First, many κs are changed to κ̃s, but κh̄s are

unchanged. Second, γh becomes γ if κ is changed to κ̃. Thus, η(T − t|ht) is the survival

probability with the following default intensity process:

dht = (κh̄ − κ̃ht)dt + σh

√
htdW̃ h

t , (27)

where W̃ h
t is a measure-changed Brownian motion given as:

dW̃ h
t = dW h

t − ρσA

√
htdt. (28)
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The measure-changed diffusion term is given by subtracting the instantaneous covari-

ance between collateral movement and hazard rate movement from the original diffusion

term:

σh

√
htdW̃ h

t = σh

√
htdW h

t − cov(dht, d ln At|Ft). (29)

Furthermore, using this changed measure and equation (26), we can decompose ζ(t, s),

shown as equation (17), by the expectation of the collateral value and the time differ-

ential of the survival probability, as follows:

E[exp

(
−

∫ s

t

hudu

)
hsAs|Ft] = −AeµA(s−t) d

ds
Ẽ[exp

(
−

∫ s

t

hudu

)
|Ft]

= E[As|Ft]Ẽ[exp

(
−

∫ s

t

hudu

)
hs|Ft],

(30)

where Ẽ[·] is the expectation with the measure-changed process. Using equation (26),

we can evaluate the expected recovery measured at time t as the following Stieltjes

integral with the changed survival measure η(·).

δE[

∫ T

t

exp

(
−

∫ s

t

hudu

)
hsAsds|Ft] = −δAt

∫ T−t

0

eµAzdη(z|ht). (31)

Substituting equations (15) and (31) into equation (6) with t = 0, we obtain the

following expected loss for the bank at time 0:

E[(D − δAτ )1{τ≤T}] = D(1 − Γ(T |h0)) + δA0

∫ T

0

eµAzdη(z|h0), (32)

where Γ(T |h0) and η(s|h0) are given by equations (15) and (22), respectively. The

integral in equation (32) can be evaluated as follows:

N−1∑
i=0

eµAi∆{η((i + 1)∆|h0) − η(i∆|h0)}, (33)

where ∆ = T/N , with large positive integer N . Based on this equation, we can perform

high-speed computations for N ≈ 1, 000.

B. n-th moment of loss

The expected loss is the basic measure for the loss distribution. The variance of loss

and the higher moment of loss are also important measures for the loss distribution.

The solution for the expected loss, shown as equation (32), is generalized to the n-th

moment of loss. Using binomial expansion, we can express the n-th moment of loss as

follows:

E[Ln
τ |Gt] = E[(D − δAτ )

n1{t<τ≤T}|Gt] = 1{t<τ}

n∑
i=0

nCiD
n(−δ)n−iIn−i, (34)
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where

In = E[

∫ T

t

exp

(
−

∫ s

t

hudu

)
An

s hsds|Ft]

=

∫ T

t

E[exp

(
−

∫ s

t

hudu

)
en ln Ashs|Ft]ds.

(35)

As with our evaluation of ζ(t, s), we can evaluate the integrand of In in an extended

affine model. The derived Riccati equations have explicit solutions. Similar to the

expected loss, In can be evaluated as a Stieltjes integral with another measure-changed

survival probability. (See Appendix 2 for the detailed derivation.) The default proba-

bility can be interpreted as a special case of In, I0.

As an example, the standard deviation of loss is given by a combination of Ins as:√
var[(D − δAτ )1{τ≤T}] =

√
D2I0 − 2δDI1 + δ2I2 − (DI0 − δI1)2, (36)

where Ins are evaluated at time t = 0.

IV Numerical example

In this section, we show numerical examples of the expected loss, shown as equation

(32), and the standard deviation of loss, shown as equation (36). We evaluate the

integral of the right-hand-side of equation (32) as equation (33), where N = 1, 000.

Let D = 100, T = 1, δ = 0.7, µA = 1%, σA = 0.5, A0 = 100, σh = 20%. Figure 1

illustrates the expected loss (left figure) and standard deviation of loss (right figure)

with respect to negative correlation ρ in four cases of κ = 0.1, 1, 5, 10, where h0 = 4%

and h̄ = 3%. Figure 2 depicts the curves for h0 = 3% and h̄ = 4%. We see that

the increase in the absolute value of correlation yields an increase in expected loss,

with larger impact with lower κ. The increase in the absolute value of correlation also

yields an increase in the standard deviation of loss. Again, the impact is larger when

κ is lower. Based on these numerical results, we would posit that risk managers must

closely examine negative correlations in terms of both expected loss and the standard

deviation of loss when the mean-reversion speed of default intensity is slow.

V Conclusions

We obtained analytical solutions for the expected loss and n-th moment of loss distribu-

tion of a collateralized loan, simultaneously satisfying the following three requirements:

a) The default event can happen at any point in time up to loan maturity according

to a stochastic process of default intensity.
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Figure 1: Expected loss and standard deviation of loss against correlation ρ (h0 > h̄)
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Figure 2: Expected loss and standard deviation of loss against correlation ρ (h0 < h̄)
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b) Default intensity and collateral value are negatively correlated.

c) Default intensity and collateral value are non-negative.

The expected loss consists of two parts: (i) the product of the loan amount and the

default probability (one minus the survival probability) and (ii) expected recovery value

at default. The survival probability in part (i) can be evaluated explicitly within a basic

affine model, as with the Cox-Ingersoll-Ross discount bond price. We show the part (ii)

is reduced to a Stieltjes integral with a measure-changed survival probability measure.

We extend explicit formulations to n-th moment of loss using other measure-changed

survival probabilities.

Since we have obtained analytical formulations for the expected loss and n-th mo-

ment of loss, we can evaluate various sensitivities for the expected loss, standard devi-

ation, skewness, or kurtosis of loss. Although we note expected loss and n-th moment

of loss, we can also approximate the value-at-risk by these n-th moments of loss.

Numerical examples show that the increase in the absolute value of the negative

correlation between default intensity and collateral value yields an increase in the

expected loss or the standard deviation of the loss. The impact is large when the

mean-reversion speed of the default intensity is slow. Based on these numerical results,

we posit that risk managers should pay close attention to the negative correlation both

in terms of the expected loss and of the standard deviation of loss when the speed of

mean-reversion of default intensity is slow.
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Appendix 1 Derivation of survival probability

The survival probability can be evaluated in a basic affine model by introducing the

state variable Xt = ht as:

E[exp

(
−

∫ T

t

hsds

)
|Ft] = exp(αh(t) + βh(t)ht). (A.1)

Here, αh(t) and βh(t) satisfy the following ordinarily differential equations.

dβh(t)

dt
= 1 + κβh(t) −

1

2
σ2

hβh(t)
2, (A.2)

dαh(t)

dt
= −κh̄βh(t). (A.3)

The boundary conditions are given by:

βh(T ) = 0, αh(T ) = 0. (A.4)

From equation (A.2) with the boundary condition (A.4), βh(t) is given by:

βh(t) =
2(1 − eγh(T−t))

(γh + κ)eγh(T−t) + γh − κ
, (A.5)

where

γh =
√

κ2 + 2σ2
h. (A.6)

See Appendix 3 for a derivation of the solution.

Substituting equations (A.4) and (A.5) into equation (A.3) yields:

αh(t) = αh(t) − αh(T ) = κh̄

∫ T

t

βh(s)ds =
2κh̄

σ2
h

ln
2γhe

γh+κ

2
(T−t)

(γh + κ)eγh(T−t) + γh − κ
. (A.7)

Substituting equations (A.5) and (A.7) into equation (A.1) yields survival probability

as follows:

Γ(T − t|ht) = E[exp

(
−

∫ T

t

hsds

)
|Ft]

=

[
2γhe

(γh+κ)(T−t)/2

(γh + κ)eγh(T−t) + γh − κ

] 2κh̄

σ2
h

exp(
2(1 − eγh(T−t))ht

(γh + κ)eγh(T−t) + γh − κ
).

(A.8)

This expression is the same as the discount bond price in Cox, Ingersoll, and Ross

[1985]. See also Nakagawa [1999].
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Appendix 2 Evaluation of n-th moment of loss within

an extended affine model

Expected loss, shown as equation (6), or the n-th moment of loss, shown as equation

(34), is given by a combination of In, shown as equation (35). This appendix evaluates

In within an extended affine model.

As shown in Section II, a two-dimensional state vector Xt = (ht, ln At)
⊤ has an

affine diffusion:

dXt = µ(Xt)dt + σ(Xt)dWt. (A.9)

The drift vector µ(Xt) is an affine function of Xt. Each element of the instantaneous

variance-covariance matrix σ(Xt)σ(Xt)
⊤ is a linear function of Xt.

Duffie, Pan, and Singleton [2000] show that for the well-behaved affine diffusion

(A.9), the expectation

ϕ(v, w,Xt, t, T ) = E[exp

(
−

∫ T

t

R(Xu)du

)
(v · XT )ew·XT |Ft], (A.10)

where

R(Xu) = r0 + r1 · Xu, (A.11)

can be evaluated as follows:

ϕ(v, w,Xt, t, T ) = (C(t) + B(t) · Xt) exp(α(t) + β(t) · Xt). (A.12)

They derive Riccati ordinary differential equations satisfied by the coefficients in equa-

tion (A.12), C(t), B(t), α(t), and β(t).

Here, let

r0 = 0 and r1 = (1, 0); that is, R(Xu) = hu, (A.13)

w = (0, n); that is, ew·XT = en ln AT = An
T , (A.14)

v = (1, 0); that is, v · XT = hT . (A.15)

Then, an integrand of In is given by an extended affine form, as follows:

ϕ(v, w,Xt, t, T ) = E[exp

(
−

∫ T

t

hudu

)
An

T hT |Ft]. (A.16)

Following Duffie, Pan, and Singleton [2000], we obtain the following ordinary differen-

tial equations satisfied by the coefficients in equation (A.12).

dβ1(t)

dt
= 1 + κβ1(t) +

σ2
A

2
β2(t) −

1

2
β(t)⊤

(
σ2

h ρσhσA

ρσhσA σ2
A

)
β(t)

= 1 + κβ1(t) +
σ2

A

2
β2(t) −

σ2
h

2
β1(t)

2 − ρσhσAβ1(t)β2(t) −
σ2

A

2
β2(t)

2,

(A.17)
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dβ2(t)

dt
= 0, (A.18)

dα(t)

dt
= −

(
κh̄

µA

)
· β(t) = −κh̄β1(t) − µAβ2(t), (A.19)

−dB1(t)

dt
= −κB1(t) −

σ2
A

2
B2(t) + β(t)⊤

(
σ2

h ρσhσA

ρσhσA σ2
A

)
B(t)

= −κB1(t) −
σ2

A

2
B2(t) + σ2

hβ1(t)B1(t)

+ ρσhσA(β1(t)B2(t) + β2(t)B1(t)) + σ2
Aβ2(t)B2(t),

(A.20)

−dB2(t)

dt
= 0, (A.21)

−dC(t)

dt
=

(
κh̄

µA

)
· B(t) = κh̄B1(t) + µAB2(t), (A.22)

where β(t) = (β1(t), β2(t))
⊤ and B(t) = (B1(t), B2(t))

⊤. The boundary conditions are

given by:

β1(T ) = 0, β2(T ) = n, α(T ) = 0, (A.23)

B1(T ) = 1, B2(T ) = 0, C(T ) = 0. (A.24)

First, we solve the ordinary equations (A.17), (A.18) and (A.19) with boundary con-

ditions (A.23). Equation (A.18) with boundary condition (A.23) specifies β2(t) as

follows:

β2(t) = n. (A.25)

Substituting equation (A.25) into equation (A.17) yields

dβ1(t)

dt
= 1 +

n(1 − n)σ2
A

2
+ (κ − nρσhσA)β1(t) −

σ2
h

2
β1(t)

2. (A.26)

Equation (A.26) is a Riccati equation with constant coefficients. The ordinary differen-

tial equation (A.26) with a boundary condition can be solved explicitly. See Appendix

3 for the derivation. The solution with boundary condition (A.23) is given by:

β1(t) =
(κ̃n + γn) + (κ̃n − γn)δ̃neγn(T−t)

σ2
h(δ̃neγn(T−t) + 1)

=
(γn − κ̃n)(γn + κ̃n)(1 − eγn(T−t))

σ2
h{(γn + κ̃n)eγn(T−t) + (γn − κ̃n)}

=
{2 + n(1 − n)σ2

A}(1 − eγn(T−t))

(γn + κ̃n)eγn(T−t) + (γn − κ̃n)
,

(A.27)

where

κ̃n = κ − nρσhσA, (A.28)

γn =
√

κ̃2
n + σ2

h{2 + n(1 − n)σ2
A}, (A.29)

λ̃n =
κ̃n + γn

−κ̃n + γn

. (A.30)
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Substituting equations (A.25) and (A.27) into equation (A.19) and integrating with

boundary condition (A.23) yields:

α(t) = α(t) − α(T ) =

∫ T

t

{κh̄β1(s) + nµA}ds

= nµA(T − t) +
κh̄(γn − κ̃n)(γn + κ̃n)

σ2
h

∫ T

t

(1 − eγn(T−s))

(γn + κ̃n)eγn(T−s) + (γn − κ̃n)
ds

=

{
nµA +

κh̄(γn + κ̃n)

σ2
h

}
(T − t) +

2κh̄

σ2
h

ln
2γn

(γn + κ̃n)eγn(T−t) + (γn − κ̃n)
.

(A.31)

Next, we solve the ordinary equations (A.20), (A.21), and (A.22) with boundary con-

ditions (A.24). Equation (A.21) with boundary condition (A.24) specifies B2(t) as

follows:

B2(t) = 0. (A.32)

Substituting equations (A.32) and (A.25) into equation (A.20) yields:

−dB1(t)

dt
= −κB1(t) + σ2

hβ1(t)B1(t) + nρσhσAB1(t). (A.33)

Integrating equation (A.33) with equation (A.27) and boundary condition (A.24) yields:

ln B1(t) = −
∫ T

t

{κ̃n − σ2
hβ1(s)}ds

= −κ̃n(T − t) + σ2
h

∫ T

t

β1(s)ds

= γn(T − t) + 2 ln
2γn

(γn + κ̃n)eγn(T−t) + (γn − κ̃n)
.

(A.34)

Equation (A.34) is equivalent to:

B1(t) =
4γ2

neγn(T−t)

{(γn + κ̃n)eγn(T−t) + (γn − κ̃n)}2
. (A.35)

Substituting equation (A.32) into equation (A.22) yields:

−dC(t)

dt
= κh̄B1(t). (A.36)

Integrating equation (A.36) with equation (A.35) and boundary condition (A.24) yields:

C(t) = κh̄

∫ T

t

B1(s)ds = 4γ2
nκh̄

∫ T

t

eγn(T−s)

{(γn + κ̃n)eγn(T−s) + (γn − κ̃n)}2
ds

= − 4γnκh̄

(γn + κ̃n)

∫ 2γn

(γn+κ̃n)eγn(T−t)+(γn−κ̃n)

1

z2
dz

=
2κh̄(eγn(T−t) − 1)

(γn + κ̃n)eγn(T−t) + (γn − κ̃n)
.

(A.37)
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Thus, we evaluate equation (A.16) as follows:

E[exp

(
−

∫ T

t

hudu

)
An

T hT |Ft]

= An
t e

nµA(T−t)(C̃(T − t) + B̃(T − t)ht) exp(α̃(T − t) + β̃(T − t)ht),

(A.38)

where

C̃(z) =
2κh̄(eγnz − 1)

(γn + κ̃n)eγnz + (γn − κ̃n)
, (A.39)

B̃(z) =
4γ2

neγnz

{(γn + κ̃n)eγnz + (γn − κ̃n)}2
, (A.40)

α̃(z) =
κh̄(γn + κ̃n)

σ2
h

z − 2κh̄

σ2
h

ln
(γn + κ̃n)eγnz + (γn − κ̃n)

2γn

, (A.41)

β̃(z) =
(γn − κ̃n)(γn + κ̃n)

σ2
h

(1 − eγnz)

(γn + κ̃n)eγnz + (γn − κ̃n)
. (A.42)

Here, let

ηn(z|ht) ≡ exp(α̃(z) + β̃(z)ht)

=

[
2γne(γn+κ̃n)z/2

(γn + κ̃n)eγnz + (γn − κ̃n)

] 2κh̄

σ2
h

exp

{
{2 + n(1 − n)σ2

A}(1 − eγnz)ht

(γn + κ̃n)eγnz + (γn − κ̃n)

}
.

(A.43)

Comparing equation (A.8) with equation (A.43), we find that ηn(z|ht) corresponds to

a kind of survival probability wherein parameters κ, γh, h̄, ht become, respectively, κ̃n,

γn, κh̄/κ̃n, {1 + n(1 − n)σ2
A/2}h. We also find that

∂α̃(z)

∂z
=

κ̃2
n − γ2

n

2σ2
h

C̃(z) (A.44)

From equation (A.44), we see that the first derivative of ηn(z|ht) with respect to time

to maturity z is given by:

dηn(z|ht)

dz
=

κ̃2
n − γ2

n

2σ2
h

exp(α̃(z) + β̃(z)ht){C̃(z) + B̃(z)ht}. (A.45)

Substituting equation (A.45) into equation (A.38) with T = s yields:

E[exp

(
−

∫ s

t

hudu

)
An

s hs|Ft] = An
t enµA(s−t) 2σ2

h

κ̃2
n − γ2

n

dηn(z|ht)

dz

∣∣∣∣
z=s−t

. (A.46)

In conclusion, from equations (35) and (A.29), In is given by:

In =
−An

t

1 + n(1 − n)σ2
A/2

∫ T

t

enµA(s−t)dηn(s − t|ht)

=
−An

t

1 + n(1 − n)σ2
A/2

∫ T−t

0

enµAzdηn(z|ht).

(A.47)
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Appendix 3 Solution for a Riccati equation

Assume an ordinary differential equation

dy(t)

dt
= −1

2
a2y(t)2 + by(t) + c, (A.48)

with boundary condition

y(T ) = g, (A.49)

where a, b, c, g are constants and c ≥ 0. The ordinary differential equation has a

solution

y(t) =
b + γ + (b − γ)λeγ(T−t)

a2(λeγ(T−t) + 1)
, (A.50)

where

γ =
√

b2 + 2a2c, (A.51)

λ =
−a2g + b + γ

a2g − b + γ
. (A.52)

Proof. Equation (A.48) is equivalent to:

dy(t)

dt
= −1

2
a2(y(t) − y1)(y(t) − y2), (A.53)

where

y1 =
b + γ

a2
, y2 =

b − γ

a2
, γ =

√
b2 + 2a2c. (A.54)

Integrating equation (A.53) yields:

− 1

2
a2(T − t) =

∫ y(T )

y(t)

dy(s)

(y(s) − y1)(y(s) − y2)

=
1

y1 − y2

∫ y(T )

y(t)

{
1

y(s) − y1

− 1

y(s) − y2

}
dy(s)

=
1

y1 − y2

{
ln

y(T ) − y1

y(t) − y1

− ln
y(T ) − y2

y(t) − y2

}
=

a2

2γ

{
ln

g − y1

g − y2

y(t) − y2

y(t) − y1

}
.

(A.55)

Rearranging equation (A.55) gives equation (A.50).
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McNeil, Alexander J., Rüdiger Frey, and Paul Embrechts, Quantitative Risk Manage-

ment: Concepts, Techniques, and Tools, Princeton University Press, 2005.

Nakagawa, Hidetoshi, “Valuation of Default Swap with Affine-type Hazard Rate,” Pro-

ceeding of the Japan Academy Ser. A, 75(3), 1999, pp.43–46.

Pykhtin, Michael, “Unexpected Recovery Risk,” Risk, 16(8), 2003, pp.74–78.

19


	10-E-10表紙.pdf
	10-E-10main

