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1 Introduction

The aim of this article is to show that a locally best invariant (hereafter, LBI) test in McCabe
and Tremayne (1995), which is called the McCabe and Tremayne (hereafter, MT) test, is incon-
sistent against a class of explosive random coefficient autoregressive (hereafter, ERCA) models,
developing the asymptotic theory of Hwang and Basawa (2005) for ERCA models.

The MT test is designed for the null of a UR process and against the alternative of a
stochastic unit root (hereafter, STUR) process, which has recently gained increasing popularity
in empirical financial literature. See for example, Bleaney et al. (1999), Bleaney and Leybourne
(2003), and Sollis et al. (2000), among others. The MT test has been used to distinguish STUR
processes from UR processes in the literature cited above. The class of ERCA models includes
a class of STUR processes as special cases, and thus our results indicate that the MT test is
inconsistent against this class of STUR processes (we give more detailed explanations about this
class in Section 2). In contrast to the inconsistency of the MT test, we show that the well-known
Dickey-Fuller unit root (DF–UR) tests and the LBI test of Lee (1998)(hereafter, the Lee test),
which is for the null of a stationary AR(1) model and against the alternative of a stationary
RCA(1) model, are consistent against a particular case of the class of ERCA models. 1

The rest of this paper is organized as follows: In Section 2, we introduce ERCA and STUR
models. In Section 3, we show that the MT test is inconsistent against a class of ERCA models
while the DF–UR and Lee tests are consistent against a particular case of this class of ERCA
models. Section 4 provides some concluding remarks.

2 The ERCA Model and Related Asymptotic Theory

2.1 ERCA and STUR models

We consider the following RCA(1) model defined on a probability space (Ω,F,P ):

Xt = (ϕ + ϕt)Xt−1 + εt, for t = 1, 2, ...., X0 = 0, (1)

where {εt} and {ϕt} are mutually independent i.i.d.random sequences with E(ϕt) = E(εt) = 0,
E(ϕ4

t ) < ∞, E(ε4
t ) < ∞, var(ϕt) = σ2

ϕ, var(εt) = σ2
ε and var(ε2

t ) = κ2
ε. When ϕ = 1, McCabe

and Tremayne (1995) call the resulting model a randomized unit root process, whereas Granger
and Swanson (1997) term the same model a STUR process. Following the latter, we refer to
this model as a STUR process.

Define τ = {E[(ϕ + ϕt)2]}1/2 = (ϕ2 + σ2
ϕ)1/2.2 After simple calculations, we have, for

n = 1, 2, ..., var(Xn) = (τ2n − 1)(τ2 − 1)−1σ2
ε for τ ̸= 1 and var(Xn) = nσ2

ε for τ = 1. Note that
the variance of Xt increases exponentially when τ2 > 1, and increases linearly when τ2 = 1.
The RCA(1) model is called the first order ERCA, or ERCA(1) model when τ2 > 1 (Hwang and
Basawa, 2005). STUR processes with σ2

ϕ > 0 are special cases of the ERCA(1) model because
we have τ2 > 1 for these STUR processes. Let η ≡ E(log |ϕ + ϕt|). Hwang and Basawa (2005)
classify the ERCA(1) model into two subclasses depending on whether the value of η is less than
0. We say that an ERCA(1) model belongs to the class S1 if it satisfies η < 0; otherwise it belongs
to the class S2. Of course, any ERCA(1) model belongs to S = S1 ∪ S2. This classification is
motivated by properties of the two–sided version of Xt, namely, Xt = (ϕ + ϕt)Xt−1 + εt for

1It should be noted that the results in this paper are largely of theoretical interest and have limited practical
relevance to the modeling of actual time series data for the same reason that explosive AR(1) models are rarely
applied to actual time series data. The ERCA model typically exhibits explosive behavior similar to that of
explosive AR(1) models and this kind of behavior is rarely observed for actual time series data. Recently;
however, several studies use explosive AR(1) models for modeling stock bubble behavior.

2Our definition for τ is slightly different from that of Hwang and Basawa (2005).
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0,±1,±2, ..... When τ2 < 1, the two–sided RCA(1) model is strictly stationary and ergodic
with finite second moment(Nicholls and Quinn, 1982). The two–sided RCA(1) model is strictly
stationary and ergodic if η < 0 and only if η ≤ 0 (Quinn, 1982). Note that a two–sided STUR
process with σ2

ϕ > 0 may satisfy that η < 0, depending on the distribution of ϕt.3 In this case, the
two–sided STUR process, which does not satisfy the condition for the existence of a finite second
moment, is strictly stationary and ergodic with an infinite second moment. These results for the
two–sided process carries over to the one-sided process if X0 follows the stationary distribution
for the two–sided process (and hence the condition X0 = 0 is asymptotically irrelevant). This
feature sharpens the contrast between a STUR process and an autoregressive UR process, which
is non-stationary. For the estimation and properties of the RCA(1) model with η < 0 and η ≥ 0,
see Aue et al. (2006) and Berkes et al. (2009), respectively.

2.2 Asymptotic theory for ERCA(1) models

Let Zn ≡ τ−nXn, n = 0, 1, 2, .... Hwang and Basawa (2005, Theorem 1, p.811, and Lemma 1,
p.812) show that, for the ERCA(1) model, as n → ∞:

(i) Z2
n

a.s.−→ Z2, where Z2 is a random variable such that E(Z2) < ∞.
(ii) τ−2n

∑n
t=1 X2

t−1
a.s.−→ (τ2 − 1)−1Z2.

(iii) If Pr(Z2 > 0) = 1, then Pr[(ϕ + ϕt)2 = τ2] = 1.
(2)

First, we extend the results in (2) in Proposition 1. Hereafter, the summation is taken from
t = 1 to n unless otherwise stated.

Proposition 1 Let {θt} be a sequence of i.i.d.real-valued random variables with E(|θt|) < ∞.
Assume that {Xt} follows the RCA(1) model defined as in (1) with τ2 > 1 and σ2

ϕ > 0. Then,
for real numbers r ≥ 0 and λ > 0, we have, as n → ∞:

(a) |Zn|r
a.s.−→ |Z|r,

(b) τ−rn
∑

θt|Xt−1|r − |Z|rτ−rn
∑

τ r(t−1)θt
a.s.−→ 0,

(c) τ−(r+λ)n
∑

θtX
r
t−1

a.s.−→ 0.

(3)

Remark 1 Setting θt = 1 in the result (b) in (3), one obtains

τ−rn
∑

|Xt−1|r
a.s.−→ (τ r − 1)−1|Z|r. (4)

The result (ii) in (2) is a special case of (4) with r = 2.

We use the following lemma to prove Proposition 1:

Lemma 1 Let r and τ be real numbers such that r > 0 and τ > 1. Let {θt} be a sequence
of i.i.d.real-valued random variables with E(|θt|) < ∞. Define a random variable Sn so that
Sn ≡ τ−rn

∑
τ r(t−1)θt. Then, Sn

a.s.−→ S as n → ∞, where S is a real-valued random variable
such that S = Op(1), i.e., S is bounded in probability. If Pr(θt ≥ 0) = 1 and Pr(θt = 0) < 1,
then Pr(S > 0) = 1.

Proof It is easy to check that, S2, ..., Sn satisfy that Sn = τ−rSn−1 + τ−rθn with S1 = τ−rθ1,
i.e., Sn follows an asymptotically stationary AR(1) process. Hence, as n → ∞, Sn converges
almost surely to its stationary solution S with mean E(θt)/(τ r − 1) < ∞ (see, for example,

3For example, one can show that if ϕt ∼ N(0, σ2
ϕ) with σ2

ϕ < 2.4212, then η < 0. The proof is available from
the author upon request.
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Brandt, 1986). Because the mean is finite, S is Op(1). When Pr(θt ≥ 0) = 1, we obviously have
Pr(S ≥ 0) = 1. Moreover, we have

Pr(S = 0) = Pr
(

lim
n→∞

Sn = 0
)

= Pr (θt = 0 for all t ≥ s) for some 1 ≤ s
= lim

n→∞

∏n
t=s Pr(θt = 0)

= 0.

(5)

Thus, we have Pr(S > 0) = 1 . ¤

Here, we prove Proposition 1 based on the result (i) in (2) and Lemma 1.

Proof of Proposition 1 Part (a) follows from the result (i) and the continuous mapping
theorem (see van der Vaart, 1998, Theorem 2.3, p.7). The proof of part (b) is similar to that of
Theorem 1(ii) in Hwang and Basawa (2005). Following Hwang and Basawa (2005), we repeatedly
use the Toeplitz lemma.4 Let {at} be a sequence of nonnegative numbers and xn be an arbitrary
converging sequence such that xn → x as n → ∞. The Toeplitz lemma states that if

∑
at → ∞

as n → ∞, then (
∑

at)−1
∑

atxt → x as n → ∞.
Because the case r = 0 is trivial, we consider only the case r > 0. The case Pr(θt = 0) = 1

is also trivial, and hence, hereafter, we assume that Pr(θt = 0) < 1. In what follows, we first
prove part (b), then prove part (c). We have∣∣τ−rn

∑
θt|Xt−1|r − τ−rn

∑
τ r(t−1)θt|Z|r

∣∣ ≤ τ−rn
∑

τ r(t−1)|θt| |ut|,

where ut ≡ τ−r(t−1)|Xt−1|r−|Z|r. From part (a), ut
a.s.−→ 0 as t → ∞. In other words, ut(w) → 0

as t → ∞ for almost every ω ∈ Ω. From Lemma 1, we have that
∑

τ r(t−1)|θt(w)| → ∞ for
almost every ω ∈ Ω. Thus, it follows from the Toeplitz lemma that(∑

τ r(t−1)|θt(w)|
)−1 ∑

τ r(t−1)|θt(w)| |ut(w)| −→ 0, as n → ∞, (6)

for almost every ω ∈ Ω, or (
∑

τ r(t−1)|θt|)−1
∑

τ r(t−1)|θt||ut|
a.s.−→ 0. From (6) and Lemma 1, we

have, as n → ∞, that

τ−rn
∑

τ r(t−1)|θt||ut| =
(
τ−rn

∑
τ r(t−1)|θt|

) (∑
τ r(t−1)|θt|

)−1 ∑
τ r(t−1)|θt||ut|

a.s.−→ 0,

which completes the proof of part (b).
Next, we prove part (c). From Lemma 1, we have, as n → ∞,

τ−λnτ−rn
∑

τ r(t−1)|θt|
a.s.−→ 0. (7)

From (7), parts (a) and (b), we have∣∣τ−λnτ−rn
∑

θtX
r
t−1

∣∣ ≤ τ−λnτ−rn
∑

|θt||Xt−1|r
= τ−λn

(
τ−rn

∑
|θt||Xt−1|r − |Z|rτ−rn

∑
|θt|τ r(t−1)

)
+|Z|rτ−λnτ−rn

∑
τ r(t−1)|θt|

a.s.−→ 0,

(8)

which completes the proof of part (c). ¤

4See, for example, van der Vaart (1998, Problem 6, p.137) and Shorack (2000, p.205).
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3 MT, DF–UR, and Lee Tests

3.1 Definition of the MT test

McCabe and Tremayne (1995) derive a LBI test for the null of σ2
ϕ = 0 against the alternative of

σ2
ϕ > 0 assuming that ϕ = 1 in (1), i.e., the null hypothesis is a UR process and the alternative

hypothesis is a STUR process. The test has been called the MT test. Specifically, we consider
the MT test in Corollary 3 of McCabe and Tremayne (1995, p.1021), in which the nuisance
parameters σ2

ε and κ2
ε are replaced by their natural estimators under the null hypothesis. Given

n observations, X1, ..., Xn, the MT test statistic MTn is defined as

MTn ≡ κ̃−1
ε,nσ̃−2

ε,nn−3/2
∑

X2
t−1

[
(∆Xt)2 − σ̃2

ε,n

]
, (9)

where ∆Xt = Xt − Xt−1, σ̃2
ε,n = n−1

∑
(∆Xt)2 and κ̃ε,n = [n−1

∑
(∆Xt)4 − σ̃4

ε,n]1/2. Because
∆Xt = εt under the null hypothesis, one can interpret the MT test as examining whether or not
the covariance between X2

t−1 and ε2
t is zero. The asymptotic null distribution of the MT test is

non-standard and its critical values are tabulated in Table 1 in McCabe and Tremayne (1995).

3.2 Inconsistency of the MT test against a class of ERCA(1) models

We assume the next condition, which is the same as Condition (C2) in Hwang and Basawa
(2005), namely,

(C1) The limiting random variable Z2 satisfies that Pr(Z2 > 0) > 0.

Condition (C1) is motivated by the result (iii) in (2), which implies that if Pr(Z2 > 0) = 1, then
a random variable ϕ + ϕt must be a binary random variable that takes τ or −τ . Furthermore,
Hwang and Basawa (2005) show that if η < 0, then Pr(Z2 > 0) = 0. Hence, Condition (C1)
automatically excludes the case of η < 0. Because of these reasons, Hwang and Basawa (2005)
argue that it is reasonable to conduct an analysis under (C1) for ERCA(1) models belonging to
S2, i.e., ERCA(1) models with η ≥ 0.

Let Pr∗ denote the conditional probability measure conditioned on {Z2 > 0}, i.e., Pr∗(·) =

Pr(·|Z2 > 0). We use notations “
a.s.(∗)−→ ” and “O∗

p(1)” to emphasize that those statements
are made under Pr∗. Whenever we use these notations, it is implicit that the statements are
conditioned on Z2 > 0.

To prove the inconsistency of the MT test we use the following lemma, which shows that the
results in Proposition 1 and Lemma 1 hold under the conditional probability measure.

Lemma 2 Assume the same conditions as in Lemma 1 and Proposition 1. Additionally, assume
that Condition (C1) is satisfied. Then, all results in Lemma 1 and Proposition 1 hold under
Pr∗, that is, as n → ∞,

for r ≥ 0 and λ > 0,

(a) |Zn|r
a.s.(∗)−→ |Z|r, (b) τ−rn

∑
θt|Xt−1|r − |Z|rτ−rn

∑
θtτ

r(t−1) a.s.(∗)−→ 0,

(c) τ−(r+λ)n
∑

θtX
r
t−1

a.s.(∗)−→ 0,
for r > 0,

(d) τ−rn
∑

θtτ
r(t−1) = Sn

a.s.(∗)−→ S such that S = O∗
p(1),

(e) If Pr(θt ≥ 0) = 1 and Pr(θt = 0) < 1, then Pr∗(S > 0) = 1.

Proof For an event E, if Pr(E) = 1 and Pr(Z2 > 0) > 0, we must have Pr(E|Z2 > 0) = 1
because Pr(E) = Pr(Z2 > 0)Pr(E|Z2 > 0) + Pr(Z2 = 0)Pr(E|Z2 = 0) and Pr(Z2 > 0) +
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Pr(Z2 = 0) = 1. Thus, parts (a) ∼ (c) follow from the definition of almost sure convergence and
Lemma 1 and Proposition 1. It is easy to prove parts (d) and (e) by applying similar arguments.
¤

From the argument in the above proof, it is clear that a.s.−→ implies
a.s.(∗)−→ . However, the converse

is in general not true.
Now, we are ready to show the inconsistency of the MT test against ERCA(1) models that

satisfy Condition (C1).

Proposition 2 Assume that {Xt} follows the RCA(1) model defined as in (1) with τ2 > 1
and σ2

ϕ > 0. Assume that Condition (C1) holds for the limiting random variable Z2. Then,
lim

n→∞
Pr(|MTn| > M) ̸= 1 for any real number M .

Remark 2 Proposition 2 implies that the MT test defined in (9) is not consistent, at any
nominal level, against ERCA(1) models that satisfy Condition (C1). It, in turn, implies that
the MT test is inconsistent against STUR processes that belong to this class of ERCA(1) models.

Proof Consistency of the MT test against an alternative implies that

lim
n→∞

Pr(|MTn| > M) = 1. (10)

Note that

lim
n→∞

Pr(|MTn| > M) = Pr(Z2 > 0) lim
n→∞

Pr(|MTn| > M |Z2 > 0)

+ Pr(Z2 = 0) lim
n→∞

Pr(|MTn| > M |Z2 = 0).
(11)

Thus, if limn→∞ Pr(|MTn| > M) = 1, then we must have limn→∞ Pr(|MTn| > M |Z2 > 0) = 1
because Pr(Z2 > 0) + Pr(Z2 = 0) = 1. However, we will show that limn→∞ Pr(|MTn| >
M |Z2 > 0) ̸= 1 when the underlying data generating process is an ERCA(1) model that satisfies
Condition (C1).

Write the test statistic MTn defined in (9) as

MTn = AnB−1
n C−1/2

n , (12)

where An ≡ τ−4n
∑

X2
t−1

[
(∆Xt)2 − σ̃2

ε,n

]
, Bn ≡ τ−2n

∑
(∆Xt)2 and Cn ≡ τ−4n

∑
(∆Xt)4 −

n−1B2
n. Let ψt ≡ ϕ + ϕt − 1. Then Bn is rewritten as

Bn = τ−2n
∑

(ψtXt−1 + εt)2 = τ−2n
∑

ψ2
t X

2
t−1 + 2τ−2n

∑
Xt−1εtψt + τ−2n

∑
ε2
t . (13)

The assumptions in (1) imply that E(ψk
t εj

t ) = E(ψk
t )E(εj

t ) < ∞ for 0 ≤ k ≤ 4 and 0 ≤ j ≤ 4.
Hence, Lemma 2(d) implies that there exists a limiting random variable, Sr,k, such that, as
n → ∞,

τ−rn
∑

ψk
t τ r(t−1) a.s.(∗)−→ Sr,k for r > 0 and 0 ≤ k ≤ 4. (14)

(Note that when k = 0, Sr,k is degenerated at (τ r −1)−1). From (14) and Lemma 2(b), we have,
as n → ∞,

τ−rn
∑

ψk
t |Xt−1|r

a.s.(∗)−→ |Z|rSr,k. (15)

From (15), the first term in (13) converges so that

τ−2n
∑

ψ2
t X

2
t−1

a.s.(∗)−→ Z2S2,2. (16)
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From Lemma 2(c), the second term in (13) converges almost surely
(

a.s.(∗)−→
)

to zero. Because

τ > 1 and ε2
t is i.i.d.with E(ε2

t ) = σ2
ε < ∞, we have τ−2n

∑
ε2
t = (τ−2nn)(n−1

∑
ε2
t )

a.s.−→(
and hence

a.s.(∗)−→
)

0. Thus, we have

Bn
a.s.(∗)−→ Z2S2,2. (17)

From (17), we immediately see that the second term of Cn, n−1B2
n, converges almost surely(

a.s.(∗)−→
)

to zero.

At this point, it is convenient to consider the convergence of τ−(j+k)n
∑

Xj
t−1(∆Xt)k, where

j and k are integers such that 0 ≤ j ≤ 4, 0 ≤ k ≤ 4, j + k are even and 2 ≤ j + k. By the
binomial theorem, we have

τ−(j+k)n
∑

Xj
t−1(∆Xt)k = τ−(j+k)n

∑
Xj

t−1(ψtXt−1 + εt)k

= τ−(j+k)n
∑

ψk
t Xj+k

t−1 + kτ−(j+k)n
∑

Xj+k−1
t−1 ψk−1

t εt

+ · · · + τ−(j+k)n
∑

Xj
t−1ε

k
t .

(18)

From Lemma 2(c), all terms, except for the first term, on the right-hand side in (18) converge
almost surely to zero. Hence, from (15), we have

τ−(j+k)n
∑

Xj
t−1(∆Xt)k a.s.(∗)−→ Zj+kSj+k,k. (19)

The result in (17) is a special case of (19) with j = 0 and k = 2.
From (17) and (19), it readily follows that

Cn
a.s.(∗)−→ Z4S4,4. (20)

and
An = τ−4n

∑
X2

t−1(∆Xt)2 − τ−2nσ̃2
ε,nτ−2n

∑
X2

t−1
a.s.(∗)−→ Z4S4,2.

(21)

From (12), (17), (20) and (21), we have

MTn
a.s.(∗)−→ S4,2S

−1
2,2S

−1/2
4,4 , (22)

which is O∗
p(1). ¤

3.3 Consistency of the DF–UR and Lee Tests

Let ϕ̂n ≡
(∑

X2
t−1

)−1 ∑
XtXt−1, namely, ϕ̂n is the OLS estimator for ϕ under the null hypoth-

esis of σ2
ϕ = 0. We consider the two well–known DF–UR tests, which are proposed by Dickey

and Fuller (1979). The first one is defined as DFϕ,n ≡ n(ϕ̂n − 1). We call this test the “DF ϕ

test.” The second one is defined as DFt,n ≡ σ̂−1
ε,n

[(
ϕ̂n − 1

) (∑
X2

t−1

)1/2
]
, which is the t test of

the OLS estimator, where σ̂ε,n is the OLS estimate of σε, defined as σ̂ε,n ≡ [n−1
∑

ε̂2
t,n]1/2 and

ε̂t,n ≡ Xt − ϕ̂nXt−1.5 We call this test the “DF t test.” Note that here we use the OLS estimate
of ϕ unlike the MT test.

5Alternatively, bσε,n is often defined as [(n−1)−1 P

bε2
t,n]1/2. These two definitions are asymptotically equivalent.
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We also consider the Lee test, which is proposed by Lee (1998). The Lee test statistic Ln is
defined as6

Ln ≡ κ̂−1
ε,nν̃−1

n n−1/2
∑

X2
t−1(ε̂

2
t,n − σ̂2

ε,n),

where ν̃n ≡ [n−1
∑

X4
t−1 − (n−1

∑
X2

t−1)
2]1/2 and κ̂ε,n ≡ [n−1

∑
ε̂4
t,n − σ̂4

ε,n]1/2. The Lee test is
not a test for a UR; however, it is closely related to the MT test. The Lee test is derived as a
LBI test for the null of a stationary AR(1) model against the alternative of a stationary RCA(1)
model and can be used as a complement of the MT test (see Nagakura (2009) for more details).
Thus, it is of interest to investigate the behavior of the Lee test when the true data generating
process follows the ERCA(1) model.

Throughout this subsection, we assume the following condition:

(C2) The limiting random variable Z2 satisfies that Pr(Z2 > 0) = 1.

The result (iii) in (2) implies that, under this condition, a random variable ϕ + ϕt is a binary
random variable such that ϕ+ϕt = τ with probability α and ϕ+ϕt = −τ with probability 1−α,
where 0 < α < 1. In this case, the conditions τ < 1, τ = 1 and τ > 1 are equivalent to η < 0,
η = 0 and η > 0, respectively. Note that, under Condition (C2), there is no difference between
a.s.(∗)−→ and a.s.−→.

Hwang et al. (2006) consider the above binary RCA(1) model with τ = 1. With the additional
assumption that εt is symmetrically distributed, Hwang et al. (2006) show that ϕ̂n is a consistent
estimator for E(ϕ + ϕt) = 2α− 1. They also show the asymptotic normality of a weighted least
square estimator and propose a test regarding the criticality parameter τ . We consider the case
of τ > 1. For the usual RCA(1) model in (1) with τ > 1, Hwang and Basawa (2005) has shown
that ϕ̂n is an inconsistent estimator for ϕ. Our result in (23) complements the results of Hwang
and Basawa (2005) and Hwang et al. (2006) by showing the asymptotic distribution of ϕ̂n for
the binary RCA(1) model with τ > 1.

Proposition 2 implies that the MT test is inconsistent even against the ERCA(1) models
that satisfy Condition (C2). By contrast, Proposition 3 below shows that the two DF–UR and
Lee tests are, at any nominal level, consistent against the ERCA(1) models.

Proposition 3 Assume that {Xt} follows the RCA(1) model defined in (1) with τ2 > 1 and
σϕ > 0. Assume that Condition (C2) holds for the limiting random variable Z2. Then,
lim

n→∞
Pr(|DFϕ,n| > M) = 1, lim

n→∞
Pr(|DFt,n| > M) = 1 and lim

n→∞
Pr(|Ln| > M) = 1 for any

real number M .

Proof
(DF ϕ test) From (19), it follows that

n−1DFϕ,n = ϕ̂n − 1 =
(
τ−2n

∑
X2

t−1

)−1 (
τ−2n

∑
Xt−1∆Xt

)
a.s.−→ (τ2 − 1)S2,1, (23)

which completes the proof of the first part of Proposition 3.
(DF t test) From (19) and (23), we have

τ−2n
∑

ε̂2
t,n = τ−2n

∑
[∆Xt − (ϕ̂n − 1)Xt−1]2

= τ−2n
∑

(∆Xt)2 + (ϕ̂n − 1)2τ−2n
∑

X2
t−1 − 2(ϕ̂n − 1)τ−2n

∑
Xt−1∆Xt−1

a.s.−→ Z2S2,2 + (τ2 − 1)2S2
2,1(τ

2 − 1)−1Z2 − 2(τ2 − 1)S2,1Z
2S2,1

= Z2S2,2 − (τ2 − 1)Z2S2
2,1.

(24)

6We consider a simplified form of the Lee test, considered in Nagakura (2009), that ignores asymptotically
negligible terms.
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Thus, we have

n−1/2DFt,n = (ϕ̂n − 1)
(
τ−2n

∑
X2

t−1

)1/2 [
τ−2n

∑
ε̂2
t

]−1/2

a.s.−→ (τ2 − 1)1/2S2,1

[
S2,2 − (τ2 − 1)S2

2,1

]−1/2 (25)

which completes the proof of the second part of Proposition 3.
(Lee test) Ln is rewritten as

Ln = n1/2ÂnĈ−1/2
n D̂−1/2

n , (26)

where Ân ≡ τ−4n
∑

X2
t−1[ε̂

2
t,n − σ̂2

ε,n], Ĉn ≡ τ−4n
∑

ε̂4
t,n − n−1B̂2

n, D̂n ≡ τ−4n
∑

X4
t−1 −

n−1(τ−2n
∑

X2
t−1)

2, and B̂n ≡ τ−2n
∑

ε̂2
t,n. From (19) and (24), we have

D̂n
a.s.−→ (τ4 − 1)−1Z4. (27)

From (19) and (23), we have

τ−4n
∑

ε̂4
t,n = τ−4n

∑
[∆Xt − (ϕ̂n − 1)Xt−1]4

= τ−4n
∑

(∆Xt)4 − 4(ϕ̂n − 1)τ−4n
∑

Xt−1(∆Xt)3 + 6(ϕ̂n − 1)2τ−4n
∑

X2
t−1(∆Xt)2

−4(ϕ̂n − 1)3τ−4n
∑

X3
t−1(∆Xt) + (ϕ̂n − 1)4τ−4n

∑
X4

t−1,
a.s.−→ Z4S4,4 − 4(τ2 − 1)S2,1Z

4S4,3 + 6(τ2 − 1)2S2
2,1Z

4S4,2

−4(τ2 − 1)3S3
2,1Z

4S4,1 + (τ2 − 1)4S4
2,1(τ

4 − 1)−1Z4.

Thus, because n−1B̂n
a.s.−→ 0 by (24), we have

Ĉn
a.s.−→ Z4[S4,4 − 4(τ2 − 1)S2,1S4,3 + 6(τ2 − 1)2S2

2,1S4,2

−4(τ2 − 1)3S3
2,1S4,1 + (τ2 − 1)4(τ4 − 1)−1S4

2,1].
(28)

From (19), we have

Ân = τ−4n
∑

X2
t−1{[∆Xt − (ϕ̂n − 1)Xt−1]2 − σ̂2

ε,n}
= τ−4n

∑
X2

t−1(∆Xt)2 − 2(ϕ̂n − 1)τ−4n
∑

X3
t−1∆Xt

+(ϕ̂n − 1)2τ−4n
∑

X4
t−1 − τ−2nσ̂2

ε,nτ−2n
∑

X2
t−1

a.s.−→ Z4S4,2 − 2(τ2 − 1)S2,1Z
4S4,1 + (τ2 − 1)2S2

2,1(τ
4 − 1)−1Z4.

(29)

From (26), (27), (28), and (29), we eventually have

n−1/2Ln
a.s.−→

(τ4 − 1)1/2{S4,2 − 2(τ2 − 1)S2,1S4,1 + (τ2 − 1)2(τ4 − 1)−1S2
2,1}

[S4,4 − 4(τ2 − 1)S2,1S4,3 + 6(τ2 − 1)2S2
2,1S4,2 − 4(τ2 − 1)3S3

2,1S4,1 + (τ2 − 1)4(τ4 − 1)−1S4
2,1]1/2

,

which completes the proof of the last part of Proposition 3. ¤

4 Simulation

In this section, we conduct a simulation experiment to confirm Propositions 2 and 3. Let
ρt = ϕ + ϕt. We generate samples from a binary RCA model, namely, ρt = τ with probability α
and ρt = −τ with probability 1 − α. Here, we set τ = 1.1. We examine three cases of α = 0.2,
0.5, and 0.7. The number of samples is set at n = 200, 500, or 1000. The number of replications
is 10, 000. We perform all tests at the nominal level of 5 %.7

Table 1 reports the results. One can see that in fact, MT test does not have power even when
n = 1000, wheras DF-ϕ, DF-t, and Lee tests increases their powers as n increases, which implies
that they are consistent tests. When we normalize the statistics as the proof of Proposition 3
suggests, then the powers of DF-ϕ, DF-t, and Lee tests do not increases, which is consistent
with Proposition 3.

7For the nominal level of 5%, the critical values of the MT, DF ϕ, DF t, and Lee tests are 0.81, −8.1, −1.95,
and 1.64, respectively, which are taken from Table 1 in McCabe and Tremayne (1995), Tables B.5 and B.6 in
Hamilton (1994), and the standard normal distribution table, respectively. The rejection regions of the MT and
Lee tests are in the upper tail areas, while the rejection regions of the both DF tests are lower tail areas.
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Table 1: Rejection Percentages (Power) at 5 % Nominal Level
α = 0.2 α = 0.5 α = 0.7

n = 200
MTn 0.000 0.000 0.001
DFϕ,n 1.000 1.000 0.970
DFt,n 1.000 1.000 1.000
Ln 0.892 0.999 0.974

n−1DFϕ,n 0.000 0.000 0.000
n−1/2DFt,n 0.000 0.000 0.000

n−1Ln 0.000 0.000 0.000
n = 500
MTn 0.000 0.000 0.000
DFϕ,n 1.000 1.000 0.981
DFt,n 1.000 1.000 1.000
Ln 0.939 1.000 0.992

n−1DFϕ,n 0.000 0.000 0.000
n−1/2DFt,n 0.001 0.000 0.000
n−1/2Ln 0.000 0.000 0.000
n = 1000

MTn 0.000 0.000 0.001
DFϕ,n 1.000 1.000 0.982
DFt,n 1.000 1.000 1.000
Ln 0.960 1.000 0.995

n−1DFϕ,n 0.000 0.000 0.000
n−1/2DFt,n 0.001 0.000 0.000
n−1/2Ln 0.000 0.000 0.000

5 Concluding Remarks

In this note, we developed the asymptotic theory for ERCA(1) models considered in Hwang
and Basawa (2005). Applying the results, we showed that a LBI test proposed by McCabe
and Tremayne (1995) for the null of a UR process against the alternative of a STUR process
is inconsistent against a class of ERCA(1) models to which a class of STUR processes belongs.
We also showed that the DF–UR and Lee tests are consistent against a particular case of this
class of ERCA(1) models. Lastly, it is worth remarking that the simulation results in McCabe
and Tremayne (1995) and Nagakura (2009) demonstrate that the power of the MT test is very
low and does not go to 1 as T increases against STUR processes with moderately large σϕ, even
when those STUR processes satisfy the condition η < 0. This implies that the condition η ≥ 0
is not a necessary condition for the inconsistency of the MT test.
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