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1 Introduction

The variance of �nancial asset returns is known to change over time. More speci�cally,
the variance, or the square root of the variance (volatility), tends to be large (small)
following successive large (small) variances in previous periods. This phenomenon
is known as \volatility clustering". A huge number of researchers have tried to
estimate these changing variances because their values are crucially important for
option pricing, risk management, optimal portfolio construction, etc. There are two
popular classes of models for this sort of volatility dynamics, namely, generalized
autoregressive conditional heteroskedastic (GARCH) models and stochastic volatility
(SV) models. Based on GARCH or SV models with estimated model parameters, one
can estimate the changing variances. See, for example, Bollerslev, Engle and Nelson
(1994), Palm (1996) and Zivot (2008) for comprehensive surveys on GARCH models,
Ghysels, Harvey and Renault (1996) for a review of some of the older papers on SV
models and Shephard (2005) for a list of selected papers in the SV literature.

Recently, a new class of estimators for changing variances, or integrated variance
(IV), has been developed by Barndor�-Nielsen and Shephard (2001, 2002), Andersen,
Bollerslev, Diebold and Ebens (2001) and Andersen, Bollerslev, Diebold and Labys
(2001). The IV is a measure of the variability of �nancial asset returns over a speci�ed
period, for example, a day (a formal de�nition of IV will be given in Section 2).
The estimator is called the realized variance (RV). The RV employs high frequency
�nancial time series data such as minute-by-minute return data or entire records of
quote or transaction price data. The RV is a model-free estimator in the sense that
we do not have to specify the volatility dynamics. Under moderate assumptions, the
RV converges in probability to the IV, as the sampling frequency tends to be high.

One of the key assumptions needed for the consistency of the RV is that there are
no measurement errors in observed log-prices. The measurement error is called mi-
crostructure noise (MN) and emerges because of, for example, discreteness of prices,
bid{ask bounce and irregular trading. When this assumption is violated, the RV is
no longer a consistent estimator for the IV. It can be shown that, under the existence
of MN, the RV diverges as the sampling frequency increases. Several alternative
estimators of the RV, which are consistent even under the existence of MN, have
been proposed by Zhou (1996), Zhang, Mykland and A�lt-Sahalia (2005), Hansen and
Lunde (2006) and Bandi and Russell (2006). See also Bandi and Russell (2008), who
consider a mean-squared-error optimal sampling theory for reducing the e�ect of MN.

We call the RV calculated with observed log-prices contaminated by MN the noise-
contaminated RV (NCRV) and refer to the component in the NCRV associated with
the MN as the MN component (a formal de�nition of the NCRV and MN component
is given in Section 2.3). The objective of this paper is to estimate the IV and MN
components simultaneously. Our approach is an extension of the state space method
proposed by Barndor�-Nielsen and Shephard (2002), who consider a situation with
no MN. In this situation, Barndor�-Nielsen and Shephard (2002) show that the IV
follows an ARMA process1 for some speci�c continuous{time SV models. This enables
us to represent the RV in a state space form, namely, the sum of the IV and an
unobservable white noise (discretization error). Then, given the state space form

1We interchangeably use the term \ARMA process" and \ARMA model" in this paper.
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parameters, we can estimate the IV by applying the Kalman �lter. This result is
further developed by Meddahi (2003), who shows that the IV follows an ARMA
process for a general class of continuous{time SV models, which is called the square
root stochastic autoregressive variance (SR{SARV) model (Andersen, 1994; Meddahi
and Renault, 2004). Meddahi (2003) derives explicit relationships between the ARMA
model parameters and the SV model parameters.

We develop the state space method by Barndor�-Nielsen and Shephard (2002) for
dealing with the problem of MN. We assume that an observed log-price is the sum of
the true log-price and an i.i.d. MN. We represent the NCRV by a state space form
in that the NCRV is the sum of three unobserved components: the IV, which follows
an ARMA process, a white noise (discretization error) and a MN component, which
follows a MA(1) process. By applying the results of Granger and Morris (1976), we
show that the sum of these three components, namely, the NCRV, follows an ARMA
process. This ARMA process can be regarded as the (unique) reduced form of the
state space form. The existence of MN component introduces many complexities in
the identi�cation of the state space form parameters. We show that the number of
state space form parameters of the NCRV is more than the autocovariance structure of
the NCRV can uniquely determine. In other words, the state space form parameters of
the NCRV are not e�ectively identi�ed in the sense that di�erent sets of parameter
values can give the same autocovariance structure (i.e., the same autocovariance
generating function). See Section 4 for more details.

We show that the state space form parameters can be expressed as functions
of the unconditional mean and variance parameters of the underlying continuous{
time SV model and parameters regarding MN (the variances of the MN and its
square). Then, we prove that these parameters are uniquely identi�ed. We illustrate
how to estimate these identi�able parameters and the state space form parameters.
With estimates of the state space form parameters, we can estimate the IV and MN
components simultaneously by applying the Kalman �lter to the state space form.
One advantage of our method is that it can �lter out not only the MN components
but also the discretization errors. The proposed method is applied to yen/dollar
spot exchange rate data. We �nd that the magnitude of the (daily) MN component
is, on average, about 21% { 48% of the (daily) NCRV, depending on the sampling
frequency.

The rest of the paper is organized as follows. In the next section, we introduce the
class of SV models employed in this paper and de�ne formally the RV, IV, MN and
MN component. In Section 3, we brie
y summarize the results in Meddahi (2003) on
the ARMA representation of the IV. In Section 4, we explain our state space approach
in detail. In Section 5, we conduct an empirical analysis applying our method to the
yen/dollar spot exchange rate. The last section provides a summary and concluding
remarks. Appendix A provides details on the derivations of the equations in the text.
Some results are presented in Appendix B.
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2 SR-SARV model, IV, RV and MN

2.1 Square root stochastic autoregressive variance (SR-SARV)
model

Let p(t) be the log of the (e�cient) spot price at time t. Throughout the paper, we
assume that p(t) follows the SR{SARV model considered in Meddahi (2003), which
is given by the following class of continuous{time SV models:

dp(t) = �(t)dWt; �2(t) = �2 + !1P1(f(t)) + !2P2(f(t)); (1)

where f(t) is a state-variable process and the functions P1(�) and P2(�) are de�ned so
that:

E[P1(f(t))] = E[P2(f(t))] = 0; var[P1(f(t))] = var[P2(f(t))] = 1;
cov[P1(f(t)); P2(f(t))] = 0;

E[P1(f(t+ h))jf(s); p(s); s � t] = exp(��1h)P1(f(t));
E[P2(f(t+ h))jf(s); p(s); s � t] = exp(��2h)P2(f(t)); 8h > 0;

(2)

where �1 and �2 are positive real numbers. The unconditional mean and variance of
�2(t) are E[�2(s)] = �2 and var[�2(s)] = !2

1 + !2
2, respectively. Let �1 = exp(��1)

and �2 = exp(��2). In the rest of the paper, we work mainly with �1 and �2 instead
of �1 and �2 because it is more convenient for describing our results. Thus, the model
has a total of �ve free parameters: �2, !2

1, !
2
2, �1 and �2.

The model given in (1) and (2) is called the \two{factor SR{SARV model". When
!2 = 0, the model is refereed to as the \one{factor SR{SARV model". The SR-SARV
model includes many known models, such as constant elasticity of volatility processes,
GARCH di�usion models (Nelson, 1990), eigenfunction stochastic volatility models
(Meddahi, 2001) and positive Ornstein{Uhlenbeck Levy-driven models (Barndor�-
Nielsen and Shephard, 2001). See Meddahi (2003) for more details.

2.2 Integrated and realized variances

Given the process of �2(t), the IV is de�ned as

IVt �
Z t

t�1

�2(s)ds; t = 1; 2; :::;

where the unit of t is determined depending on the research objective. For example,
if the researcher is interested in changes in variances of daily (weekly) returns, t is
interpreted as a day (week).

Under moderate assumptions, we can consistently estimate the IV by the estima-
tor known as the RV, which is de�ned as

RV
(m)
t �

mX
i=1

r
(m)2

t�1+ i
m

;

where r
(m)
t � p(t) � p(t � 1

m
) =

R t

t� 1

m

�(s)dW (s), and m is a positive integer. Here,

and hereafter, the notation \(m)" implies that its value depends on the sampling
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frequency m. For example, if t denotes a day and we take observations every �ve
minutes, then m = 288. In this case, r

(288)
t denotes a �ve-minute return, because one

day is 5 � 288 minutes. It is well known that, as m ! 1, RV
(m)
t

p�! IVt (see, e.g.,
Barndor�-Nielsen and Shephard, 2002).

For the two{factor SR{SARV model, the variance and autocovariances of IVt are
expressed in terms of the underlying SV model parameters as:

var[IVt] =
2!2

1(�1 � log �1 � 1)

(log �1)2
+
2!2

2(�2 � log �2 � 1)

(log �2)2
;

cov[IVt; IVt�1] =
!2
1(1� �1)

2

(log �1)2
+
!2
2(1� �2)

2

(log �2)2
; and

cov[IVt; IVt�2] =
!2
1�1(1� �1)

2

(log �1)2
+
!2
2�2(1� �2)

2

(log �2)2
:

(3)

Let d
(m)
t � RV

(m)
t � IVt and �

2(m)
d � var[d

(m)
t ]. For m � 1, we have:

�
2(m)
d =

2�4

m
+

4!2
1m

(log �1)2

�
�

1

m

1 � log �
1

m

1 � 1
�
+

4!2
2m

(log �2)2

�
�

1

m

2 � log �
1

m

2 � 1
�
: (4)

It can be shown that �
2(m)
d ! 0 asm!1. See Meddahi (2003) for the above results.

2.3 MN component

Now assume that the observed log-price p�(t) is contaminated by a measurement
error or MN so that:

p�(t) = p(t) + "(t):

We assume the following properties of MN "(t).

Assumption 1

(a) "(t) � i:i:d:(0; �2
") with !2

" � var["2(t)] <1.

(b) "(t) is independent of p(s) for all s and t.

We do not assume any speci�c distribution for "(t). The observed return r
�(m)
t is

de�ned as:

r
�(m)
t � p�(t)� p�

�
t� 1

m

�
= r

(m)
t + e

(m)
t ; (5)

where e
(m)
t � "(t)� "(t� 1

m
). It is easy to show that

E
h
e
(m)
t

i
= 0; var

h
e
(m)
t

i
= 2�2

" and cov
h
e
(m)
t ; e

(m)

t� i
m

i
=

� ��2
" ; i = 1;

0 i � 2:
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Note that var[e
(m)
t ] and cov[e

(m)
t ; e

(m)

t� 1

m

] do not depend on m. We de�ne the NCRV,

denoted by RV
�(m)
t , as RV

�(m)
t �

mP
i=1

r
�(m)2

t�1+ i
m

. We write

RV
�(m)
t =

mX
i=1

�
r
(m)

t�1+ i
m

+ e
(m)

t�1+ i
m

�2
= RV

(m)
t + u

(m)
t ; (6)

where

u
(m)
t � 2

mX
i=1

r
(m)

t�1+ i
m

e
(m)

t�1+ i
m

+
mX
i=1

e
(m)2

t�1+ i
m

:

Note that, unlike RV
�(m)
t , u

(m)
t is not necessarily positive because the �rst term of u

(m)
t

may be negative. We call u
(m)
t an MN component. We propose a way of estimating

the MN component as well as the IV in a later section.
In Appendix A, we show that:

E
h
u
(m)
t

i
= 2m�2

" and

cov
h
u
(m)
t ; u

(m)
s

i
=

8<: 8�2
"�

2 + 2(2m� 1)!2
" + 4m�4

" t = s;
!2
" t = s� 1;
0 otherwise:

(7)

Thus, u
(m)
t has the autocovariance structure of a MA(1) process. Assume that the

MA(1) process is expressed as:

u
(m)
t = c(m)

u + �
(m)
t + �(m)

u �
(m)
t�1 ; �

(m)
t�1 � WN(0; �

2(m)
� ): (8)

The mean and autocovariances of u
(m)
t , in terms of c

(m)
u , �

(m)
u and �

2(m)
� , are:

E
h
u
(m)
t

i
= c

(m)
u and

cov
h
u
(m)
t ; u

(m)
s

i
=

8><>:
(1 + �

2(m)
u )�

2(m)
� t = s;

�
(m)
u �

2(m)
� t = s� 1;

0 otherwise:

(9)

Later, we utilize these two di�erent expressions of the moments of u
(m)
t to derive the

implicit relationships among the SV and MA(1) process parameters.

3 ARMA Representation of IV

In this section, we brie
y summarize the results in Meddahi (2003) on an ARMA
representation of IV for SR-SARV models.

3.1 One{factor case

Meddahi (2003, Proposition 3.1) shows that if the true process of p(t) follows a one{
factor SR{SARV model, then IVt follows an ARMA(1, 1) process:

IVt = cIV + �1IVt�1 + �t + �1�t�1; (10)

5



where �1 is de�ned as in the statement below (2), �t is a white noise process with

var(�t) = �2
� and cov(�t; d

(m)
s ) = 0 for all t and s. Other ARMA(1, 1) model pa-

rameters cIV , �1 and �2
� are expressed in terms of the one{factor SR-SARV model

parameters �2, !2
1 and �1 as:

cIV = (1� �1)�
2; �1 =

1�
p
1� 4�2

2�
;

�2
� =

(1 + �21)var[IVt]� 2�1cov[IVt; IVt�1]

1 + �21
;

(11)

where

� � ��1 + corr[IVt; IVt�1]

1 + �21 � 2�1corr[IVt; IVt�1]
:

It can be shown that � is equal to the �rst order autocorrelation of the MA process
in (10), i.e., �1=(1� �21). The corr[IVt; IVt�1] is given by

corr[IVt; IVt�1] =
(1� �1)

2

2(�1 � log �1 � 1)
:

Note that corr[IVt; IVt�1] is a function of �1 and does not depend on other SV model
parameters, which, in turn, implies that �1 is also a function of only �1. This is not
true for the two{factor case. This substantially simpli�es the identi�cation problem
of the state space form of the NCRV, as we will see in Section 4.

3.2 Two{factor case

Meddahi (2003, Proposition 3.3) shows that if the true process of p(t) belongs to the
two{factor SR{SARV model, then IVt follows an ARMA(2, 2) process:

IVt = cIV + (�1 + �2)IVt�1 � �1�2IVt�2 + �t + �1�t�1 + �2�t�2; (12)

where �1 and �2 are de�ned as in the statement below Equation (2), �t is a white

noise process with var(�t) = �2
� and cov(�t; d

(m)
s ) = 0 for all t and s. Let �1 = �1+�2

and �2 = ��1�2.2 Other ARMA(2, 2) model parameters in (12) cIV , �1, �2 and �2
�

are expressed in terms of the two{factor SR{SARV model parameters �2, !2
1, !

2
2, �1

and �2 as:

cIV = (1� �1 � �2)�
2; �1 =

1�p4s+ 1

2

�1
�2
; �2 =

p
4s+ 1� 2s� 1

2s
;

�2
� =

�1var[IVt]� 2�2cov[IVt; IVt�1]� 2�2cov[IVt; IVt�2]
1 + �21 + �22

;

(13)

2We can rewrite the ARMA(2, 2) form in (12) with a more familiar parameterization, i.e.,
IVt = cIV + �1IVt�1+ �2IVt�2+ �t+ �1�t�1+ �2�t�2. The expressions of �1 and �2 in terms of �1

and �2 are given as �1 =
�1+

p
�2
1
+4�2

2
and �2 =

�1�
p

�2
1
+4�2

2
, respectively.
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where

�1 = 1 + �21 + �22; �2 = �1(1� �2);

s � ��
2
2

�21

241 + 1

2�2
� sign(�2)

s�
1 +

1

2�2

�2

� �21
�22

35 ;
�1 � ��1(1� �2) + (1 + �21 � �2)corr[IVt; IVt�1]� �1corr[IVt; IVt�2]

(1 + �21 + �22)� 2�1(1� �2)corr[IVt; IVt�1]� 2�2corr[IVt; IVt�2]
;

�2 � ��2 � �1corr[IVt; IVt�1] + corr[IVt; IVt�2]
(1 + �22 + �21)� 2�1(1� �2)corr[IVt; IVt�1]� 2�2corr[IVt; IVt�2]

;

(14)

and sign(�2) = 1 if �2 > 0 and sign(�2) = �1 if �2 < 0. We assume that �2 6= 0,
which implies that �2 6= 0. As in the one{factor case, we can show that �1 =
(�1 + �1�2)=(1 + �21 + �22) and �2 = �2=(1 + �21 + �22), i.e., �1 and �2 are the �rst and
second order autocorrelations of the MA process in (12), respectively. See Meddahi
(2002, 2003) for more details.

4 State Space Approach

In this section, we explain our state space approach in detail. Our state space ap-
proach is in the same spirit as the state space method used in Barndor�-Nielsen
and Shephard (2002), who consider the situation without MN. First, we give a state
space form of the NCRV in Section 4.1. The existence of MN components requires
additional e�orts for checking the identi�cation of the state space form. In Section
4.2, we show that the state space form parameters are not identi�able; however, they
can be expressed as functions of fewer identi�able parameters. We illustrate how to
estimate these identi�able parameters in Section 4.3.

In what follows, we assume that !2 = 0 for ease of exposition. Corresponding
results for the two{factor case can be derived in a similar manner and are summarized
in the Appendix B.

4.1 State space form of the NCRV

Substituting RV
(m)
t = IVt + d

(m)
t into (6), we have:

RV
�(m)
t = IVt + d

(m)
t + u

(m)
t : (15)

From (8), (10) and (15), we have the following state space form of RV
�(m)
t :

Observation equation

RV
�(m)
t =

�
1 1 0 0

� 2664
IVt
u
(m)
t

�t

�
(m)
t

3775+ d
(m)
t ; (16a)

7



State equation2664
IVt
u
(m)
t

�t

�
(m)
t

3775 =

2664
cIV
c
(m)
u

0
0

3775+
2664
�1 0 �1 0

0 0 0 �
(m)
u

0 0 0 0
0 0 0 0

3775
2664
IVt�1
u
(m)
t�1

�t�1

�
(m)
t�1

3775+
2664
1 0
0 1
1 0
0 1

3775� �t
�
(m)
t

�
; (16b)

where24 d
(m)
t

�t
�
(m)
t

35 �
0B@
24 0
0
0

35 ;
264 �

2(m)
d 0 0
0 �2

� 0

0 0 �
2(m)
�

375
1CA : (16c)

Given the values of cIV , �1, �1, �
2
�, c

(m)
u , �

(m)
u , �

2(m)
� and �

2(m)
d , we can estimate IVt

and u
(m)
t by applying the Kalman �lter to the state space form.3 One problem of the

state space form is how to estimate those parameters. One may simply think that
we could estimate them directly from the state space form by, for example, quasi-
maximum likelihood (QML) estimation under Gaussian noise assumption. We show;
however, that this approach is not applicable for the state space form given in (16).

In general, parameters of a state space form are not necessarily identi�ed (see,
for example, Hamilton, 1994, p.388). More precisely, they are not identi�ed in the
sense that there are in�nitely many combinations of the parameters that give the
same autocovariance structure. Thus, we have to check whether state space form
parameters are uniquely identi�ed before proceeding to their estimation. We consider
this problem in the next subsection. In fact, we show that the above parameters in
the state space form cannot be uniquely identi�ed.

4.2 Identi�cation of model parameters

Because RV
�(m)
t is the sum of three components, IVt (an ARMA(1, 1) process),

d
(m)
t (a white noise process) and u

(m)
t (an MA(1) process), RV

�(m)
t itself follows an

ARMA(1, 2) process (see Granger and Morris, 1976) so that it is expressed as:

(1��1L)RV
�(m)
t = c

(m)
RV +(1+ �

(m)
1 L+ �

(m)
2 L2)�

(m)
t ; �

(m)
t � WN(0; �2(m)

� ): (17)

Note that the AR coe�cient �1 is the same as that of the IVt in (10). The ARMA
model representation of a state space form is commonly referred to as a reduced form
or ARMA reduced form. Parameters of the ARMA reduced form are identi�able.

From (8), (10) and (15), we have

(1� �1L)RV
�(m)
t = (1� �1L)IVt + (1� �1L)d

(m)
t + (1� �1L)u

(m)
t

= cIV + �t + �1�t�1 + d
(m)
t � �1d

(m)
t�1 + �

(m)
t

+(1� �1)c
(m)
u + (�

(m)
u � �1)�

(m)
t�1 � �1�

(m)
u �

(m)
t�2 :

(18)

3Note that here �t and �t do not follow a Gaussian distribution. In this case, the Kalman �lter
provides the best linear estimator. See Durbin and Koopman (2001) for more details on the Kalaman
�lter.

8



The two expressions on the right-hand sides in (17) and (18) are of the same process
and hence their means and autocovariances must be identical. The autocovariances
of the MA process in (17) are given as



(m)
0 = (1 + �

(m)2
1 + �

(m)2
2 )�

2(m)
� ; 


(m)
1 = (�

(m)
1 + �

(m)
1 �

(m)
2 )�

2(m)
� ;



(m)
2 = �

(m)
2 �

2(m)
� and 
j = 0 for j � 3:

(19)

It is shown in the Appendix A that the autocovariances of the MA process in (18)
are



(m)
0 = (1 + �21)�

2
� + (1 + �21)�

2(m)
d + [1 + (�(m)

u � �1)
2 + �21�

(m)2
u ]�

2(m)
� ; (20a)



(m)
1 = �1�

2
� � �1�

2(m)
d + (�(m)

u � �1 � �1�
(m)2
u + �21�

(m)
u )�

2(m)
� ; (20b)



(m)
2 = ��1�(m)

u �
2(m)
� ; (20c)

and 
j = 0 for j � 3. By equating the means of the MA processes in (17) and (18),
we have

c
(m)
RV = cIV + (1� �1)c

(m)
u : (20d)

Given the ARMA(1, 2) model parameters, c
(m)
RV , �1, �1, �2 and �

2(m)
� , we can calculate



(m)
j , j = 0; 1; 2. Then, unknown parameters in the equations (20a)�(20d) are only
the state space form parameters, cIV , �1, �

2
�, c

(m)
u , �

(m)
u , �

2(m)
� and �

2(m)
d . Observe

that there seven unknown parameters and only four equations. Hence, we cannot
uniquely identify these parameters from these equations. In other words, for a given
ARMA(1, 2) reduced form, there are in�nitely many sets of values of cIV , �1, �

2
�, c

(m)
u ,

�
(m)
u , �

2(m)
� and �

2(m)
d that give the same autocovariance structure as the ARMA(1,

2) reduced form.
In view of (7) and (9), we obtain the following equations:

c(m)
u = 2m�2

" ; (21a)

(1 + �(m)2
u )�

2(m)
� = 8�2�2

" + 2(2m� 1)!2
" + 4m�4

" ; (21b)

�(m)
u �

2(m)
� = !2

" : (21c)

Assuming that the MA parameter satis�es the invertibility condition, i.e., j�(m)
u j < 1,

we can solve the equations (21a) � (21c) for c
(m)
u , �

(m)
u and �

2(m)
� as:

c(m)
u = 2m�2

" ; �
2(m)
� =

!2
"

�
(m)
u

and �(m)
u = A�

p
A2 � 1; (22)

where A = 4�2�2"
!2"

+ 2m � 1 + 2m�4"
!2"
. The details of the calculation is given in the

Appendix A. Note that 0 < �
(m)
u < 1 because A > 1.

From (3), (11) and (22), we see that cIV , �1, �
2
�, c

(m)
u , �

(m)
u , �

2(m)
� and �

2(m)
d are

expressed as functions of �1, �
2, !2

1, �
2
" and !2

" .
4 To emphasize these relationships,

4They depend also on m, as the notation implies.
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we denote them as:

cIV (�1; �
2); �1(�1); �2

�(�1; !
2
1); c

(m)
u (�2

"); �
(m)
u (�2; �2

" ; !
2
");

�
2(m)
d (�1; �

2; !2
1) and �

2(m)
� (�2; �2

" ; !
2
"):

(23)

Note that �1 is a function of only �1 and hence can be assumed to be known (because
�1 is identi�ed from the reduced form). Substituting the expressions in (23) into
Equations (20a)�(20d), we have four equations for the four unknown parameters �2,
!2
1, �

2
" and !2

" . Hence, the order condition for identi�cation is satis�ed. However,
this result does not imply that one can uniquely identify �2, !2

1, �
2
" and !2

" .
To show the uniqueness of the identi�cation, we explicitly derive the representa-

tions of �2, !2
1, �

2
" and !2

" in terms of c
(m)
RV , �1, 


(m)
j , j = 0; :::; 2. In Appendix A,

we show that, given c
(m)
RV , �1, 


(m)
j , j = 0; :::; 2 and (23), Equations (20a)�(20d) are

uniquely5 solved for �2, !2
1, �

2
" and !2

" as:

!2
" = �


(m)
2

�1
; !2

1 =
(log �1)

2[�1

(m)
0 + (1 + �21)


(m)
1 +

1+�4
1

�1


(m)
2 ]

(1� �1)3(1 + �1)
; (24a)

�2
" =

s
c
(m)2
RV

2m2(1� �1)2
� (2m� 1)


(m)
2

2m�1
� 


(m)
0 � 2D!2

1 � 2

(m)
2

4m(1 + �21)
; (24b)

and

�2 =
c
(m)
RV

1� �1
� 2m�2

" ; where D = B +m(1 + �21)C; (24c)

B � �21 � 1� (1 + �21) log �1
(log �1)2

and C �
2
�
�

1

m

1 � 1� log �
1

m

1

�
(log �1)

2 : (24d)

These results imply that the four parameters, �2, !2
1, �

2
" and !

2
" are uniquely identi�ed

from the ARMA(1, 2) reduced form in (17). Hence, in principle, we can estimate
them. Again, it should be emphasized that these results do not imply that one can
directly estimate the state space form parameters but rather that one can estimate
the above four parameters by replacing the state space form parameters with the
functions of the four parameters. The estimates of the state space form parameters
are obtained by substituting the estimates of the four parameters into these functions.

4.3 Estimation of model parameters

We illustrate how to estimate the four parameters. There are two possible ap-
proaches: direct and indirect. Below, we illustrate �rst the indirect and then the
direct approach. In both approaches, we apply QML estimation assuming Gaussian
innovations.

We showed in (24) that these four parameters have explicit expressions in terms
of the ARMA(1, 2) reduced form parameters. This suggests the following indirect

5More precisely, under the condition �2" > 0.
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approach for estimating these four parameters.

Summary of the indirect approach

Step 1 For a given m, calculate RV
�(m)
t .

Step 2 Estimate the unrestricted ARMA(1, 2) model in (17) by QML estimation
assuming Gaussian innovations.

Step 3 Given the estimates of c
(m)
RV , �1, �

(m)
1 , �

(m)
2 and �2

� obtained in step 2, calculate

the �rst three autocovariances of the MA process, namely, 

(m)
j , j = 0 � 2 as

in (19).

Step 4 Given the estimates of c
(m)
RV , �1 and 


(m)
j , j = 0 � 2 obtained in steps 2 and

3, estimate !2
" , �

2
" , !

2
1 and �2 applying the results in (24).

This approach is simple and easy to implement; however, it does not guarantee that
the resulting parameter estimates are positive because of the inevitable uncertainty
of the ARMA model estimation. For example, if 


(m)
2 > 1, then the estimate of !2

"

by this approach is negative because �1 > 0 by assumption.
Alternatively, one can directly estimate these four parameters. In this approach,

one calculates the log-likelihood directly from the four parameters using the results
in (24) and maximizes it with respect to the four parameters. Thus, we can easily
impose the positivity of the four parameters. Below, we summarize how to obtain
the QML estimates by this approach.

Summary of the direct approach

Step 1 For a given m, calculate RV
�(m)
t .

Step 2 Given �1, �
2, !2

1, �
2
" and !2

" , calculate cIV , �1, �
2
�, c

(m)
u , �

(m)
u , �

2(m)
� and �

2(m)
d

according to (3), (11) and (22).

Step 3 With the cIV , �1, �
2
�, c

(m)
u , �

(m)
u , �

2(m)
� and �

2(m)
d obtained in step 2, calculate

the Gaussian log-likelihood of the state space form in (16) for RV �

t .

Step 4 Maximize the log-likelihood obtained in step 3 with respect to the �ve pa-
rameters �1, �

2, !2
1, �

2
" and !2

" to obtain the QML estimates.

This approach provides consistent estimators for the four parameters.
Before closing this section, it should be noted that if we can obtain estimates

properly by the indirect approach, we do not need to proceed to the direct approach,
because both approaches will give the identical estimates in this case.

5 Empirical Analysis

In this section, we conduct an empirical analysis with exchange rate data using the
proposed state space method.
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5.1 Data description

The yen/dollar spot exchange rate series we use are the mid-quote prices observed
every one minute, which are obtained from Olsen and Associates. The full sample
covers the period from January 1, 2000 to December 31, 2006. Figure 1 plots the
daily returns calculated from the price data over the period.

Price data are not available for each minute. When price data are missing we
apply the previous tick method, i.e., we interpolate the most recent observed price.
Furthermore, following Andersen, Bollerslev, Diebold and Labys (2001), we remove
the data of inactive trading days. Whenever we do so, we always remove from 21:01
GMT on one night to 21:00 the next evening. For details on the motivation behind this
de�nition of \day", see Andersen, Bollerslev, Diebold and Labys (2001), Andersen and
Bollerslev (1998) and Bollerslev and Domowitz (1993). We cut the data according to
the following criteria, which are similar to the criteria adapted in Beine et al. (2007).
Speci�cally, we cut

(1) the days where there are more than 500 missing price observations,

(2) the days where, in total, there are more than 1000 minutes of zero returns

(3) the days where the price does not change for more than 35 minutes.

By these criteria, we could remove all weekend data. However, the days such as US
holidays that Andersen, Bollerslev, Diebold and Labys (2001) and Beine et al. (2007)
remove are not necessarily removed by these criteria. This is because even when the
US market is closed, transactions are made in other markets. Eventually, we are left
with 1809 complete days, or 1809 � 1440 = 2604960 price observations, from which
we calculate the one{minute and �ve{minute returns.

With these returns, we calculate two series of daily NCRV, namely, one{minute
NCRV (m = 1440) and �ve{minute NCRV (m = 288). Table 1 reports the descriptive
statistics of these two series of NCRV, and Figure 2 plots them. The sample mean
of the one{minute NCRV is greater than that of the �ve{minute NCRV. This is
consistent with the existence of MN because the mean of the NCRV increases as the
sampling frequency increases, or m ! 1 under the existence of MN (see (20d) and
(21a) ). The �rst order autocorrelations of these two series of NCRV are somewhat
lower than usually expected for variances of �nancial time series: they are 0:4794 for
the one{minute NCRV and 0:4177 for the �ve{minute NCRV. This may be because
of the existence of MN. In fact, in the next subsection, we show that estimates of the
�rst order autocorrelation of the IV are signi�cantly higher than these values.

5.2 Estimation of parameters, IV and MN component

For these two series of the NCRV, we estimate the parameters of the one{ and two{
factor SV models by the method described in Section 4.3 (and in Appendix B for
the two{factor case). Note that, in general, the values of these two NCRV series
are di�erent although they both are estimates of the same IV series. Consequently,
the estimates of the SV model parameters are di�erent, depending on which NCRV
series is used. We report only the results by the direct approach because the in-
direct approach does not provide positive variance estimates. Table 2 displays the
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estimates of the SV model parameters. Naturally, the estimated values of the SV
model parameters for one{minute and �ve{minute NCRV series are very similar. In
both the one{ and two{factor cases, estimates with the �ve{minute NCRV series are
slightly more e�cient than those with the one{minute NCRV series according to the
robust standard errors.6 The estimates of the persistence parameters for two{factor
SV model (i.e., b�1 and b�2) imply that there are two factors with signi�cantly di�erent
levels of persistence. One of them is very persistent and the other is moderately per-
sistent, although their unconditional variances are not signi�cantly di�erent. For the
one{factor SV model, the persistence of these two factors must be captured by only
one parameter, �1. As a result, the estimate of �1 in the one{factor case is somewhat
lower than that in the two{factor case.

The estimates of state space form parameters in (16) (and in (41) for the two{
factor case) are computed from the estimates of the SV model parameters. They
are shown in Table 3. Again, the estimates of the common parameters, which do
not depend on m, are very similar. We �nd that the estimates of the mean of the
MN component, denoted by bc(m)

u , in one{minute NCRV series is greater than that
in �ve-minute NCRV series, which implies that the one{minute NCRV series has a
larger bias than the �ve{minute NCRV series. This is consistent with the theory.
The magnitude of bias of the one{minute NCRV is about four times larger than that
of the �ve{minute NCRV.

Table 4 reports the estimates of some important values including the autocorre-
lations of the IV. In both the one{ and two{factor cases, the estimates of the �rst
order autocorrelation of IV are signi�cantly higher than those of the two NCRV se-
ries. This result suggests that the existence of MN lowers the autocorrelations of the
NCRV series. The estimates of the ratio of the unconditional variance of the MN
component to the unconditional variance of the NCRV imply that about half of the
aggregate 
uctuations of the NCRV series is because of the MN component.

We display the estimates of the IV series by Kalman smoothing for the �ve{
minute and one{minute NCRV series in Figures 3(a) and (b), respectively. Figure

3(c) is the di�erence between them, or cIV (1440)

t �cIV (288)

t , where cIV (m)

t is the estimate
of IVt with a given m. Note that these estimates are the estimates of the same
IV series and thus are very similar. The IV estimates in the one{factor case seem
smoother than those in the two{factor case. This is because of the result that the
(estimated) autocorrelations of the IV series are lower for the two{factor case and
thus they are relatively closer to white noise compared with the IV series obtained
for the one{factor case. Figure 4 (a), (b) and (c) plot the smoothed estimates of
the �ve-min and one-mine MN component series and their di�erences, respectively.
We can see that the MN component occasionally takes a large value. Figure 5 (a)
and (b) display the estimates of the discretization errors by Kalman smoothing for

6To obtain the QML estimates of the SV model parameters, �rst, we calculate the QML esti-
mates of the transformed ones, such as � � log(�2), by applying an unconstrained maximization
procedure. Then, the QML estimate of, for example, �2 is obtained by log(b�), where b� is the QML
estimate of �. The robust standard errors of the SV model parameter estimates are calculated as
follows. First, generate samples from the asymptotic normal distribution of the estimators of the
transformed parameters with their robust asymptotic covariance matrix estimates. Next, for each
sample, calculate the estimates of the SV model parameters. Lastly, calculate the sample standard
deviations of these SV model parameter estimates, which are our robust standard errors.
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�ve{minute and one{minute NCRV, respectively. The discretization error estimates
for the one{minute NCRV series is quite small than those for the �ve{minute NCRV
series, which is again consistent with the theoretical result. Corresponding �gures for
the two{factor case are given in Figures 6{8. They are very similar to those for the
one{factor case.

Finally, we calculate the ratios of the MN component to the NCRV bR(m). They
are given by bR(m) = bu(m)

t =RV
�(m)
t , t = 1; :::; 1809, where bu(m)

t is the estimate of u
(m)
t by

Kalman smoothing. The results are shown in Table 5. In the one{factor (two{factor)

case, the maximum and minimum values of bR(m) are, respectively, 0:8324 (0:6574)
and �0:5804 (�3:7323) for the �ve{minute NCRV series and 0:8357 (1:0454) and
�0:5804 (�0:4192) for the one{minute NCRV series. We also calculate the average
magnitude of the MN component as the mean of jR(m)j (the average of R(m) is also
reported in Table 5). In the one{factor (two{factor) case, the value of the mean is
0:4659 (0:2080) for the �ve{minute NCRV series and 0:4708 (0:4770) for the one-
minute NCRV series. From these results, we conclude that the average magnitude of
the MN component in the daily NCRV ranges from 21% to 48% of NCRV, depending
on the sampling frequency.

6 Summary and Concluding Remarks

In this paper, we proposed a state space approach to estimating the IV and MN
components simultaneously. Our method is based on the result in Meddahi (2003),
who shows that when the true log-prices follow a general class of continuous{time SV
models, the IV follows an ARMA process. We showed that under the existence of
MN, the observed RV, or the NCRV, also follows an ARMA process. We represented
the NCRV by a state space form and established the uniqueness of the identi�cation
of the state space form parameters. The proposed method was applied to yen/dollar
exchange rate data, where we found that the NCRV calculated with �ve{minute
returns is less biased than with one{minute returns. The two series of IV estimates
by the proposed method with one-minute and �ve{minute returns are very similar.
The method was also used for estimating the MN component.

In the estimation, we constructed the log-likelihood using only either the one{
minute or �ve{minute NCRV series. It is more desirable to use both NCRV series
for estimating the common parameters. It would be possible to obtain more e�cient
estimators by combining the one{ and �ve{minute NCRV series. This is a subject for
future research. It is also important to relax the assumption that there is no leverage
e�ect in order to our method to stock return data.
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Appendix A: Derivations of Equations

Hereafter, we suppress \(m)" in the notations r
(m)
t , u

(m)
t and e

(m)
t , and let "t de-

note "(t) for notational simplicity.

Derivation of (7)

Because var(et) = 2�2
" and rt is independent of et by Assumption 1, we have:

E[ut] = 2
mP
i=1

E
h
rt�1+ i

m
et�1+ i

m

i
+

mP
i=1

E
h
e2
t�1+ i

m

i
= 2

mP
i=1

E
h
rt�1+ i

m

i
E
h
et�1+ i

m

i
+mvar(et)

= 2m�2
" :

To derive var[ut] and cov[ut; ut�1], we calculate cov[rses; rtet] and cov[e2t ; e
2
s]. When

t = s, we have:

cov [rtet; rtet] = E [r2t e
2
t ]� (E [rtet])

2

= E [e2t ]E [r2t ]� (E [rt])
2(E [et])

2

= 2�2
"E[(

R t

t�1=m
�(s)dW (s))2]

= 2�2
"E[

R t

t�1=m
�2(s)ds]

= 2�2"�
2

m
:

(25)

The fourth equality comes from the Ito isometry. When t 6= s, we have:

cov [rses; rtet] = E [rsesrtet]� E [rses]E [rtet]
= E [eset]E [rs] [rt]� E [rs]E [es]E [rt]E [et]
= 0:

(26)

When t = s, we have:

cov[e2t ; e
2
t ] = var[e2t ]
= E[e4t ]� (E[e2t ])

2

= E
h
"4t � 4"3t "t� 1

m
+ 6"2t "

2
t� 1

m

� 4"t"
3
t� 1

m

+ "4
t� 1

m

i
� 4�4

"

= 2E["4t ] + 2�4
" :

(27)

When t = s� 1
m
, we have:

cov
h
e2s; e

2
s� 1

m

i
= cov

h
e2
s+ 1

m

; e2s

i
= cov

h
"2
s+ 1

m

� 2"s+ 1

m
"s + "2s; "

2
s � 2"s"s� 1

m
+ "2

s� 1

m

i
= var["2s]
= !2

" :

(28)

When t = s� i
m
for i � 2, we have cov[et; es] = 0. Furthermore, we have cov[rtet; e

2
s] =

0 for any t and s because:

cov[rtet; e
2
s] = E[rtete

2
s]� E[rtet]E[e

2
s]

= E[rt]E[ete
2
s]� E[rt]E[et]E[e

2
s]

= 0:
(29)
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From (25) � (29), we have:

var [ut] = var

�
2

mP
i=1

rt�1+ i
m
et�1+ i

m
+

mP
i=1

e2
t�1+ i

m

�
= 4var

�
mP
i=1

rt�1+ i
m
et�1+ i

m

�
+ var

�
mP
i=1

e2
t�1+ i

m

�
+ 4cov

�
mP
i=1

rt�1+ i
m
et�1+ i

m
;
mP
i=1

e2
t�1+ i

m

�
= 4

mP
i=1

mP
j=1

cov
h
rt�1+ i

m
et�1+ i

m
; rt�1+ j

m
et�1+ j

m

i
+

mP
i=1

mP
j=1

cov
h
e2
t�1+ i

m

; e2
t�1+ j

m

i
+4

mP
i=1

mP
j=1

cov
h
rt�1+ i

m
et�1+ i

m
; e2

t�1+ i
m

i
= 8�2

"�
2 + 2m(E["4t ] + �4

") + 2(m� 1)(E["4t ]� �4
")

= 8�2
"�

2 + 2(2m� 1)!2
" + 4m�4

" ;

and

cov[ut; ut+1] = cov

�
2

mP
i=1

rt�1+ i
m
et�1+ i

m
+

mP
i=1

e2
t�1+ i

m

; 2
mP
i=1

rt+ i
m
et+ i

m
+

mP
i=1

e2
t+ i

m

�
= 4cov

�
mP
i=1

rt�1+ i
m
et�1+ i

m
;
mP
i=1

rt+ i
m
et+ i

m

�
+ 2cov

�
mP
i=1

rt�1+ i
m
et�1+ i

m
;
mP
i=1

e2
t+ i

m

�
+2cov

�
mP
i=1

rt+ i
m
et+ i

m
;
mP
i=1

e2
t�1+ i

m

�
+ cov

�
mP
i=1

e2
t�1+ i

m

;
mP
i=1

e2
t+ i

m

�
= cov

h
e2t ; e

2
t+ 1

m

i
= !2

" :

It is easy to check that cov[ut; ut�i] = 0 for i � 2, and hence we have (7).

Derivation of (20a)�(20c)

Here, we derive the autocovariances of the MA process in (18). They are given
by


0 = covf�t + �1�t�1 + dt � �1dt�1 + �t + (�u � �1)�t�1 � �1�u�t�2;
�t + �1�t�1 + dt � �1dt�1 + �t + (�u � �1)�t�1 � �1�u�t�2g

= �2
� + �21�

2
� + �2

d + �21�
2
d + �2

� + (�u � �1)
2�2

� + �21�
2
u�

2
�

= (1 + �21)�
2
� + (1 + �21)�

2
d + [1 + (�u � �1)

2 + �21�
2
u]�

2
� ;


1 = covf�t + �1�t�1 + dt � �1dt�1 + �t + (�u � �1)�t�1 � �1�u�t�2;
�t�1 + �1�t�2 + dt�1 � �1dt�2 + �t�1 + (�u � �1)�t�2 � �1�u�t�3g

= �1�
2
� � �1�

2
d + (�u � �1 � �1�

2
u + �21�u)�

2
�


2 = covf�t + �1�t�1 + dt � �1dt�1 + �t + (�u � �1)�t�1 � �1�u�t�2;
�t�2 + �1�t�3 + dt�2 � �1dt�3 + �t�2 + (�u � �1)�t�3 � �1�u�t�4g

= ��1�u�2
� :

Because it follows an MA(2) process, the autocovariances of the order greater than 2
is zero.

Derivation of (22)
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From (21c), we have �2
� = !2

"=�u. Substituting this into (21b), we have:

(1 + �2u)
!2
"

�u
= 8�2�2

" + 2(2m� 1)!2
" + 4m�4

" :

Multiplying both sides by �u=!
2
" and rearranging, we have:

�2u � 2

�
4
�2�2

"

!2
"

+ 2m� 1 + 2m
�4
"

!2
"

�
�u + 1 = 0:

The two solutions of this quadratic equation for �u are given by

�u = A�
p
A2 � 1; where A = 4

�2�2
"

!2
"

+ 2m� 1 + 2m
�4
"

!2
"

:

Because A > 1 for m � 1, we have A+
p
A2 � 1 > 1. Assuming that �u satis�es the

invertibility condition, we obtain �u in (22).

Derivation of (24a) and (24c)

From (20c) and (21c), we have !2
" = � 
2

�1
, which is the �rst result in (24a). From (3),

(4) and (11), we have

�2
� =

2B!2
1

1 + �21
and �2

d =
2�4

m
+ 2mC!2

1; (30)

where B and C are as given in (24d). From !2
" = �u�

2
� in (21c), we have:

(1 + �2u � 2�u�1 + �21 + �21�
2
u)�

2
� =

�
1
�u
+ �u � 2�1 +

�2
1

�u
+ �21�u

�
!2
"

=
h�

1
�u
+ �u

�
(1 + �21)� 2�1

i
!2
" ;

(31)

and

(�u � �1 � �1�
2
u + �21�u)�

2
� =

�
1� �1

�u
� �1�u + �21

�
!2
"

=
h
1 + �21 �

�
1
�u
+ �u

�
�1

i
!2
" :

(32)

Substituting (30), (31) and (32) into (20a) and (20b), we have:


0 = 2D!2
1 + 2

1 + �21
m

�4 +

��
1

�u
+ �u

�
(1 + �21)� 2�1

�
!2
" ; (33a)

and


1 = 2E!2
1 � 2

�1
m
�4 �

��
1

�u
+ �u

�
�1 � (1 + �21)

�
!2
" ; (33b)

where D = B +m(1 + �21)C, E = �B �m�1C and � = �1=(1 � �21). From (33), we
have:

�1
0 + (1 + �21)
1 = 2 [�1D + (1 + �21)E]!
2
1 + [(1 + �21)

2 � 2�21]!
2
" ;

= 2 [�1 + (1 + �21)�]B!
2
1 + (1 + �41)!

2
" ;

=
(1� �1)

3(1 + �1)

(log �1)2
!2
1 + (1 + �41)!

2
" ;

(34)
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where, to obtain the third equality, we use the alternative expression of � explained
below (11). From (34), we have:

!2
1 =

(log �1)
2[�1
0 + (1 + �21)
1 � (1 + �41)!

2
" ]

(1� �1)3(1 + �1)
:

Substituting !2
" = � 
2

�1
, we obtain the second result in (24a). Next, note that from

(22), we have:

1

�u
+ �u =

1 + �2u
�u

=
1 + (A�pA2 � 1)2

A�pA2 � 1

=
A+

p
A2 � 1 + (A�pA2 � 1)2(A+

p
A2 � 1)

(A�pA2 � 1)(A+
p
A2 � 1)

= 2A:

(35)

From (20d) and (21a), we have:

cRV = (1� �1)
�
�2 + 2m�2

"

�
; or �2

" =
cRV � (1� �1)�

2

2(1� �1)m
: (36)

Substituting �2
" in (36) into A in (22), we have:

2A = 2

�
4�2

!2"

�
cRV �(1��1)�

2

2(1��1)m

�
+ 2m� 1 + 2m

!2"

�
cRV �(1��1)�

2

2(1��1)m

�2�

= 2
h

2cRV �
2

(1��1)m!2"
� 2�4

m!2"
+ 2m� 1 +

c2
RV

�2(1��1)cRV �
2+(1��1)2�4

2(1��1)2m!2"

i
= 4cRV �

2

(1��1)m!2"
� 4�4

m!2"
+ 2(2m� 1) +

c2
RV

(1��1)2m!2"
� 2cRV �

2

(1��1)m!2"
+ �4

m!2"

= 2cRV �
2

(1��1)m!2"
� 3�4

m!2"
+ 2(2m� 1) +

c2
RV

(1��1)2m!2"
:

(37)

From (33a), (35) and (37), we have:


0 = 2D!2
1 � (1 + �21)

m �4 +
2(1 + �21)cRV
(1� �1)m

�2

+2(2m� 1)(1 + �21)!
2
" +

(1 + �21)c
2
RV

(1� �1)
2m

� 2�1!
2
" :

(38)

Multiplying both sides in (38) by m=(1 + �21) and rearranging, we have:

�4 � 2cRV
1� �1

�2 � c2RV
(1� �1)2

+
m (
0 � 2D!2

1 + 2�1!
2
")

1 + �21
� 2m(2m� 1)!2

" = 0:

Solving this quadratic equation for �2, we have:

�2 =
cRV

1� �1
�
s

2c2RV
(1� �1)2

+ 2m(2m� 1)!2
" �

m (
0 � 2D!2
1 + 2�1!2

")

(1 + �21)
: (39)
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From �2
" > 0, �1 < 1 and (36), we must have cRV

1��1
> �2. Hence, the sign of the

second term in (39) is negative. From (36) and (39), we have:

�2
" =

1

2m

s
2c2RV

(1� �1)2
+ 2m(2m� 1)!2

" �
m (
0 � 2D!2

1 + 2�1!2
")

(1 + �21)
: (40)

From (39) and (40), we obtain (24b) and (24c).
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Appendix B: Results for the Two{factor Case

Let �1 = �1 + �2, �2 = ��1�2, �1 = 1 + �21 + �22, �2 = �1(1 � �2) and !2 6= 0
throughout Appendix B.

From (8), (12) and (15), we can express the NCRV in the following state space
form:

Observation equation

RV �

t =
�
1 0 1 0 0 0

�
26666664

IVt
IVt�1
ut
�t
�t�1
�t

37777775+ dt; (41a)

State equation26666664
IVt
IVt�1
ut
�t
�t�1
�t

37777775 =

26666664
cIV
0
cu
0
0
0

37777775+
26666664
�1 �2 0 �1 �2 0
1 0 0 0 0 0
0 0 0 0 0 �u
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0

37777775

26666664
IVt�1
IVt�2
ut�1
�t�1
�t�2
�t�1

37777775+
26666664
1 0
0 0
0 1
1 0
0 0
0 1

37777775
�
�t
�t

�
;

(41b)

where the mean vector and variance matrix of (dt; �t; �t)
0 are as given in (16c).

Autocovariance functions

In the two{factor case, by applying the results in Granger and Morris (1976), we
can show that the NCRV follows an ARMA(2, 3) process:

(1� �1L� �2L
2)RV �

t = cRV + (1 + �1L+ �2L
2 + �3L

3)�t; �t � WN(0; �2
� ): (42)

The same RV �

t can alternatively be expressed as:

(1� �1L� �2L
2)RV �

t = cIV + �t + �1�t�1 + �2�t�2 + dt � �1dt�1 � �2dt�1
+(1� �1 � �2)cu + �t + (�u � �1)�t�1
�(�2 + �1�u)�t�2 � �2�u�t�3;

(43)

The autocovariance functions of the MA process in (42) are given as:


0 = (1 + �21 + �22 + �23)�
2
� ; 
1 = (�1 + �1�2 + �2�3)�

2
� ;


2 = (�2 + �1�3)�
2
� ; 
3 = �3�

2
� ;

(44)
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and 
j = 0, for j � 4. Furthermore, some calculations lead us to the following
autocovariance functions of the MA process in (43):


0 = (1 + �21 + �22)�
2
� + �1�

2
d +

�
�1

�
1

�u
+ �u

�
� 2�2

�
�u�

2
� ; (45a)


1 = (�1 + �1�2)�
2
� � �2�

2
d +

�
�1 � �2 � �2

�
1

�u
+ �u

��
�u�

2
� ; (45b)


2 = �2�
2
� � �2�

2
d �

�
�2

�
1

�u
+ �u

�
+ �2

�
�u�

2
� ; (45c)


3 = ��2�u�2
� ; (45d)

and 
j = 0, for j � 4. By equating the means of the MA process in (42) and (43),
we obtain:

cRV = cIV + (1� �1 � �2)cu: (45e)

As in the one{factor case, the number of state space form parameters is greater than
the number of ARMA reduced form parameters. This implies that the state space
form in (41) is not identi�ed. However, we show that the state space form parame-
ters are expressed as functions of the underlying continuous SV model parameters �2,
!2
1, !

2
2, �

2
" and !

2
" , which are uniquely identi�ed from the ARMA reduced form in (42).

Identi�cation of state space form parameters

Here we show that the parameters �2, !2
1, !

2
2, �

2
" and !2

" are uniquely identi�ed
from the reduced form parameters cRV ; �1, �2, and 
j for j = 0 � 3.

As in the one{factor case, we can uniquely solve Equations (45a)�(45e) with
respect to �2, !2

1, !
2
2, �

2
" and !2

" as:

!2
" = �
3

�2
; !2

1 =
(log �1)

2[(�1�0 � �0�1)� �2(�0�1 + �2�0)]

(1� �1)2(�1 � �2)(�1�1 � �2�1)
; (46a)

!2
2 =

(log �2)
2[(�0�1 � �1�0) + �1(�0�1 + �2�0)]

(1� �2)2(�1 � �2)(�1�1 + �2�1)
; (46b)

�2
" =

1

2m

s
2c2RV

(1� �1 � �2)2
+ 2m(2m� 1)!2

" +H; (46c)

and

� =
cRV

1� �1 � �2
� 2m�2

" ; (46d)

where

�0 = �2
0 + �1
1 � [�1(�1 � �2)� 2�2
2]!

2
" ; �1 = �1(1 + �21 � �2)� 2�2

2;
�2 = 2�2�2 + �1�1;
�0 = �2
2 � �2
1 + (�21 + �2)(1 + �22 � �2)!

2
" ; �1 = �22 � �21 � �2;

(47)
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H =
m

�2

"

2 +

2X
j=1

(2�2C1;j + �1C2;j � C3;j + 2m�2C4;j)!
2
j + �2!

2
"

#
; (48)

C1;j � �j � log �j � 1

(log �j)2
; C2;j � (1� �j)

2

(log �j)2
; C3;j � �j(1� �j)

2

(log �j)2
; and

C4;j =
2(�

1

m

j � log �
1

m

j � 1)

(log �j)2
for j = 1; 2:

(49)

In what follows, we derive the results in (46).
From �u�

2
� = !2

" in (21c) and 
3 = ��2�u�2
� in (45d), we have !2

" = � 
3
�2
, which is

the �rst result in (46a). Furthermore, from (3), (4) and (13), after some calculations,
it follows that:

�2
� =

2B1!
2
1

1 + �21 + �22
+

2B2!
2
2

1 + �21 + �22
and �2

d =
2�4

m
+ 2mC4;1!

2
1 + 2mC4;2!

2
2; (50)

where

Bj = �1C1;j � �2C2;j � �2C3;j for j = 1; 2: (51)

Substituting (50) into the autocovariance functions in (45) and rearranging, we have:


0 = 2D1!
2
1 + 2D2!

2
2 + 2

�1
m
�4 +

�
�1

�
1

�u
+ �u

�
� 2�2

�
!2
" ; (52a)


1 = 2E1!
2
1 + 2E2!

2
2 � 2

�2
m
�4 �

�
�2

�
1

�u
+ �u

�
� (�1 � �2)

�
!2
" ; (52b)


2 = 2F1!
2
1 + 2F2!

2
2 � 2

�2
m
�4 �

�
�2

�
1

�u
+ �u

�
+ �2

�
!2
" ; (52c)

where Dj = Bj +m�1C4;j, Ej = �1Bj �m�2C4;j, Fj = �2Bj �m�2C4;j for j = 1; 2,
�1 = (�1 + �1�2)=(1 + �21 + �22) and �2 = �2=(1 + �21 + �22). Hence, we have

�2
0 + �1
1 = (�2 + �1�1) (2B1!
2
1 + 2B2!

2
2) + [�1(�1 � �2)� 2�2

2]!
2
" ; (53a)

and

�2
2 � �2
1 = (�2�2 � �1�2) (2B1!
2
1 + 2B2!

2
2)� [�2(�1 � �2) + �2

2]!
2
" : (53b)

Noting that �1 and �2 can be expressed as in (14) (see the explanations below (13)),
we have:

�1 =
��2var[IVt] + (1 + �21 � �2)cov[IVt; IVt�1]� �1cov[IVt; IVt�2]

(1 + �21 + �22)�
2
�

=

P2
j=1[�2�2C1;j + (1 + �21 � �2)C2;j � �1C3;j]!

2
j

2B1!2
1 + 2B2!2

2

;

(54a)

and

�2 =
��2var[IVt]� �1cov[IVt; IVt�1] + cov[IVt; IVt�2]

(1 + �21 + �22)�
2
�

=

P2
j=1(�2�2C1;j � �1C2;j + C3;j)!

2
j

2B1!2
1 + 2B2!2

2

:

(54b)
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Substituting Bj in (51), �1 and �2 in (54) into (53), we have:

�2
0 + �1
1 = 2�2
2P

j=1

(�1C1;j � �2C2;j � �2C3;1)!
2
j

+�1
2P

j=1

[�2�2C1;j + (1 + �21 � �2)C2;j � �1C3;j]!
2
j

+[�1(�1 � �2)� 2�2
2]!

2
"

=
2P

j=1

f[�2�2
2 + �1(1 + �21 � �2)]C2;j � (2�2�2 + �1�1)C3;jg!2

j

+[�1(�1 � �2)� 2�2
2]!

2
" ;

(55)

and

�2
2 � �2
1 = �2
2P

j=1

(�2�2C1;j � �1C2;j + C3;j)!
2
j

��2
2P

j=1

[�2�2C1;j + (1 + �21 � �2)C2;j � �1C3;j]!
2
j

�[�2(�1 � �2) + �2
2]!

2
"

=
2P

j=1

f[��1�2 � �2(1 + �21 � �2)]C2;j + (�2 + �1�2)C3;jg!2
j

�[�2(�1 � �2) + �2
2]!

2
"

=
2P

j=1

f(�22 � �21 � �2)C2;j + �1C3;jg!2
j

�(�21 + �2)(�
2
2 � �2 + 1)!2

" :

(56)

We can regard (55) and (56) as the following system of two equations for !2
1 and !2

2:

�0 = (�1C2;1 � �2C3;1)!
2
1 + (�1C2;2 � �2C3;2)!

2
2

�0 = (�1C2;1 + �1C3;1)!
2
1 + (�1C2;2 + �1C3;2)!

2
2;

(57)

where �0, �1, �2, �0 and �1 are as given in (47). Solving (57), we have

!2
1 =

(�1�0 � �0�1)C2;2 � (�2�0 + �0�1)C3;2

(�1�1 + �2�1)C2;2C3;1 � (�1�1 + �2�1)C2;1C3;2

=
(log �1)

2[(�1�0 � �0�1)� �2(�2�0 + �0�1)]

(1� �1)2(�1 � �2)(�1�1 + �2�1)
;

and

!2
2 =

(�0�1 � �1�0)C2;1 + (�0�1 + �2�0)C3;1

(�1�1 + �2�1)C2;2C3;1 � (�1�1 + �2�1)C3;2C2;1

=
(log �2)

2[(�0�1 � �1�0) + �1(�0�1 + �2�0)]

(1� �2)2(�1 � �2)(�1�1 + �2�1)
:

From (45e) and (21a), we have:

�2
" =

cRV � (1� �1 � �2)�
2

2(1� �1 � �2)m
: (58)
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Substituting �2
" in (58) into A in (22), we have:

2A =
2cRV �

2

(1� �1 � �2)m!2
"

� 3�4

m!2
"

+ 2(2m� 1) +
c2RV

(1� �1 � �2)2m!2
"

: (59)

From (35), (52c) and (59), we have:


2 = 2!2
1(�2B1 �m�2C4;1) + 2!2

2(�2B2 �m�2C4;2)� 2�4 �2
m

�
n
�2

h
2cRV �

2

(1��1��2)m!2"
� 3�4

m!2"
+ 2(2m� 1) +

c2
RV

(1��1��2)2m!2"

i
+ �2

o
!2
"

= �2(2B1!
2
1 + 2B2!

2
2)� �2(2m!2

1C4;1 + 2m!2
2C4;2)

+�4 �2
m
� �2 2�2cRV

(1��1��2)m
� 2�2!

2
"(2m� 1)� �2c2RV

(1��1��2)2m
� �2!

2
"

=
2P

j=1

(�2�2C1;j � �1C2;j + C3;j � 2m�2C4;j)!
2
j

+�4 �2
m
� �2 2�2cRV

(1��1��2)m
� 2�2!

2
"(2m� 1)� �2c2RV

(1��1��2)2m
� �2!

2
" :

(60)

Multiplying both sides in (60) by m=�2 and rearranging, we have:

�4 � 2cRV
1� �1 � �2

�2 � c2RV
(1� �1 � �2)2

� 2!2
"m(2m� 1)�H;

where H is as given in (48). Solving the quadratic equation for �2, and by the same
argument as used in (40), we have:

�2 =
cRV

1� �1 � �2
�
s

2c2RV
(1� �1 � �2)2

+ 2m(2m� 1)!2
" +H; (61)

and

�2
" =

1

2m

s
2c2RV

(1� �1 � �2)2
+ 2m(2m� 1)!2

" +H: (62)

From (61) and (62), we have (46c) and (46d).
Finally, we summarize direct and indirect approaches for estimating the parame-

ters in the two factor case.

Summary of the indirect approach

Step 1 For a given m, calculate RV
�(m)
t .

Step 2 Estimate the unrestricted ARMA(2, 3) model in (42) by QML estimation
assuming Gaussian innovations.

Step 3 Given the estimates of c
(m)
RV , �1, �2,

7 �
(m)
1 , �

(m)
2 , �

(m)
3 and �2

� obtained in step

2, calculate the �rst four autocovariances of the MA process, namely, 

(m)
j ,

j = 0 � 3 as in (44).

7These can be obtained from the estimates of �1 and �2. See footnote 2.
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Step 4 Given the estimates of c
(m)
RV , �1, �2 and 


(m)
j , j = 0 � 3, obtained in steps 2

and 3, estimate !2
" , �

2
" , !

2
1, !

2
2 and �2, applying the results in (46).

Summary of the direct approach

Step 1 For a given m, calculate RV
�(m)
t .

Step 2 Given �1, �2, �
2, !2

1, !
2
2, �

2
" and !

2
" , calculate cIV , �1, �2, �

2
�, c

(m)
u , �

(m)
u , �

2(m)
�

and �
2(m)
d according to (3), (13) and (22).

Step 3 With the cIV , �1, �2, �
2
�, c

(m)
u , �

(m)
u , �

2(m)
� and �

2(m)
d obtained in step 2,

calculate the Gaussian log-likelihood of the state space form in (41), for RV �

t .

Stpe 4 Maximize the log-likelihood obtained in Stpe 3 with respect to the seven
parameters, �1, �2, �

2, !2
1, !

2
2, �

2
" and !2

" to obtain the QML estimates.
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Table 1: Descriptive statistics of the NCRV

One{minute NCRV Five{minute NCRV

m 1440 288

Mean 0:5317 0:4039
Variance 0:0629 0:0620

SD 0:2507 0:2490

AC(1) 0:4794 0:4177
AC(2) 0:3628 0:3292
AC(3) 0:3261 0:2819
AC(4) 0:3294 0:2595
AC(5) 0:3246 0:2577

Note: The table reports the sample mean (Mean), sample variance (Variance) and
sample standard deviation (SD) of the RV series calculated with di�erent m, where
m is the number of intervals for each NCRV series. AC(k) denotes the sample auto-
correlation of order k.

Table 2: Estimates of SV model parameters

One{factor case Two{factor case
One{minute Five{minute One{minute Five{minuteb�1 0.9301 0.8849 0.9825 0.9798
(0.0415) (0.0410) (0.0187) (0.0143)b�2 - - 0.3241 0.6113

- - (0.2321) (0.1435)b�2 0.2857 0.3466 0.2960 0.3445
(0.0247) (0.0178) (0.0417) (0.0325)b!2

1 0.0300 0.0279 0.0229 0.0145
(0.0111) (0.0083) (0.0146) (0.0064)b!2

2 - - 0.0271 0.0192
- - (0.0213) (0.0067)b�2

" 0.0000861 0.0001002 0.0000839 0.0001043
(0.0000100) (0.0000029) (0.0000157) (0.0000062)b!2

" 0.0000059 0.0000296 0.0000039 0.0000263
(0.0000009) (0.0000043) (0.0000019) (0.0000048)

L 240.06713 181.18724 262.11225 193.84332

Note: L is the log-likelihood. The robust standard errors are in parentheses.
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Table 3: Estimates of state space model parameters

One{factor case Two{factor case
One{min Five{minute One{minute Five{minutebcIV 0.0200 0.0399 0.0035 0.0027b�1 0.9301 0.8849 1.3066 1.5911b�2 - - -0.3184 -0.5989b�1 0.2679 0.2677 -0.6280 -0.6512b�2 - - -0.2196 -0.2421b�2

� 0.0025 0.0038 0.0159 0.0081

m 1440 288 1440 288bc(m)
u 0.2479 0.0577 0.2417 0.0601b�(m)
u 0.0002 0.0009 0.0002 0.0009b�2(m)
� 0.0340 0.0343 0.0228 0.0305b�2(m)
d 0.0002 0.0010 0.0002 0.0011

Table 4: Estimates of some important values

One{factor case Two{factor case
One{minute Five{minute One{minute Five{minute

\var[IVt] 0.0293 0.0268 0.0420 0.0308

\corr[IVt; IVt�1] 0.9531 0.9225 0.7675 0.8502

\corr[IVt; IVt�2] 0.8865 0.8163 0.6011 0.6900

\

var[u
(m)
t ] 0.0340 0.0343 0.0305 0.0305

\var[IVt]=
\

var[RV
�(m)
t ] 0.4618 0.4313 0.6467 0.4941

\

var[u
(m)
t ]=
\

var[RV
�(m)
t ] 0.5358 0.5521 0.3504 0.4890

b�2
�=(b�2

� + b�(m)2
� + b�(m)2

d ) 0.0686 0.0962 0.4097 0.2047

b�(m)2
� =(b�2

� + b�(m)2
� + b�(m)2

d ) 0.9271 0.8775 0.5854 0.7686

Note:
\

var[RV
�(m)
t ] = \var[IVt] +

\

var[u
(m)
t ] +
\

var[d
(m)
t ].
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Table 5: Mean, max and min of the ratios of MN components to NCRV

One{factor case Two{factor case
One{minute Five{minute One{minute Five{minute

mean of bR(m)
t 0.4646 0.4594 0.4755 0.0753

mean of j bR(m)
t j 0.4708 0.4659 0.4770 0.2080

maxf bR(m)
t g 0.8357 0.8324 1.0454 0.6574

minf bR(m)
t g -0.5804 -0.5848 -0.4192 -3.7323

maxfj bR(m)
t jg 0.8357 0.8324 1.0454 3.7323

minfj bR(m)
t jg 0.00398 0.00053 0.00773 0.00003
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Figure 1: Daily returns of the yen/dollar exchange rate 
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Figure 2: 1-min and 5-min NCRV series 

 

 
Note: Figure 3(c) displays 1-min NCRV series minus 5-min NCRV series.  
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Figure 3: Smoothed series of IV in the one-factor case 

 

 
Note: The figure (c) displays 1-min IV series minus 5-min IV series. 
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Figure 4: Smoothed series of MN component in the one-factor case 

 

 

 
Note: Figure 4(c) displays 1-min MN component series minus 5-min MN component 
series. 
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Figure 5: Smoothed series of discretization error in the one-factor case 
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Figure 6: Smoothed series of IV in the two-factor case 

 

 
Note: Figure 6(c) displays 1-min NCRV series minus 5-min NCRV series. 
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Figure 7: Smoothed series of MN component in the two-factor case 

 

  
Note: Figure 7(c) displays 1-min MN component series minus 5-min MN component 
series in the two factor case. 

 
 
 
 
 
 
 
 
 
 

2000.7 2001.7 2002.7 2003.7 2004.7 2005.7 2006.7 -1 
-0.5 

0 
0.5 

1 
1.5 

2 
2.5 

YEAR

D
iff

er
en

ce
s (

%
) 

(c) Difference between 1-min and 5-min MN Component series 

2000.7 2001.7 2002.7 2003.7 2004.7 2005.7 2006.7 -1 
-0.5 

0 
0.5 

1 
1.5 

2 
2.5 

YEAR

M
N

 C
om

po
ne

nt
 (%

) (a) 5-min MN component

2000.7 2001.7 2002.7 2003.7 2004.7 2005.7 2006.7 -1 
-0.5 

0 
0.5 

1 
1.5 

2 
2.5 

YEAR

M
N

 C
om

po
ne

nt
 (%

) 

(b) 1-min MN component series



 38

Figure 8: Smoothed series of discretization error in the two-factor case 
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