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1 Introduction

In business cycle analysis, it is often supposed that real GDP consists of two unob-
served components (UC): a permanent and a transitory component. Shocks to the
permanent component have long-lasting effects, whereas shocks to the transitory
component are temporary and vanish in the long run. Following convention, we re-
fer to these two components as “trend” and “cycle”, respectively. Estimating these
two components has been an important issue in business cycle analysis. The UC
model is one of the most commonly used models for this purpose (see, for example,
Harvey (1985), Clark (1987) and Watson (1986) for applications of UC models). In
this model, the trend is assumed to be a random walk and the cycle is assumed to
be stationary.

Although it is conventional to assume that shocks to the trend and cycle are un-
correlated for the identification of model parameters, this assumption is unreason-
able, as argued by Clark (1987, pp.800–801) and Zarnowitz and Ozyildirim (2006).
Morley, Nelson, and Zivot (2003) (2003, henceforth MNZ) estimate a UC model
with a stationary AR(2) cycle process, (the UC–AR(2) model), for U.S. quarterly
real GDP. They show that one can identify and estimate the correlation parameter
under this specification of cycle. Their estimate of the correlation parameter of –
0.9062 is significantly different from zero. MNZ argue that the finding of a negative
correlation increases the importance of real shocks for the macroeconomy.

The objective of this paper is to reinvestigate how shocks to these two compo-
nents are correlated by applying an unidentified UC model, in which a correlation
is not identified without imposing an identification restriction. The paper also in-
vestigates how changing identification restriction results in different trend and cycle
estimates. The empirical part shows that the trend and cycle estimates are substan-
tially different depending on the identification restriction imposed. Our empirical
result suggests that it is important to impose an appropriate identification restric-
tion for properly estimating the trend and cycle. We also discuss on what is an
appropriate identification restriction.

In this paper, we consider a UC–ARMA(2, 1) model. The UC–ARMA(2, 1)
model is observationally equivalent to MNZ’s UC–AR(2) model in the sense that
these two UC models have the same autocovariance structure. A difficulty in ap-
plying the UC–ARMA(2, 1) model is that, unlike the UC–AR(2) model, it has a
correlation parameter that cannot be identified (and hence estimated) without im-
posing an identification restriction. We show that for the correlation parameter,
there is an upper bound implied by an unrestricted ARIMA(2, 1, 2) model, which
is an observationally equivalent alternative representation of the UC–ARMA(2, 1)
model. We propose a simple methodology for finding the implied upper bound.1

1In independent work that is closely related to ours, Oh, Zivot, and Creal (2008)
use a similar methodology. They focus on comparing the estimates of trend and
cycle obtained through the Beveridge-Nelson decomposition (Beveridge and Nelson,
1981) with the estimates of trend and cycle obtained from UC models with correlated
shocks. By contrast, our focus is an investigation of the correlation.
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The proposed methodology is applied to U.S. and U.K. real GDP data. For
both countries, it is found that the upper bounds of the correlations are negative.
This implies that the two shocks are negatively correlated. We use UC-ARMA(2, 1)
models, estimated under different identification restrictions, to estimate the trend
and cycle. We found that estimates of the trend and cycle can vary substantially
depending on the identification restrictions imposed. We also found that setting the
MA(1) parameter equal to zero, or specifying the cycle as an AR(2) process, is not
supported by the data on U.K. real GDP.

The rest of the paper is organized as follows. In the next section, we briefly
overview the identification problem of UC models. In Section 3, we propose a simple
methodology to find an upper bound of the correlation for unidentified UC models.
In Section 4, we apply the proposed methodology to U.S. and U.K. real GDP data.
The final section concludes the paper.

2 Overview of the identification problem of UC

models

Let {yt}Tt=0 be an observed time series, such as the log of real GDP. We suppose that
yt is the sum of two unobserved stochastic processes, a random walk process τt and
a stationary finite order ARMA (p, q) process ct; these processes are conventionally
termed “trend” and “cycle”, respectively, in the literature on business cycle analysis.
The model is known as a UC model (hereafter, a UC-ARMA(p, q) model). Formally,
the model is defined as follows:

yt = τt + ct, τt = µ+ τt−1 + ηt, φ(L)ct = θ(L)εt,

ηt ∼ i.i.d.(0, σ2
η), εt ∼ i.i.d.(0, σ2

ε ), cov(ηt, εt±s) =

{
σηε for s = 0,
0 otherwise,

(1)

where φ(L) = 1 − φ1L− · · · − φpLp and θ(L) = 1 + θ1L + · · · + θqL
q are pth order

AR and qth order MA polynomials, respectively, that satisfy the stationarity and
invertibility conditions; that is, the modulus of the roots of φ(z) = 0 and θ(z) are
all outside the unit circle.

From (1), we have

φ(L)(1− L)yt = φ(1)µ+ φ(L)ηt + (1− L)θ(L)εt. (2)

The right-hand side of (2) is the sum of two MA processes whose innovations are
correlated.2 However it can be shown that this part can be expressed by an MA (q∗)
process with the single innovation ut, where q∗ = max{p, q + 1} (see, for example,

2The sum of two MA processes with correlated innovations can be expressed as the
sum of two MA processes with uncorrelated innovations. Let θi(L)εi,t i = 1, 2 be two
MA processes with εi,t ∼ i.i.d.(0, σ2

i ) and E(ε1,tε2,t) = σ. Define δt ≡ ε2,t−(σ/σ2
1)ε1,t.

Note that E(εi,tδt) = 0. Then, we have S =
∑2

i=1 θi(L)εi,t = λ(L)ε1,t+θ2(L)δt, where
λ(L) = θ1(L) + (σ/σ2

1)θ2(L).
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Granger and Morris, 1976). This implies that yt can alternatively be represented as
an ARIMA(p, q∗ ) process, as follows:

φ(L)(1− L)yt = µ∗ + θ∗(L)εt, ut ∼ i.i.d(0, σ2
u), (3)

where µ∗ ≡ φ(1)µ, and θ∗(L) ≡ 1+θ∗1L+ · · ·+θ∗q∗L
q∗ . Note that the AR coefficients

in (2) and (3) are the same. This representation of the UC–ARMA(p, q) model is
commonly referred to as the ARIMA (p, 1, q∗) reduced form.

MNZ point out that if one sets p = 2 and q = 0, then the parameters of the
resulting UC–AR(2) model are uniquely identified from its ARIMA(2, 1, 2) reduced
form parameters. To see this, let γj denote the jth order autocovariance of the MA
part of (3). The first three autocovariances, γ0, γ1 and γ2, in terms of the ARIMA(2,
1, 2) reduced form parameters, are given by γ0 = σ2

u(1+θ∗21 +θ∗22 ), γ1 = σ2
uθ

∗
1(1+θ∗2),

γ2 = σ2
uθ

∗
2 and γj = 0 for j ≥ 3. Given that the MA processes on the right-hand

sides of (2) and (3) must be identical, we can express these autocovariances in terms
of the UC model parameters, σ2

η, σ
2
ε , and σηε, as:

γ0 = (1 + φ2
1 + φ2

2)σ
2
η + 2σ2

ε + 2(1 + φ1)σηε,
γ1 = (φ1φ2 − φ1)σ

2
η − σ2

ε + (φ2 − φ1 − 1)σηε,
γ2 = −φ2σ

2
η − φ2σηε.

(4)

(See MNZ for a detailed derivation of the equations in (4)). Thus, given the
ARIMA(2, 1, 2) reduced form parameters, which include φ1 and φ2, we can solve
the three equations in (4) for the three unknown UC model parameters, σ2

η, σ
2
ε , and

σηε, uniquely. The correlation ρ is calculated as ρ = σηε/(σεση).
A problem occurs when p = 2 and q = 1; then yt follows a UC–ARMA(2, 1)

process, and there is one additional parameter, namely, θ1, the MA(1) coefficient of
the ARMA(2, 1) cycle process. Although it is easy to show that its reduced form is
also an ARIMA (2, 1, 2) process, the four UC model parameters, σ2

η, σηε, σ
2
η and θ1

cannot be uniquely identified from its ARIMA (2, 1, 2) reduced form parameters.
To show this, we compare the autocovariances of the MA parts of the models. In
terms of the UC model parameters, the autocovariances γj, j = 0, 1, 2 are:

γ0 = (1 + φ2
1 + φ2

2)σ
2
η + 2(1− θ1 + θ2

1)σ2
ε + 2[1 + φ1 + θ1(φ2 − φ1)]σηε,

γ1 = (φ1φ2 − φ1)σ
2
η − (1− θ1)

2σ2
ε + [φ2 − φ1 − 1− θ1(φ2 − φ1 − 1)]σηε,

γ2 = −φ2σ
2
η − θ1σ

2
ε − (θ1 + φ2)σηε,

(5)

where θ1 is the MA (1) coefficient of the ARMA(2, 1) cycle process.
Note that there are only three equations for the four unknown UC model param-

eters, σ2
η, σηε, σ

2
η and θ1. Thus, the equations in (5) cannot be uniquely solved for

these four UC model parameters. To solve these equations, we must impose a re-
striction, which we term an “identification restriction”, on θ1. For example, setting
θ1 = 0 reduces the model to a UC–AR(2) model. This restriction is not testable
because under the alternative hypothesis the model parameters are not identified.
In general, the order condition for identification of the UC–ARMA(p, q) model is
p ≥ q + 2. The model parameters are just identified when this equality holds.
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MNZ apply a UC–AR(2) model to U. S. quarterly real GDP data and find that
the estimated correlation ρ is significantly negative. However, the point of our
paper is that the true data generating process may be the UC–AR(2, 1) model that
is observationally equivalent to the UC–AR(2) model. In that case, one cannot
identify ρ.

3 Methodology

In this section, we illustrate a simple method for finding an upper bound for the
correlation given the unrestricted ARIMA model parameters. The basic idea is to
examine how the value of the correlation implied by an unrestricted ARIMA model
changes when we impose different identification restrictions.

Lengthy calculations can be used to solve the equations in (5) to obtain the
following expressions for the three UC model parameters:

σ2
η =

γ0 + 2γ1 + 2γ2

(1− φ1 − φ2)2
,

σ2
ε =
−2(1− φ1θ1 + φ1 + φ2θ1)(γ2 + φ2σ

2
η)− (θ1 + φ2)[γ0 − (1 + φ2

1 + φ2
2)σ

2
η]

2θ1(1− φ1θ1 + φ1 + φ2θ1)− 2(θ1 + φ2)(1− θ1 + θ2
1)

,

σηε =
θ1[γ0 − (1 + φ2

1 + φ2
2)σ

2
η] + 2(1− θ1 + θ2

1)(γ2 + φ2σ
2
η)

2θ1(1− φ1θ1 + φ1 + φ2θ1)− 2(θ1 + φ2)(1− θ1 + θ2
1)
.

(6)
Note that the variance of the trend shock, σ2

η, is identified and is equivalent to the
long-run variance of the first differences of {yt}. This result holds in general: for
any UC–ARMA(p, q) model, the variance of the trend shock is always identified as
the long-run variance of the first differences; that is, σ2

η = ψ(1)2σ2
u, where ψ(1) =

θ∗(1)/φ(1). This was first pointed out by Cochrane (1988, p.908).
Note that given the ARIMA(2, 1, 2) reduced form parameters, the three UC

model parameters above are functions of θ1. Hence, given θ1, these functions deter-
mine the values of the three UC model parameters that satisfy the equations in (5),
from which we can calculate ρ. In this way, we can obtain an implicit relationship
between the “identification restrictions” imposed on θ1 and the resulting values of
the correlation ρ. Figure 2(a) plots such pairs of values for θ1 and ρ, given estimates
of the ARIMA(2, 1, 2) model for U.S. quarterly real GDP, which are reported in
the second column of Table 1.

The implied values of the correlations are all negative, and the upper bound of
the correlation is around −0.75. The dashed line shows that if we restrict θ1 to be
0, in which case the UC–ARMA(2, 1) model reduces to the UC–AR(2) model, then
the resulting implied correlation is around −0.95, which is lower than the estimate
obtained by MNZ. This is because our data are different from theirs; in particular,
our data cover a longer sample period (more details on the data set are given in the
next section). Note that there are ranges of values for θ1 that imply correlations
of less than −1, which thus violate the condition for positive definiteness of the
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covariance matrix. This means that UC–ARMA(2, 1) models with values of θ1 in
such ranges are inconsistent with the estimated unrestricted ARIMA(2, 1, 2) model.
We refer to such values of θ1 as “improper identification restrictions”; values of θ1

at which |ρ| ≤ 1 constitute “proper identification restrictions”. In the figure, we
display values of ρ based only on values of θ1 in a particular range; this is because
we confirmed that values for θ1 outside of the range are inconsistent with |ρ| ≤ 1.

In this way, we can find an upper bound for the correlation parameter. The
methodology can be easily extended for other unidentified UC models.

4 Empirical applications

In this section, we apply the proposed methodology to U.S. and U.K. quarterly real
GDP data. These quarterly real GDP data cover the period from 1946:4 to 2006:3
(yielding 238 observations) for the U.S. and the period from 1955:4 to 2006:2 (yield-
ing 202 observations) for the U.K. For these periods, Figure 1 shows the percentage
growth rates in GDP.

Table 1 reports the estimates of the unrestricted ARIMA (2, 1, 2) model for each
(logged) GDP series. Figure 2 graphs the implied relationships between θ1 and ρ
for these GDP data, obtained by using the methodology described in the previous
section. The implied values of the correlations are all negative for both countries.
The upper bound for the correlation differs between the two countries; it is about
−0.75 for U.S. and −0.993 for U.K. This implies that the two shocks are highly
negatively correlated. Note that because these values are upper bounds, the actual
correlations may be lower than these values. For the U.K. GDP data, it is worth
noting that the range of θ1 values that satisfies the condition for positive definiteness
of the the covariance matrix (i.e., |ρ| ≤ 1) does not include θ1 = 0. This implies that,
for the U.K., the restriction that θ1 = 0, under which the model reduces to the UC–
AR(2) model, is inconsistent with the estimated unrestricted ARIMA models. In
other words, the U.K. real GDP data do not support the UC – AR(2) specification.

If we set the value of θ1 a priori to, for example, θ1 = 0, we can directly esti-
mate the other three UC model parameters from a state space representation; this is
because the identification condition is satisfied. However, the above result suggests
that we should not arbitrarily choose the value of θ1. One would expect UC models
estimated under different identification restrictions, particularly improper identifi-
cation restrictions, to produce different trend and cycle estimates. To address this
concern, we estimate the UC–AR(2, 1) model directly under different identification
restrictions, including proper and improper restrictions, and then estimate the cycle
and trend from these estimated UC models. In the estimation of UC models, we
impose the positive definiteness condition on the covariance matrix parameters and
impose the stationarity conditions on the AR(2) coefficients.

Table 2 reports the estimation results for the UC–AR(2, 1) model. The values
of θ1 in the first row are the restrictions imposed in advance. The asterisks denote
improper restrictions. When we impose proper restrictions, the values of the log-
likelihoods are the same as those of the unrestricted ARIMA model and are higher
than those obtained under improper restrictions. Figures 3 and 4 display the cycle
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estimates for U.S. and U.K. real GDP, respectively. These are estimated by using
Kalman filtering on the state space representation of the UC–ARMA(2, 1) model
with estimated UC model parameters. For the U.S., Figures 3(a), (b) and (c)
illustrate the cycle estimates from the UC models estimated under the restrictions
θ1 = 0, θ1 = −0.5 and θ1 = 0.5, respectively. The restrictions, θ1 = 0 and θ1 = −0.5,
are consistent with the estimated unrestricted ARIMA(2, 1, 2) model, whereas the
restriction θ1 = 0.5 is not. The cycle estimates based on θ1 = 0 and θ1 = −0.5 are
identical; however, the cycle estimates based on θ1 = 0.5 are substantially different
from the other two. From Figure 4, findings for U.K. GDP are similar. Figures
4(a) and (b) illustrate the cycle estimates under proper identification restrictions
and Figures 4(c) and (d) present the cycle estimates based on improper restrictions.
The cycle estimates in (a) and (b) are identical. Although it is difficult to see
visually, the cycle estimates in (c) differ from those in (a) and (b).

5 Conclusion

In this paper, we proposed a simple methodology for investigating the correlation
between permanent and transitory shocks for unidentified UC models. Although
one cannot estimate the correlation in this case, our methodology can be used to
obtain an upper bound for the correlation. We applied our methodology to U.S. and
U.K. real GDP data. It was found that the upper bounds of the correlations are
negative for both countries. This implies that for these two countries, permanent
and transitory shocks are strongly negatively correlated.

Our results raise questions about the conventional identification scheme for UC
models, which involves setting the correlation parameter to zero. As argued by
MNZ in the context of U.S. GDP, imposing such a restriction distorts the estimates
of trend and cycle from UC models. Our results confirm this for the case of U.K.
GDP. We also showed that the UC model with a stationary AR(2) cycle process is
not supported by U.K. real GDP data.

Appendix: State space representation of the UC–
AR(2, 1) model

We adopt the following state space representation of the UC–AR(2, 1) model for
estimation of the model parameters and the cycle:

(Observation equation)

yt =
[

1 1 0 0
] 

τt
ct
ct−1

αt

 ,
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(State equation)
τt
ct
ct−1

αt

 =


µ
0
0
0

+


1 0 0 0
0 φ1 −φ2 θ1

0 1 0 0
0 0 0 0



τt−1

ct−1

ct−2

αt−1

+


1 0
0 1
0 0
0 1

[ ηtεt
]
.

If our objective is only to estimate parameters, it is more convenient to use the
following state space representation of the first difference

(Observation equation)

∆yt =
[

1 1 0 0 0
]


∆τt
∆ct

∆ct−1

αt
αt−1

 ,

(State equation)
∆τt
∆ct

∆ct−1

αt
αt−1

 =


µ
0
0
0
0

+


0 0 0 0 0
0 φ1 φ2 θ1 − 1 θ1

0 1 0 0 0
0 0 0 0 0
0 0 0 1 0




∆τt−1

∆ct−1

∆ct−2

αt−1

αt−2

+


1 0
0 1
0 0
0 1
0 0


[
ηt
εt

]
.

This is because then all state variables are stationary and we avoid the problem
of initialization. See Durbin and Koopman (2001) for more details of state space
models.
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Table 1: Estimates of the ARIMA (2, 1, 2) parameters

U.S. U.K.
φ1 1.3635 0.5605

(0.1447) (0.0972)

φ2 –0.7789 –0.2564
(0.1729) (0.0981)

θ∗1 –1.1068 –0.1361
(0.2148) (0.0651)

θ∗2 0.6187 0.7560
(0.2234) (0.0692)

µ 0.8299 0.6189
(0.0725) (0.0661)

σ2
u 0.8253 0.1645

σ2
lrv 1.253 0.892

σ2
ucv 0.970 0.301

ψ(1) 1.2293 2.3278

L –315.04 –105.14

Note: the following ARIMA(2, 1, 2) model was estimated by using exact maximum
likelihood estimation:

φ(L)(∆yt − µ) = θ(L)ut, ut ∼ NID(0, σ2
u),

where φ(L) = 1 − φ1L − φ2L
2, and θ∗(L) = 1 + θ∗1L + θ∗2L

2. Standard errors are
in parentheses. The rows with σ2

lrv, σ
2
ucv and ψ(1) display estimates of the long-run

variance, the unconditional variance and the (cumulated) impulse response measure,
namely, ψ(1) = θ∗(1)/φ(1), respectively. The last row reports the log-likelihood.
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Table 2: Estimates of the UC–ARMA(2, 1) parameters

U.S. U.K.
θ1 0.0 –0.5 0.5∗ 0.16 0.22 0.0∗ −0.5∗

φ1 1.3635 1.3635 1.4277 0.5605 0.5605 0.6462 1.6709

φ2 −0.7789 −0.7789 −0.6051 −0.2564 −0.2564 −0.3342 −0.7547

σ2
η 1.2533 1.2533 0.8733 0.8914 0.8914 0.8751 0.7535

σ2
ε 0.3170 0.3798 0.4211 0.3276 0.3780 0.2864 0.7405

ρ −0.9483 −0.7429 −0.9517 −0.9937 −0.9948 −0.9983 −0.9381

µ 0.8299 0.8299 0.8337 0.6189 0.6189 0.6186 0.6192

ση/σε 1.9883 1.8165 2.0741 1.6495 1.5356 3.0557 1.0087

L −315.04 −315.04 −316.69 −105.14 −105.14 −105.63 −111.35

Note: the following UC–ARMA(2, 1) model was estimated by maximum likelihood
estimation from a state space representation :

yt = τt + ct, τt = µ+ τt−1 + ηt, φ(L)ct = θ(L)εt

ηt ∼ i.i.d.N(0, σ2
η), εt ∼ i.i.d.N(0, σ2

ε ), corr(ηt, εt±k) =

{
ρσησε for k = 0,

0 otherwise,

where φ(L) = 1− φ1L− φ2L
2, and θ(L) = 1 + θ1L. The value of θ1 was set before

estimation. For estimation, we imposed the condition for positive definiteness on
the covariance matrix parameters and imposed the stationarity conditions for the
AR(2) coefficients. The last row reports the value of the log-likelihood.
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Figure 1: Growth rates of U.S. and U.K. real GDP 
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Figure 2: Implied relationship between the correlation and the MA(1) parameter 
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Figure 3: Percentage deviation from trend of U.S. real GDP 
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Note: these figures represent the cycle estimates from the UC models estimated under 
the following restrictions on 0: 11 =θθ  for (a); 5.01 =θ  for (b); and 5.01 −=θ  for (c). 
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Figure 4: Percentage deviation from trend of U.K. real GDP 
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Note: these figures represent the cycle estimates from the UC models estimated under 
the following restrictions on 16.0: 11 =θθ  for (a); 22.01 =θ  for (b); 01 =θ  for (c) and 

5.01 −=θ  for (d) 




