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1 Introduction

The time-varying volatility models have been widely used in various contexts of a time series
analysis. Two main streams of modeling a changing variance, the ARCH (autoregressive con-
ditional heteroskedasticity) model and stochastic volatility (SV) model, are well established
in financial econometrics. Numerous papers develop their generalization, and these specifi-
cations are more and more often applied for empirical analyses in financial economics and
macroeconomics.

Among such generalizations of specification, this paper focuses on the jump components
and heavy-tailed errors incorporated in the EGARCH (Exponential Generalized ARCH) model
and SV model. In many empirical studies, it has been pointed out that asset return data has
heavier tails than those of normal distributions. Recent articles show the jump components
work well to describe the excess returns observed rarely in financial market. In addition, many
empirical results show the existence of a leverage effect, which refers to the increase in volatility
following a previous drop in stock returns (Black (1976)).

The GARCH specification, firstly proposed by Bollerslev (1986), formulates the serial de-
pendence of volatility and incorporates the past observations into the future volatility (Boller-
slev et al. (1994)). Nelson (1991) proposes the EGARCH model which formulates the leverage
effect. Glosten et al. (1993) extends the GARCH model with leverage effect in another way,
called the GJR model. These models came to be standards of the asymmetric GARCH model.
As for the jump specification, Jorion (1988) firstly introduces the GARCH model with jumps,
and later, more complicated jump dynamics are developed by several papers (e.g., Chan and
Maheu (2002), Maheu and McCurdy (2004)). We extend the EGARCH model to the one with
jumps and heavy-tailed errors in this paper.

In the other stream, the SV models, based on the continuous-time probability process,
have also been well studied in financial econometrics (e.g., Ghysels et al. (2002), Shephard
(2005)). Among their generalizations, the leverage effect, jump components and heavy-tailed
errors in stock returns are well-known to be important in the recent literature (Chib et al.
(2002), Jacquier et al. (2004), Berg et al. (2004), Yu (2005), Omori et al. (2007), Nakajima
and Omori (2008)). The SV model with Student-t errors is one of the most popular models
to account for heavier tailed returns. However, it has been found insufficient to express the
tail fatness of returns, and the jump components have recently been introduced to explain
the tail behavior (Eraker et al. (2003), Nakajima and Omori (2008)). Various specifications
of the SV-jump models are compared in empirical studies (Chernov et al. (2003), Raggi and
Bordignon (2006)).

The model comparisons have been studied for the EGARCH models and the SV models
separately in literature (e.g., Lehar et al. (2002)). Several works (Kim et al. (1998), Giot
and Laurent (2004)) investigate the model comparison among the models in these two classes.

Instead, this paper proposes the model comparison among the models in the class of the



EGARCH models and the SV models with jumps and heavy-tails. The comparison for the
performance of these models would be beneficial for modeling jumps and heavy-tails on these
volatility models in the study of the behavior of the stock returns and option pricing.

It is well known that we have the difficulty in estimating the discrete-time SV model,
whose likelihood function is not easily available. It is possible to compute the likelihood
using a simulation-based method for a given set of parameters, but it requires a computational
burden since we need to repeat the filtering procedure for many times to evaluate the likelihood
function for each set of parameters until it reaches the maximum. To overcome this difficulty,
we take Bayesian estimation approach with the MCMC methods (e.g., Chib and Greenberg
(1996)) for a precise and efficient estimation of the SV model. Kim et al. (1998) develops a
fast and reliable MCMC algorithm, called mizture sampler. Using this method, the jumps
and heavy-tails (Chib et al. (2002)), the leverage and heavy-tails (Omori et al. (2007)), and
the leverage, jumps and heavy-tails (Nakajima and Omori (2008) are incorporated into the
SV model. As for the EGARCH and the GARCH models, Bauwens and Lubrano (1998),
Vrontos et al. (2000) and Nakatsuma (2000) develop the MCMC estimation method for the
simple GARCH and EGARCH model. In this paper we develop the MCMC algorithm for
the EGARCH model with jumps and heavy-tails. Based on these method, this paper adopts
the Bayesian model comparison for both the EGARCH and the SV models by the marginal
likelihood, which can be computed by the technique of Chib (1995), Chib and Jeliazkov (2001,
2005).

The rest of paper is organized as follows. In Section 2 we develop the MCMC estimation
method for the EGARCH and the GARCH model with jumps and heavy-tails. In Section 3 we
review the MCMC estimation scheme for the SV model with leverage, jumps and heavy-tails.
Section 4 illustrates our method on simulated data. In Section 5, we show the estimation
result of the Bayesian model comparison among these models using the daily returns of the

U.S. stock index. Finally, Section 6 concludes.

2 Bayesian inference for the EGARCHJt model

2.1 The model

We introduce the EGARCH(1,1) model with jumps, heavy-tails (EGARCHJt model) formu-

lated as

Yy = k‘t’)/t + \/XtUt@t, &~ N(07 1)7 (1)
logo? = w+ Blogo? | +6 Yt —i—a(ytl —C) . (2)
Ot—1 Ot—1

where 0 < 5 < 1, { = E(let|), e; follows a Student-t distribution with degrees of freedom v and

y; is a stock return. The {0?}7; is the conditional variance of the process. If the coefficient



0 is negative, it measures the leverage effect, which implies the increase in volatility following
a previous drop in stock returns. The ki represents a jump component in the measurement
equation (1). Following Jorion (1988), the 7 is a jump flag defined as a Bernoulli random

variable such that
mw=1)=kr, w(p=0=1-kr 0<k<I,

and the k; is a jump size specified as k; ~ N(0,02), where the jump parameter, x and &,
are unknown and to be estimated. The measurement error /\;e; is assumed to follow the

heavy-tailed Student-t distribution with unknown degrees of freedom v by letting
At~ Gamma(v/2,1v/2).

When A\ = 1 for all ¢, the model reduces to the EGARCH model with normal errors. For
the EGARCH model with normal errors, we assume that the e; follows a standard normal
distribution. For simplicity, we assume the unconditional variance for the initial as logo? =
w/(1= B).

We also consider the GARCH(1, 1) model with jumps, heavy-tails (GARCHJt model) for-

mulated as

Yy = kent \ﬁtEtO'ta et ~ N(0,1),

op = w+Boi+ayiy,

where w > 0, 3,0 >0, 3+ a < 1, logo? = (w+ axdé?)/(1 — a — 3). The model comparison is
provided including this GARCHJt models in Section 5.

2.2 MCMC algorithm

As shown in many papers, the parameter estimates of the EGARCH and the GARCH model
can be obtained by maximum likelihood estimation. In this paper, however, we estimate them
by a Bayesian inference using the MCMC algorithm to provide the model comparison including
the SV class whose likelihood is not easily available in the maximum likelihood estimation.

Let y = {ys )1, v = {vebiei, A = { oy, ¥ = (w,8,6,a). We set the prior probability
density, w(9), m(k), m(d), m(v) for ¥, k, 6 and v. Deriving the posterior distribution of the
EGARCHJt model,

ﬂ-(ﬁu R, 57 v, 7, )“y))

we develop the procedure to sample from this posterior distribution by the MCMC technique.
This procedure is also applied for the GARCHJt models. We propose the following algorithm.



Algorithm 1: MCMC algorithm for the EGARCHJt model.
1. Initialize ¥, k, 0, v,y and A.

2. Sample 90,7, A, y.

3. Sample (0,7)|9, k, A,y by

(a) Sampling J|¥, K, A, y,
(b) Sampling |9, k,d, \, y.

4. Sample &|9, 9,7, A\, y.
5. Sample (A, v)|9,9,7,y by

(a) Sampling A[9,d,v,7,y,
(b) Sampling v|A.

6. Go to 2.

We show the details of the MCMC algorithm in Appendix. We note a marginalization of
the conditional posterior density enables us to accelerate the convergence of the MCMC sam-
pling. Overall, the likelihood function of the EGARCHJt and the GARCHJt model can be
marginalized on the jump variable k;. In addition, the conditional posterior density of ¢ can be
marginalized on v in step 3(a). The performance of our algorithm is examined with simulated

data in Section 4.

2.3 Alternative jump specification

As an alternative model to incorporate the jump components into the EGARCH model, it is

possible to formulate the model as

ye = Ky + ogey, g ~ N(0,1),
logo? = w+Blogo?; + i1 +allers| — E(leii])),

where the jump component does not affect the volatility process. In this specification, however,
the conditional posterior distributions for jump variables are not easily computed because the
value of the jump variables, k; and ~;, are the state variables to be sampled in the MCMC
algorithm, while the k; and 7, affects all the volatility from time ¢ to n. The draw of {k;}},
and {7:}{-; requires so much time that it is unfeasible to implement the MCMC procedure.
From this difficulty, we choose the specification of equation (1) and (2) for the EGARCH model

with jumps in this paper.



3 Bayesian inference for the SVLJt model

3.1 The model

We consider the discrete-time SV model formulated as

yw = kye+Vieexp(hy/2), t=1,....n, (3)
ht+1 = H'i‘éb(ht_ﬂ)‘i‘nt, tzl?"‘vn_l) (4)

where h; is an unobserved log-volatility, |¢| < 1, hy ~ N(0,0%/(1 — ¢?)),

|
) ~N@O,Y), and ¥= 7).
Up po o

The correlation coefficient p measures the leverage effect and p = 0 implies the SV model
without leverage effect. We introduce a jump component k;y; in the measurement equation
(3). The 7 is a jump flag defined as a Bernoulli random variable defined in the previous

section, and the k; is a jump size specified by
Yy = log(1 + k) ~ N(—0.562,62), (5)

following Andersen et al. (2002), Chib et al. (2002). Though this specification of the jump
size is different from the one incorporated into the EGARCH model in the previous section,
the distribution (5) is derived from a discretization of a Lévy process, which is used in the
continuous time modeling of financial asset pricing. We label the model defined by equation
(3) and (4) as the SVLJt (SV with leverage, jumps and Student-¢ errors) model.

3.2 Auxiliary mixture sampler
Following Omori et al. (2007), we define y; = log(y; — kiye)? — log \e, dy = sign(y; — kyye) =

I(e; > 0) — I(g; < 0), which rewrites equation (3) as

y;ﬁk = ht + gta (6)

where & = loge?. Omori et al. (2007) proposes to approximate the bivariate conditional
density of (&, n:)|d; by a ten-component mixture of bivariate normal distribution, which is an
exhaustive extension of Kim et al. (1998) approach The key essence of their approach is that
the model (6) and (4) can be approximated to a linear Gaussian state space model conditioned

on the mixture component indicator s; € {1,2,..., K} as

Yy . hy &t
(ht+1><u+¢(ht—u)>+<m>7 ™



) Di m; UZ»Q a; bi

1 0.00609 1.92677 0.11265 1.01418 0.50710
2 0.04775 1.34744 0.17788 1.02248 0.51124
3 0.13057 0.73504 0.26768 1.03403 0.51701
4 0.20674 0.02266 0.40611 1.05207 0.52604
5 0.22715 —0.85173 0.62699 1.08153 0.54076
6 0.18842 —1.97278 0.98583 1.13114 0.56557
7 0.12047  —3.46788 1.57469 1.21754 0.60877
8 0.05591 —5.56246  2.54498 1.37454 0.68728
9 0.01575 —8.68384 4.16591 1.68327 0.84163
10 0.00115 —14.65000 7.33342 2.50097 1.25049

Table 1: Selection of (p;, m;, vZ, a;, b;) proposed by Omori et al. (2007).

where
&t . L m; + V21
|dt, (St = Z) = 5
i dipo(a; + bjvizi) exp(m;/2) + o/1 — p?za
fori=1,2,...,K, and z = (214, 29t) ~ N(0,2). Given s = {s1,...,8,}, we can sample the
latent variable h = {hq,...,hy} in one block from its joint distribution using the simulation

smoother for a linear Gaussian state space model (de Jong and Shephard (1995), Durbin and
Koopman (2002)). The mixture component parameters are provided by Omori et al. (2007)
in the case of K = 10 (Table 1). Note that (m;, v;, a;, b;) do not depend on model parameters

0 = (¢,0,p) and p.

3.3 MCMC algorithm

Let v* = {y/}i=1, d = {di}}—1, k = {kt}}—;, and we set the prior probability density m(f),

(), m(k), ©(9), 7(v) for 0, u, k, 0, v. Then, we draw sample from the posterior distribution
7T(97 ILL’ I{/? 5’ V? 87 h’ k? ,77 A|3J)7

by the MCMC algorithm. Let us reparameterize k; by ¢, = log(1l + k;) and denote ¢ =
{3y, 0O = {yft =1,...,n, st. 3 =0}, oM = {4yt =1,...,n, s.t. 7 = 1}. Following

Omori et al. (2007), we use the following sampling algorithm.
Algorithm 2: MCMC algorithm for the SVLJt model.
1. Initialize 6, u, x,d,v, s, h,1,v and A.
2. Sample (0, u, h)|s,y*,d by

(a) Sampling 0|s,y*,d,
(b) Sampling (1 h)|6, 5, ", d.



3. Sample M0, 1, 5, h, v, A, y.
4. Sample (6,4©) ™),y by

(a) Sampling 6[¢(), ,
(b) Sampling (|5, ~.

5‘ Sample (77 S)|97 M? ﬁ? h?Qp?)\?y by

(a) Sampling v|6, u, 5, b, ¥, Ay,
(b) Sampling s|0, u, h, y*, d.

6. Sample x|v.
7. Sample (A, )|, 1, s, h, 1,7,y by

(a) Sampling A|0, p, v, s, h, 4,7, y,
(b) Sampling v|A.

8. Go to 2.

The details of the algorithm is explained by Nakajima and Omori (2008). They show the
efficiency of this sampling scheme by providing simulation study. In this paper, we rely on
their results to estimate the SVLJt class.

3.4 Alternative jump specification

The EGARCHJt model defined by equation (1) and (2) has the jumps which affect the volatility

process, while the SVLJt model defined by equation (3) and (4) has the jumps which do not

affect the volatility. As mentioned in section 2.3, it is unfeasible to estimate the EGARCHJt

model with jumps which do not affect the volatility. Alternatively, we consider an additional

SV model with jumps which do affect the volatility to compare with the EGARCHJt model.
We consider the SV model with correlated jumps (SVLCJ model) given by

Yty = kt% + &t eXp(ht/Q)v t= 17 -y 1 (8)
ht+1 - /L-f-gb(ht—lﬁ)—f-]t%‘f‘nta tZO,,TL—l (9)

The measurement equation (8) and the state equation (9) have a common jump indicator
variable, 74, to model the jumps that occur concurrently both in return and in volatility so
that the jumps affect the volatility process. The joint distribution of jump sizes is assumed to
be

ji ~ Exp(us),
kt|jt ~ N(Mk"’ﬁ]]t? O-l%)a



where Exp denotes the exponential distribution. The correlation between jump sizes in return
and in volatility is considered by the parameter 3;. This type of jumps in the SV model is
studied by the recent literature (e.g., Eraker et al. (2003), Kobayashi (2006)). Nakajima and
Omori (2008) compares the SVLCJ model with the models in the SVLJt class. To compare
the jump models in the EGARCH and the SV specification, we include the SVLCJ model for

the model comparison.

4 Illustrative example

This section illustrates our estimation procedure for the EGARCHJt model using the simulated
data.

We generate 3,000 observations from the EGARCHJt model given by equation (1) and (2)
with w = —0.2, 3 =0.98, § = —0.05, a = 0.15, kK = 0.01, § = 0.03, v = 10. The following prior

distributions are assumed:

w ~ N(0,1), [ ~ Beta(8,1), 6 ~ N(0,1), « ~ N(0,1),
k ~ Beta(2,100), J§ ~ N(5,0.05), v ~ Gamma(16,0.8).

These prior distributions and the parameters for simulated data reflect the values obtained in
the past literature to a certain extent.

We draw M = 5,000 sample after the initial 10,000 samples are discarded. The compu-
tational results are generated using Ox version 4.02 (Doornik (2006)). Figure 1 shows the
sample autocorrelation function, the sample paths and the posterior densities for each param-
eters. After discarding samples in burn-in period, the sample paths look stable and the sample
autocorrelations drop quickly. This indicates our sampling method produces the uncorrelated
samples efficiently

Table 2 gives the estimates for posterior means, standard deviations and the 95% credible
intervals. All estimated posterior means are close to the true values and the true values
are contained in their corresponding 95% credible intervals. The inefficiency factors are also
reported to check the performance of our sampling efficiency. The inefficiency factor is defined

as 1+ 2352, ps where ps is the sample autocorrelation function at lag s. It is the ratio of

Parameter True  Mean  Stdev. 95% interval Inefficiency
w -0.02  -0.2194 0.0524  [-0.3338, -0.1244] 34.17
16 0.98  0.9775 0.0058 [0.9649, 0.9881] 34.72
0 -0.05 -0.0673 0.0125 [-0.0924, -0.0411] 7.57
o 0.15 0.1801 0.0215 [0.1411, 0.2261] 12.11
K ]
o ]
v ]

0.01  0.0270 0.0134 [0.0077, 0.0595 64.97
0.03  0.0276 0.0074 [0.0137, 0.0436 38.63
[

10.0 12.9531 3.5755 7.2511, 20.921 122.87

Table 2: Estimation result of the simulated data for EGARCHJt model.
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Figure 1: Estimation result of the simulated data (EGARCHJt model). Sample autocorrela-
tions (top), sample paths (middle) and posterior densities (bottom).

variance of the posterior mean from the correlated draws to the one from the hypothetical
uncorrelated sample, which measures the loss of sampling efficiency in our correlated MCMC
draws (see e.g. Chib (2001)). The inefficiency factors in Table 2 take very low values except

v, which assures the successful sampling without loss of efficiency.

5 Application to stock returns data

5.1 Data

We estimate the EGARCHJt and the SVLJt models for daily stock returns. The series are
two U.S. stock price indexes, S&P500 index, and NASDAQ index, from January 2, 1992 to
December 29, 2006. The log-difference returns are computed as y; = log P, — log P;_1 where
P, is the closing price on the day t. The sample size is 3,781 for each series. Figure 2 plots
the two series and Table 3 summarizes the descriptive statistics of the return data. We find
that the skewness of the S&P500 data is slightly negative, while the one of the NASDAQ is
almost zero. The kurtosis of each series is around seven or eight, which is larger than a normal

distribution.
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Figure 2: The return data for two stock series (1992/1/2 — 2006/12/29).

Mean Stdev. Skewness Kurtosis Max. Min.
S&P500 0.0003 0.010 -0.109 7.200 0.056 -0.071
NASDAQ 0.0004 0.016 0.002 8.616 0.133 -0.102

Table 3: Summary statistics for the return data (1992/1/2 — 2006/12/29, n = 3, 781).

5.2 Results for the parameters

We show the results for the parameter estimation of the EGARCHJt model and the SVLJt
model using the S&P500 series in this section. For the SVLJt model, we assume the following
prior:

p+1

— ™ Beta(20,1.5), o 2 ~ Gamma(2.5,0.025),

p ~ U(-1,1), w ~ N(-10,1),
k ~ Beta(2,100), log(d) ~ N(—2.5,0.15), v ~ Gamma(16,0.8).

As suggested by Kim et al. (1998) for the estimation of the SV model using the mixture
sampler, we take y; = log((y; — kiy¢)? + ¢), where ¢ is an offset for the case where (y; — kiy;)?
is too small. We set ¢ = 10~7 in this paper. The number of MCMC iterations is same as the
simulation study.

Table 4 reports the parameter estimates of the EGARCHJt and the SVLJt model for the
S&P500 returns. Figure 3 and 4 plot the sampling results for the EGARCHJt and the SVLJt

10



Parameter = Mean  Stdev. 95% interval Inefficiency
EGARCHJt model

w -0.1299  0.0223  [-0.1740, -0.0895] 19.20
1] 0.9879  0.0022 [0.9834, 0.9920] 19.14
0 -0.0880 0.0103 [-0.1097, -0.0693] 10.79
@ 0.1051 0.0116 [0.0836, 0.1279] 9.74
K 0.0307 0.0182 [0.0064, 0.0730] 49.33
) 0.0098 0.0027 [0.0058, 0.0166] 22.36
v 13.9744 2.8954 [9.7847, 20.816] 59.79
SVLJt model
10) 0.9864  0.0029 [0.9800, 0.9916) 12.54
o 0.1373 0.0134 [0.1119, 0.1648] 13.91
p -0.7327 0.0412 [-0.8044, -0.6450] 10.54
exp(p/2) 0.0090 0.0006 [0.0079, 0.0103] 1.77
K 0.0009  0.0007 [0.0001, 0.0026] 3.80
0 0.0993 0.0525 [0.0334, 0.2192) 62.60
v 20.8137 4.1579 [14.505, 30.931] 175.81

Table 4: Estimation results for S&P500 returns.

model respectively. The estimates of the volatility parameters (w, 3, 6, «) and (¢, o, p, exp(p/2))
are consistent with the results of the previous literature (e.g., Vrontos et al. (2000), Nakajima
and Omori (2008)). For both the two models, the posterior of 3 or ¢ is close to one, which
implies the well-known high persistence of volatility on stock returns. The parameter 6 and p
are estimated negative and the 95% confidence intervals do not contain zero. This indicates
that there exists the leverage effect in our stock returns data.

We find that there are specific differences for the estimates of the jump parameters between
the EGARCHJt model and the SVLJt model. The posterior mean of k for the EGARCHLJt
model is about 3%, while the one for the SVLJt model is much smaller, 0.9%. This indicates
that the EGARCHJt model more often captures the excess returns by the jumps than the
SVLJt model. Though we can not compare the jump sizes between the two models directly
because the specifications of the jump size are different, if we calculate the standard deviation
of the jump size for the SVLJt model using the posterior mean of 4, it is 0.0996 for the SVLJt
model and 0.0098 for the EGARCHJt model. The empirical results show the SVLJt model
captures larger excess returns by the jumps with the smaller probability than the EGARCHJt
model with the larger jump probability. This would be caused from the difference of the
specification of the volatility process and the jump component between the two models. The
SV models have the disturbance for their volatility process, while the EGARCH models do not
have it and the volatility on the next day is determined by the return and the volatility on the
current day. In other words, the volatility process of the SV models can move more flexibly
than the EGARCH models. In short, when the return marks a certain excess shock, if the
effect of the shock is not persistent, the volatility process of the SVLJt model would capture
the shock, while the EGARCHJt would capture it by the jump component. The difference of

11
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Figure 3: Estimation result of the S&P500 returns (EGARCHJt model). Sample autocorrela-
tions (top), sample paths (middle) and posterior densities (bottom).

the performance to fit the behavior of the stock returns between these two models is examined
in the next section.

In addition, the posterior mean of the parameter v for the EGARCHJt model is smaller
than the one for the SVLJt model. As discussed by Nakajima and Omori (2008), the model
whose jump probability is estimated to be smaller tends to have a heavier-tailness of the errors.
It is considered that the jump component captures less excess returns, when the errors have
the heavier-tails. We can find the same results for the relation of the EGARCHJt model and
the SVLJt model in this study.

5.3 Results for the model comparisons

In a Bayesian framework, we can compare the model fitting based on the marginal likelihood
or Bayes factor, even if the competing models are not nested. When the prior probabilities
are assumed to be equal, we choose the model which yields the largest marginal likelihood.
In order to compare the competing models in the EGARCH and the SV class with jumps,
heavy-tails, we estimate their marginal likelihood for our dataset.

The marginal likelihood is defined as the integral of the likelihood with respect to the prior
density of the parameter. Following Chib (1995), we estimate the log of marginal likelihood
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Figure 4: Estimation result of the S&P500 returns (SVLJt model). Sample autocorrelations
(top), sample paths (middle) and posterior densities (bottom).

m(y), as
logm(y) = log f(y|©) + log m(©) — log m(Oly),

where © is a parameter set in the model, f(y|©) is a likelihood, 7(©) is a prior probability
density and m(©ly) is a posterior density. This equality holds for any ©, but we usually use
the posterior mean of © to obtain a stable estimate of m(y). The prior probability density is
easily calculated, though the likelihood and posterior part requires a simulation evaluation.
For the SV class, the likelihood can be estimated by the particle filter (e.g., Pitt and Shephard
(1999), Chib et al. (2002), Omori et al. (2007)). For the posterior part, we use the method of
Chib (1995), Chib and Jeliazkov (2001, 2005) to compute 7(O|y) using the sample obtained
through the reduced iteration of the MCMC algorithm.

We show the results of the model comparison for the 17 competing models of the EGARCH
and the SV class with jumps and heavy-tails, including the SVLCJ model, for two stock returns
data. We label the models of the EGARCHJt and the SVLJt class, with ‘I’ referring to the

leverage effect, ‘J’ referring to jump component, ‘t’ referring to Student-f errors. For the
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Series: S&P500 NASDAQ

Model Log-ML Ranking Log-ML Ranking
GARCH 12578.42 (0.01) 17 11300.17 (0.01) 17
GARCH¢t 12621.00 (0.26) 14 11321.13 (0.18) 14
GARCHJ 12606.61 (0.02) 16 11317.49 (0.04) 16
GARCHJt 12618.57 (0.22) 15 11319.88 (0.19) 15
EGARCH 12661.70 (0.09) 9 11345.23 (0.06) 11
EGARCHt 12702.52 (0.68) 3 11367.52 (0.93) 5
EGARCHJ  12692.14 (0.12) 7 11369.65 (0.11) 3
EGARCHJt 12703.09 (0.46) 2 11368.57 (0.61) 4
SV 12650.05 (0.43) 12 11349.39 (0.76) 10
SVt 12660.25 (0.80) 10 11350.26 (1.18) 9
SVJ 12644.53 (0.78) 13 11334.23 (2.51) 13
SVIJt 12653.52 (0.80) 11 11344.76 (0.94) 12
SVL 12702.21 (0.43) 4 11374.48 (0.83) 2
SVLt 12708.90 (0.66) 1 11375.05 (0.98) 1
SVLJ 12697.26 (1.14) 6 11358.97 (2.42) 7
SVLJt 12702.03 (0.79) 5 11363.84 (0.91) 6
SVLCJ 12691.27 (1.02) 8 11358.49 (0.78) 8

* The values are based on log scale and standard error in parentheses.

Table 5: Marginal likelihood (ML) for stock returns data.

GARCHJt models, we assume the prior as

wl ~ Gamma(5, 5x107%), a ~ Beta(3,3), A(1—a)la ~ Beta(8,1),
0 ~ UO0,1-a-070), x ~ Beta(2,100),
d ~ N(5,0.05), v ~ Gamma(16,0.8),

and for the SVLCJ model, we assume the following prior:

ny ~ EXp(O.Q), ﬁj ~ N(O,l),
pe ~ N(0,1), 0,2 ~ Gamma(2.5,0.025).

We evaluate the posterior density at the point ©® through the reduced MCMC sampling, which
is iterated for 5,000 draws. We run 10 replications of the particle filter to estimate the standard
error of the likelihood.

Table 5 reports the estimated marginal likelihoods, standard errors and rankings for all
the competing models. The estimates shows that the marginal likelihood of the EGARCH
models are higher than the GARCH models and the one of the SV models with leverage are
higher than the SV models without leverage. This indicates the leverage effect is important to
analyze the stock returns as discussed by Omori et al. (2007).

The EGARCHJt models which we propose in this paper perform well and the marginal
likelihood is almost equivalent to the SVLJt models. Moreover, the EGARCHt and the
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EGARCHJt model are favored over the the SVLJ and SVLJt model. Compared with the
SVLCJ model, whose jumps do affect the volatility as the EGARCHJt models, the marginal
likelihood of the EGARCHt, the EGARCHJ, and the EGARCHJt model dominate the one of
the SVLCJ model.

The marginal likelihood of the SVLt model is the highest among the competing models in
the EGARCHJt and SVLJt class. As pointed out by Nakajima and Omori (2008), the SVLt
model performs better than the other models in the SVLJt class, and we find that it is also
favored over the EGARCHJt models.

The heavy-tails contribute most of the models for their marginal likelihoods. Most of the
EGARCH models with Student-t errors are favored over the ones without them. On the other
hand, the jumps do not always contribute these models as discussed by Nakajima and Omori
(2008). Overall, we find that the jumps and heavy-tails have the large contributions for the
EGARCH model based on the marginal likelihood. The ratio of the marginal likelihood of the
SVL model to the one of the EGARCH model is quite large, while the one of the SVLJt model
to the EGARCHJt model is less than one, which means the EGARCHJt model outperforms
the SVLJt model by incorporating the jumps and heavy-tails. These results are robust for the

two stock returns series.

6 Conclusion

In this paper, we propose the EGARCH model with jumps and heavy-tailed errors and develop
the MCMC estimation algorithm. Our proposed method is illustrated using simulated data.
We provided the model comparisons for the EGARCH and the SV models with jumps and
heavy-tails using the return data of the U.S. stock index. Based on the estimates of the
marginal likelihood, we found the jumps and heavy-tails raises the marginal likelihood of the
EGARCH model. The EGARCH model with jumps and heavy-tails and the SV model with

heavy-tails and leverage fit to the data better than other competing models for our dataset.
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Appendix. MCMC algorithm for EGARCHJt and GARCHJt

model

We illustrate the MCMC procedure for the EGARCHJt and the GARCHJt model in this

appendix. The proposed algorithm is as follows:

1. Initialize ¥, k, 0, v,y and .

2. Sample 9|9, 7, A, y.

To sample ¢ from its conditional posterior distribution 7 (9|9, v, A, y) oc w(9) f (y|9, 6, v, A),
we use the Metropolis-Hasting (M-H) algorithm (see e.g., Chib and Greenberg (1995)),
because the posterior distribution is not available in the form of an usual distribution
such as a normal distribution. We construct the proposal density in the form of a
normal distribution for the M-H algorithm by fitting the mean and variance on the
target posterior density from the product of second-order Taylor expansion. For the
restriction for the parameters in the GARCH models, we consider the transformation
of ¥ — 9 = (@,a, ) such that @ = logw, @ = log(a/(1 — a)), and § = log(8/(1 —
a — ). The posterior density is transformed over the full space of R?, where we easily
implement the proposal density. To draw a candidate of the M-H algorithm, we find I
which maximizes (or approximately maximizes) the posterior density, 7r(1§]5, v, A, y), and

generate the candidate J, from the normal distribution N (ths, X ), where

q* 810gﬂ-(1§|6777>‘7y)
* — E*
o = 07 29

2—1 — 810gﬂ-(1§‘5777 )‘7 y)

P D00

J=0*

which is obtained from the second-order Taylor expansion around 6. Let 9o denote the
current point of ¥ and we reversely transform J* to ¥*. We accept the candidate 9* with

probability

ﬂ-(e* ‘57 Vs )‘7 y)q(90|67 Y, Av y) 1}

a(fy, 0716, 7, A, :min{ ,
(B0, 6710,7,2,9) (609, v, A, y)q(0%[0,7, A, y)

where ¢ denotes the proposal density. If the candidate 8* is rejected, we take the current

value 0y as the next draw.

3. Sample (0,7)|Y, &, A, .

(a) Sample d|9, K, A, y.
The joint posterior distribution of (4,) is given by

L 2
76,15 y) o w(6) [[ (1 —m>l—wlexp{‘z<‘%},
t=1

/O-tz)\t +")/t(52 0t2)\t +7t(52)
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where k; is marginalized in the likelihood function. To sample §, we further marginal-
ize this joint posterior distribution over 7. The marginalized conditional posterior

distribution is formed as

N———
|

2 2

K Yi l -k Yi
(619,15, A, y) x 7(0) [[ | —=1exp{ - + XP | 752,
(9] Y) ( )t:1 { 20 1 02 { 2(02 )\ —|-52)} gV ( 202\

We can sample § using the M-H algorithm. We note that this marginalization
enables us to accelerate the convergence of the MCMC sampling.

(b) Sample |9, k, 0, A, y.
Sampling v from its posterior distribution requires only to evaluate the Bernoulli
distribution 7(v¢|¥, K, d, A, y) where v = 0,1. We sample 7; using the probability

mass function of its posterior density as

2
K Yt
= 1|9, K, 4, A, o 22N +02) [
(e U, k y) o 2), 1 02 xp { 2(a2 )\ + 62) }

1— 2
(e = 019, K,0, N, y) o " exp <— v )
fort=1,...,n.

4. Sample s|9, 9,7, A\, y.

When we specify the prior as x ~ Beta(nag,ngp) for the EGARCHJt model, we sample
x from Beta(nqg + n1,ngo + no), where ny and ng denote the count of 44 =1 and v = 0
respectively. On the other hand, for the GARCHJt model, we consider the posterior
distribution of x conditional on (¥, 4,7, \), because we assume o7 = (w + arxd?)/(1 —
a — 8 — p/2). The posterior distribution of k is not written in the form of a beta
distribution. We sample s using the M-H algorithm with the candidate drawn from

Beta(nao + n1,ng0 + no).

5. Sample (A, v)|9,9,7,y.

(a) Sample A\, 0,v,7,y.
The joint posterior distribution of (A, v) is given by

no(v\y o,
T\ v]9,0,7v,y) W(V)H (3) )\;(Qﬂ)exp (—V>

2
o2\ + 7402 2(o7 A\t + 1162?)
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We sample ); from its conditional posterior density,

—(5+1) ( v ) 1 y?
|9, 0, v, xA 2 Vexp| - | ———exp{ 55— ¢,
(Al 7 Y) t P 2\ /7,52>\t 7162 p{ Q(Gtz)\t + 7102)

by the M-H algorithm with the candidate drawn from its prior density as (A\f)~!
Gamma(v/2,v/2), for t =1,...,n

(b) Sample v|A.

Finally, the conditional posterior distribution for v is given by

m(V|A) «x (v %V nH)‘t exp(—zx\t )
t=1

2

We sample v by the M-H algorithm with the normal proposal density.
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