
 
 

IMES DISCUSSION PAPER SERIES 
 
 

 

 
The Zero Interest Rate Policy  

 
 

Tomohiro Sugo and Yuki Teranishi 
 
 

Discussion Paper No. 2008-E-20 

 
 

 
 
 

INSTITUTE FOR MONETARY AND ECONOMIC STUDIES 
 

BANK OF JAPAN 
 

2-1-1 NIHONBASHI-HONGOKUCHO 

CHUO-KU, TOKYO 103-8660  

 JAPAN 

 

 

You can download this and other papers at the IMES Web site: 

http://www.imes.boj.or.jp 
 

Do not reprint or reproduce without permission. 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

NOTE:  IMES Discussion Paper Series is circulated in 

order to stimulate discussion and comments. Views 

expressed in Discussion Paper Series are those of 

authors and do not necessarily reflect those of 

the Bank of Japan or the Institute for Monetary 

and Economic Studies.   



IMES Discussion Paper Series 2008-E-20 
August 2008 

 
 
 
 

The Zero Interest Rate Policy 
 

Tomohiro Sugo* and Yuki Teranishi** 
 

Abstract 
This paper derives a generalized optimal interest rate rule that is optimal even 
under a zero lower bound on nominal interest rates in an otherwise basic New 
Keynesian model with inflation inertia. Using this optimal rule, we investigate 
optimal entrance and exit strategies of the zero interest rate policy (ZIP) under the 
realistic model with inflation inertia and a variety of shocks. The simulation results 
reveal that the timings of the entrance and exit strategies in a ZIP change 
considerably according to the forward- or backward-lookingness of the economy 
and the size of the shocks. In particular, for large shocks that result in long ZIP 
periods, the time to the start (end) of the ZIP period is earlier (later) in an economy 
with inflation inertia than in a purely forward-looking economy. However, these 
outcomes are surprisingly converse to small shocks that result in short ZIP periods. 
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1 Introduction

Central banks implement a low interest rate where the scope for cutting the policy rate is

very limited. For example, the Japanese economy has faced a de�ationary environment for

a prolonged period. The Bank of Japan (BOJ) set their operational short-term interest rate

-the uncollateralized overnight call rate- virtually equal to zero for almost seven years from

February 1999 to June 2006. Moreover, a low interest rate environment, where the policy

interest rate equals 0.5 percent, has continued up to now (July 2008), as shown in Figure 1.

In the United States, the Federal Reserve Board (FRB) temporarily set the federal funds

rate as low as one percent in 2003 and 2004, which was a historical low. In Switzerland,

the Swiss National Bank reduced its policy rate to almost zero percent from 2003 to 2005.1

Central banks can no longer ignore the possibility of hitting the zero (percent) lower bound

on nominal interest rates.

In a situation in which the zero lower bound on nominal interest rates binds, many

studies, such as Reifschneider and Williams (2000), Eggertsson and Woodford (2003a, b),

and Jung, Teranishi and Watanabe (2005), outline the characteristics of desirable mone-

tary policies.2 Reifschneider and Williams (2000) investigate a desirable monetary policy

of the US in a low interest rate environment. Their conclusion is that a central bank must

preemptively start a ZIP and enough prolong a ZIP with history dependence in a situation

where the policy interest rates hit zeros. Their analysis is very powerful and reasonable;

however, they do not address the issue of optimal monetary policy. Eggertsson and Wood-

ford (2003a, b) and Jung et al. (2005) assume a standard New Keynesian model consisting

1Furthermore, the European Central Bank set overnight rates at two percent, from 2003 to 2005.
2Adam and Billi (2006, 2007) and Nakov (2008) assume shocks follow a stochastic process and numeri-

cally reveal the properties of optimal monetary policies under a situation in which a zero lower bound on
nominal interest rate binds in a standard New Keynesian model consisting of a forward-looking IS curve
and forward-looking Phillips curve. Their conclusions are qualitatively the same as in the former studies
mentioned above.
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of a forward-looking IS curve and forward-looking Phillips curve and derive optimal tar-

geting rules in a purely forward-looking economy. They imply that an important feature

of optimal monetary policy in a low interest rate environment is that the ZIP should be

continued after the improvement in the economic situation. Because of this commitment

to the policy, central banks are able to stimulate the economy by inducing high expected

in�ation, and therefore, low real interest rates even in a situation where the nominal in-

terest rate is at the zero lower bound. Their analyses, however, are extreme cases using

purely forward-looking models and focus on the roles of expectations of agents. Thus, we

have to assume a more realistic model with in�ation inertia to obtain implications from

theory for the implementation of monetary policy. Moreover, their suggestions that the

central bank should continue a ZIP even after the in�ation rate becomes a positive value or

shocks disappear, mainly depend on the e¤ects of large negative shocks in the natural rate

of interest that induce a long enough ZIP period. They ignore the roles of price shocks and

the e¤ects of the size of the shocks on the nature of the ZIP, and so these papers mainly

focus on one of four situations: the case of the Forward-looking Economy, Large Shock, in

a ZIP environment, as shown in Table 1.

The �rst contribution of the paper is to provide an optimal interest rate rule in a low

interest rate environment by extending the discussion in Giannoni and Woodford (2002).

In other words, we propose a generalized optimal interest rate rule that is valid regardless

of whether or not the zero lower bound on nominal interest rates binds. In contrast with

Eggertsson and Woodford (2003a, b) and Jung et al. (2005), which show the optimal tar-

geting rule in a low interest rate environment, we propose an optimal interest rate rule that

is intuitively comprehensible.3 Unlike Reifschneider and Williams (2000), we theoretically

derive an optimal interest rate rule. We reveal that the optimal interest rate rule should

3Sugo and Teranishi (2005) derive other forms of optimal interest rate rules under a zero lower bound
on the nominal interest rate in a purely forward-looking economy.
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keep proper information on forward- and backward-looking properties using indicator vari-

ables regarding the zero lower bound on the nominal interest rate instead of the nominal

interest rate itself in a low interest rate environment.

The second contribution is to consider an optimal monetary policy under a more real-

istic Phillips curve with in�ation inertia (hybrid Phillips curve) and a variety of shocks,

including price shocks and natural rate of interest shocks, of various sizes, than the former

studies do, which assume a forward-looking Phillips curve and large natural rate of interest

shocks. Many studies that develop realistic models, such as Smets and Wouters (2003)

and Christiano, Eichenbaum and Evans (2005), support the hybrid Phillips curve and the

importance of price shocks in explaining the economic dynamics.4 This realistic setting pro-

vides many implications for the conduct of monetary policy, especially for entrance and exit

strategies in a ZIP environment. Moreover, both the nature and size of the shocks change

the timing of the ZIPs. To summarize, the implications for monetary policy are as follows.

For the case of a large-scale shock that induces a long ZIP period, the central bank should

continue the ZIP even after the end of the economic contraction in a purely forward-looking

economy. We, however, need to carefully consider this result, because the ZIP period is

shorter with in�ation inertia than without it. In particular, the time to the start (end) of

the ZIP period is earlier (later) in an economy with in�ation inertia. These properties exist

because the central bank has to commit to a long enough ZIP period in response to large

shocks to stimulate the economy through the expected in�ation channel, which is eventu-

ally more likely to induce stronger economic �uctuations after the ZIP period in a hybrid

economy than in a forward-looking economy. But, these results are converse for the case of

small-scale shocks that induce a ZIP for a few periods. For small-scale shocks, the ZIP is

4For example, Amato and Laubach (2003a) and Steinsson (2003) consider optimal monetary policies in
an economy with in�ation inertia but without a zero lower bound on the nominal interest rate. Our analysis
extends their studies in the sense that we explicitly introduce a nonnegativity constraint on the nominal
interest rate.
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ended well before the economic contractions end. Moreover, the time to the start (end) of

the ZIP period is earlier (later) in an economy with in�ation inertia. These properties exist

because the central bank does not need to care about a large economic boom after ending

the ZIP because the central bank does not rely on the expected in�ation channel as much.

The rest of the paper is organized as follows. The following section describes the model.

In Section 3, we propose a generalized optimal interest rate rule under the zero lower bound

on the nominal interest rate. Section 4 investigates the properties of the optimal monetary

policy rule relating to the start and end of the policy following large-scale shocks. Section 5

investigates the properties of the optimal monetary policy rule relating to the start and end

of policy following small-scale shocks. Section 6 provides the robustness analysis. Finally,

in Section 7, we summarize our �ndings in this paper.

2 The Model

We use the model developed by Clarida, Gali and Gertler (1999) and Woodford (2003).

The economy other than the central bank is represented by four equations: an �IS curve�,

a �Phillips curve�, a shock to the natural interest rate, and a cost-push shock.

xt = Etxt+1 � � [(it � Et�t+1)� rnt ] ; (2.1)

�t � 
�t�1 = �xt + �Et(�t+1 � 
�t) + "t; (2.2)

rnt = �rrnt�1 + �rt ; (2.3)

"t = �""t�1 + �"t : (2.4)

Eq. (2.1) represents the forward-looking IS curve. This IS curve states that the output

gap in period t, denoted by xt, is determined by the expected value of the output gap in

period t+1 and the deviation of the short-term real interest rate, the nominal interest rate
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it minus the expected rate of in�ation Et�t+1, from the natural rate of interest in period t,

denoted by rnt , which can be interpreted as a shock and follows a �rst order autoregressive

process. Eq. (2.2) is a hybrid Phillips curve. This Phillips curve states that in�ation in

period t depends on an expected rate of future in�ation in period t+1, a lag of in�ation

in period t-1, and the output gap in period t, and includes price shock given by "t that

follow a �rst autoregressive process. Gali and Gertler (1999) and Woodford (2003) show the

microfoundations of the Phillips curve that includes in�ation inertia. The hybrid Phillips

curve is empirically more realistic than the forward-looking Phillips curve, as suggested

by Smets and Wouters (2003) and Christiano et al. (2005), and induces important policy

implications as shown in the later sections. Here �rt and �
"
t are i.i.d. disturbances and �, �,

�, 
, �r, and �" are parameters, satisfying � > 0, � > 0, 0 < � < 1, 0 � 
 � 1, 0 � �r < 1,

and 0 � �" < 1. Eq. (2.3) and Eq. (2.4) describe shocks to the economy. It should be

noted that the Phillips curve becomes purely forward-looking when 
 = 0. Furthermore,

we put a nonnegativity constraint on nominal interest rates.

it � 0: (2.5)

We assume that the entire shock process is known with certainty in period 1; namely, a

deterministic shock.5 We know that this assumption is not trivial. However our assumptions

about the shock process enable us to analytically investigate the properties of the optimal

interest rate rule in the face of a zero lower bound on the nominal interest rate in a simple

way. We also assume that, prior to the shock, the model economy is in a steady state where

xt and �t are zeros and it is i�.

5We note that certainty equivalence does not hold in our optimization problem because of the nonlinearity
caused by the zero lower bound on the nominal interest rate. Thus, it is impossible to obtain an analytical
solution under stochastic shocks. Eggertsson and Woodford (2003a, b) extend the analysis under the special
case of stochastic disturbances. Surely, we can extend our analysis by making use of the method suggested
by Eggertsson and Woodford (2003a, b); however, the qualitative outcomes do not change.
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Next, we present the central bank�s intertemporal optimization problem. In the case of

the hybrid Phillips curve, Woodford (2003) shows that the period loss function is given by:

Lt = (�t � 
�t�1)
2 + �xx

2
t + �i(it � i�)2; (2.6)

where �x and �i are positive parameters. The central bank chooses the path of the short-

term nominal interest rate, starting from period 1, to minimize welfare loss U1:

U1 = E1
1X
t=1

�t�1Lt: (2.7)

3 The Optimal Monetary Policy Rule in a Low Inter-
est Rate Environment

In this section, we set up the optimization problem to obtain the optimal monetary policy

conditions in the low interest rate environment, namely under the zero lower bound on

nominal interest rates. In this process, we make use of the Kuhn�Tucker solution. We then

propose a generalized optimal interest rate rule in a low interest rate environment.

3.1 Optimization

We assume that the central bank solves an intertemporal optimization problem in period 1,

considering the expectation channel of monetary policy, and commits itself to the computed

optimal path. This is the optimal solution from a timeless perspective de�ned by Woodford

(2003).

The optimal monetary policy under the zero lower bound on the nominal interest rate

in a timeless perspective6 is expressed by the solution of the optimization problem, which

6A detailed explanation of the timeless perspective is provided in Woodford (2003).
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is represented by the following Lagrangian form:

L = E1

8>><>>:
1X
t=1

�t�1

8>><>>:
Lt

�2�1t [xt+1 � �(it � �t+1 � rnt )� xt]
�2�2t [�xt + �(�t+1 � 
�t)� �t + 
�t�1]

�2�3tit

9>>=>>;
9>>=>>; ;

where �1, �2, and �3 represent the Lagrange multipliers associated with the IS constraint,

the Phillips curve constraint, and the nominal interest rate constraint, respectively. We

di¤erentiate the Lagrangian with respect to �t, xt, and it under the nonnegativity constraint

on nominal interest rates to obtain the �rst-order conditions:

��
�t+1 + (�
2 + 1)�t � 
�t�1 � ��1��1t�1 � �
�2t+1 + (�
 + 1)�2t � �2t�1 = 0; (3.1)

�xxt + �1t � ��1�1t�1 � ��2t = 0; (3.2)

�i(it � i�) + ��1t � �3t = 0; (3.3)

it�3t = 0; (3.4)

�3t � 0; (3.5)

it � 0: (3.6)

Eqs (3.4), (3.5), and (3.6) are conditions for the nonnegativity constraint on nominal interest

rates. The above six conditions, together with the IS (Eq. (2.1)) and hybrid Phillips (Eq.

(2.2)) equations, are the conditions governing the loss minimization. In other words, the

sequence of the interest rates determined by these conditions is the optimal interest rate

setting at each time under the zero lower bound on nominal interest rates. When the

nonnegativity constraint is not binding (i.e., it > 0), the Lagrange multiplier, �3t, becomes

zero by the Kuhn�Tucker condition in Eq. (3.3), and then the interest rate is determined

by the conditions given by Eqs (2.1), (2.2), (3.1), (3.2) and (3.3) with �3t = 0. When the

nonnegativity constraint is binding (i.e., it = 0), the interest rate is simply set to zero.
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In this case, the interest rate remains zero until the Lagrange multiplier, �3t, becomes

zero.7 It should be noted that the expectation operator, Et, does not appear in these

equations because the future path of shocks is perfectly foreseen, thanks to the assumption

of deterministic shocks.

3.2 The Generalized Optimal Interest Rate Rule

In this subsection, we propose the generalized optimal interest rate rule that is valid with

any deterministic shock process under the zero lower bound on the nominal interest rate.

The generalized optimal interest rate rule in the face of a zero lower bound on the

nominal interest rate can be derived from the optimality conditions in the last subsection,

as follows:

it =Max(0; {̂t);

 1(1�  2L)(1�  3L)(1�  4F )(̂{t � i�) =

���(��
�t+1+(�
2+1)�t�
�t�1)+��x(��
xt+1+(�
+1)xt�xt�1); (3.7)

where it cannot take a negative value, while {̂t can. {̂t is interpreted as an indicator variable

that provides the information necessary to implement the optimal monetary policy with the

possibility of a ZIP. We can then show the following proposition:

Proposition 1: In a timeless perspective, the interest rate rule given by Eq. (3.7) is the one

that remains optimal with any deterministic shock process, regardless of whether the

nonnegativity constraint on nominal interest rates binds.

Proof. See Appendix 1.

7From the Kuhn�Tucker conditions, especially from Eq. (3.4), when �3 is positive, the nominal interest
rate is always zero on the one hand, and when �3 becomes nonpositive, the nominal interest rate always
becomes nonnegative, on the other hand.

8



Eq. (3.7) is a generalization of the optimal interest rate rules in Giannoni and Woodford

(Eq. (2.14), 2002) that does not consider a nonnegativity constraint of the nominal interest

rate. Giannoni and Woodford (Eq. (2.14), 2002) shows the optimal monetary policy rule

that is valid only under no nonnegativity constraint of the nominal interest rate as:

it = �1it�1 + �24it�1 + ��Ft(�) +
�x
4
Ft(x)� ���t�1 �

�x
4
xt�1 + (1� �1)i

�; (3.8)

where Ft(�) and Ft(x) are in�ation rates and output gaps from the current period to the

in�nite future. Our rule given by Eq. (3.7) achieves the same equilibrium as the Giannoni�

Woodford rule given by Eq. (3.8) when the zero lower bound does not bind. Therefore, our

rule is optimal both with and without the zero lower bound on the nominal interest rate.

In this sense, Eq. (3.7) is the generalized optimal interest rate rule under the zero lower

bound on nominal interest rates.

Eq. (3.7) can be interpreted as both a precautional (forward-looking) and history-

dependent (backward-looking) rule for determining the current value of {̂t � i� in period

t. It is important to note that it depends on forward- and backward-looking values of

{̂t�j for j = �1; 1; 2, and not on values of nominal interest rates themselves when the zero

lower bound on nominal interest rates binds. Thus, this optimal interest rate rule can

keep proper information on the forward- and backward-looking properties depending on

the indicator variables {̂t and endogenous variables such as �t and xt, which are free from

the nonnegativity constraint of the nominal interest rate, but not on the nominal interest

rates that su¤er from the constraint.8

8The optimal rule given by Eq. (3.7) becomes purely backward-looking in the purely forward-looking
economy, i.e., 
 = 0.
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4 Entrance and Exit Strategies in Large Shocks

In this section, we assume large shocks that induce long ZIP periods.9 We use the quarterly

parameters of Woodford (2003) in Table 2 in all simulations10 and assume two cases: a

purely forward-looking economy (
 = 0) and a hybrid economy (
 = 0:5).

4.1 Large Unanticipated Shock

We assume an unanticipated shock in the initial period, i.e., t=1. In particular, we assume

-5 percent cost-push and natural interest rate shocks with persistence �r = �" = 0:9, which

induce a long ZIP period in the base case. In this case, the concern for the central bank is

how to end the ZIP after the unexpected introduction of the ZIP.

Eggertsson and Woodford (2003a, b) and Jung et al. (2005) consider the relation be-

tween the length of the ZIP and the in�ation dynamics to highlight the properties of the

ZIP. Thus, in�ation dynamics is one factor that determines the nature of the ZIP. We fol-

low this view. Figure 2 shows the simulation results. The upper panel shows the case of a

purely forward-looking economy and the lower panel shows the case of a hybrid economy.

The results show that the central bank continues to set the policy rates at zero percent

even after in�ation rates become positive in the two cases. This result is consistent with

the conclusions of Eggertsson and Woodford (2003a, b) and Jung et al. (2005), which insist

that the optimal path of the short-term nominal interest rate is characterized by monetary

policy inertia, in the sense that ZIP is continued for a while even after in�ation becomes

positive.

The time to the end of the ZIP, however, is very di¤erent according to the degree of

inertia in the economy. The ZIP period is shorter in the hybrid economy than in the purely

9For example, the BOJ has continued a ZIP for a long period in Japan, which can be interpreted as the
case of a large shock.
10We set i� = 1 percentage, which does not follow Woodford (2003).
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forward-looking economy. In particular, in the case of the hybrid economy, the ZIP ends

immediately after the in�ation rate takes a positive value. The reason for the shorter ZIP

is that too much monetary stimulation is likely to amplify economic �uctuations, as shown

by the larger �uctuations of the in�ation rate after the ZIP in the economy with in�ation

inertia. We can con�rm this point from the speed of the policy interest rate change. In

the hybrid economy, the policy rate change after the ZIP is faster than that in the purely

forward-looking economy. The speed of policy interest rate change is 5.2 in the hybrid

economy, but it is only 2.8 in the forward-looking economy in the base case.11 This result

has crucial implications for monetary policy with respect to the timing of the end of the

ZIP. The timing of the end of the ZIP depends on the economic structure of each country.

Therefore a ZIP that lasts for too long against economic inertia can harm social welfare.

Figure 3 provides a robustness check. We impose both price and natural rate of interest

shocks, and change the size of the shocks from -0.1 to -5 percent by 0.1 percent. The �gure

reports the duration of the ZIP period (denoted by PZIP) in the upper panel, and the

di¤erence in the length of time taken for in�ation to become positive and for the policy

interest rate to become positive (denoted by DIF) in the lower panel.12 From the upper

panel, we can con�rm that the ZIP should be longer (more history-dependent) in the purely

forward-looking economy than in the hybrid economy for the large-scale shocks from -5 to

-1 percent. In the lower panel, we see that the central bank should continue ZIPs even after

the in�ation rate becomes positive following the large-scale shocks of smaller than -1.4 in

the purely forward-looking economy and of smaller than -1.5 in the hybrid economy. There,

it should be noted that the natural rate of interest shocks rather than the price shocks are

likely to induce a ZIP under positive in�ation rates and output gaps. In response to only

11We report the speeds of the policy rate changes over six periods (one and half years) after the ZIP (unit
is per year) to unanticipated shocks. Thus, the unit is percentage change per period.
12DIF is calculated by the time taken for the policy interest rate to become positive minus for in�ation

to become positive.
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price shocks, the ZIP ends in the same time period that the in�ation rate becomes positive

for all the shocks in our experiments.13

4.2 Large Anticipated Shock

We assume an anticipated shock occurred in t = 20. In particular, we assume -5 percent

cost-push and natural interest rate shocks with persistence �r = �" = 0:9 for the base case.

Figure 4 shows the simulation results. The upper panel shows the case of a purely

forward-looking economy and the lower panel shows the case of a hybrid economy. The

results show that the central bank sets the policy rate equal to zero percent long enough

before the economic contraction becomes serious which occurs around t = 20 and keeps

the ZIP even after the in�ation rate becomes positive, as in the previous subsection. The

periods in which the ZIP should be implemented, however, are very di¤erent according

to the degree of inertia in the economy. Basically, the duration of the ZIP is shorter in

the hybrid economy than in the purely forward-looking economy. Because of the economic

inertia, the start time of the ZIP is later and the end time is earlier in the economy with

in�ation inertia than in the economy without in�ation inertia. The central bank has to

avoid too much monetary easing in the economy with in�ation inertia.

Figure 5 provides a robustness check. We impose both price and natural rate of interest

shocks and change the size of the shocks from -5 to -0.1 percent by 0.1 percent. The �gure

plots the time to the start of the ZIP period, denoted as SZIP, and PZIP in the upper

panel and DIF in the lower panel. From the upper panel, we can see that PZIP is longer

and SZIP is earlier in the purely forward-looking economy than in the hybrid economy in

response to the large-scale shocks. This implies that the ZIP in the purely forward-looking

economy should start earlier (more precautional) and continue longer. This property holds

13Surely, by assuming a larger price shock, the ZIP ends with some lag after the in�ation rate becomes
positive, although such a large shock may be somewhat unrealistic.
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to shocks of smaller than -0.9. From the lower panel, we again see that the central bank

should continue ZIPs even after the in�ation rates take positive values in response to the

large-scale shock. This property holds to shocks of smaller than -1.1 in the purely forward-

looking economy and of smaller than -2 in the hybrid economy. It should be noted that

the natural rate of interest shocks rather than the price shocks are likely to induce a ZIP

under positive in�ation rates and output gaps. In response only to the price shocks, the

ZIP is ended with only a one-period lag to when the in�ation rate turns positive following

the anticipated shock; however, the ZIP is implemented for many periods under positive

in�ation rates and output gaps in response to the natural rate of interest shocks for all the

shocks in our experiments.

5 Entrance and Exit Strategies in Small Shocks

In this section, we assume small shocks that induce short ZIPs.

5.1 Small Unanticipated Shock

We assume unanticipated -0.3 percent cost-push and natural interest rate shocks, occurring

at t = 1, with persistence �r = �" = 0:9 in the base case.

Figure 6 shows the simulation results. The upper panel shows the case of a purely

forward-looking economy and the lower panel shows the case of a hybrid economy. In

contrast with the cases of large shocks, the ZIP period is longer in the hybrid economy than

in the purely forward-looking economy. Moreover, the central bank does not continue to set

the policy rates at zero percent even after in�ation becomes positive or the shock disappears,

unlike Eggertsson and Woodford (2003a, b) and Jung et al. (2005), in both economies.

This is not a surprising result because the central bank does not need to stimulate in�ation

expectations to stimulate the economy by committing to a long ZIP period, which ultimately

13



creates large economic booms in the future, in response to small shocks. In this case, the

central bank carries out a ZIP only during the periods of serious economic contraction.

Thus, there are no history-dependent properties in the policy. The reason for the longer

ZIP in the hybrid economy is that a short ZIP does not create a large economic boom in

the future and so the central bank can use somewhat longer ZIP periods in response to

small shocks. Another reason for longer ZIP periods in the hybrid economy is the fact

that the same size shocks create larger economic �uctuations because of economic inertia

in the hybrid economy than in the purely forward-looking economy. Thus, the central

bank basically reacts more strongly to the shocks in the hybrid economy than in the purely

forward-looking economy. This property is hidden in the case of large shocks because of the

required strong e¤ect of the in�ation expectation channel.

Figure 3 provides a robustness check. From the upper panel, we can con�rm that the ZIP

period should be shorter in the purely forward-looking economy than in the hybrid economy.

The upper panel also shows the transition in the length of the ZIP period from large to

small shocks. We see from the threshold of -0.4 percent that the hybrid economy demands

a longer ZIP period than does the purely forward-looking economy. The lower panel shows

that the central bank should end ZIPs before the in�ation rate becomes positive in response

to shocks of larger than -1 percent in the purely forward-looking economy and larger than

-0.9 in the hybrid economy. It should be noted that the price shocks, rather than the

natural rate of interest shocks, are likely to end the ZIP before in�ation rates and output

gaps become positive. Only in response to the natural rate of interest shocks is the ZIP

ended, at least in the same period that the in�ation rate turns positive, even in response to

the small shocks in our experiments. This result is consistent with �ndings in Eggertsson

and Woodford (2003a, b) and Jung et al. (2005). They, however, do not consider the case

of a small price shock.
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5.2 Small Anticipated Shock

We assume anticipated -0.5 percent cost-push and natural interest rate shocks, occurring

at t = 1, with persistence �r = �" = 0:9 to produce short ZIP periods in the base case.

Figure 7 shows the simulation results. The upper panel shows the case of a purely

forward-looking economy and the lower panel shows the case of a hybrid economy. The

outcomes show results in contrast with ones for the case of large shocks. The ZIP period

is longer in the hybrid economy than in the purely forward-looking economy. Moreover, we

cannot �nd history dependency and can see only small precautionality in monetary policy

through the simulations. The central bank must conduct a ZIP only during periods of

serious economic contraction.

Figure 5 provides a robustness check. The upper panel shows that the central bank

implements earlier and longer ZIPs in the hybrid economy than in the forward-looking

economy. We see from the threshold of -0.6 percent that the hybrid economy demands a

longer ZIP period than does the purely forward-looking economy. The lower panel shows

that the central bank conducts ZIPs only during the periods when serious economic con-

tractions are occurring in both economies in response to the small shocks. The central bank

should end ZIPs before the in�ation rate becomes positive in response to shocks of larger

than -1.1 percent in the purely forward-looking economy and larger than -1 in the hybrid

economy. It again should be noted that the price shocks, rather than the natural rate of

interest shocks, are likely to end the ZIP before the in�ation rate and output gap become

positive.

6 Robustness

We change the elasticity of the real interest rate to the output gap � since many papers

suggest the lower values. We assume two alternative parameters, � = 3:85 from Amato and
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Laubach (2003b) and � = 1 from the conventional value in RBC model, i.e. from the log

utility.

Figure 8 reports the PZIP and DIF in the case of � = 3:85 to the unanticipated shocks

on both the price and natural rate of interest shocks as in Figure 3. The qualitative results

shown in the last section do not change even in this case. It, however, is important to

note that the threshold that the hybrid economy demands longer ZIP than does the purely

forward-looking economy becomes -0.6 in Figure 8 from -0.4 in Figure 3. Figure 9 reports

the PZIP, SZIP, and DIF in the case of � = 3:85 to the anticipated shocks on both the

price and natural rate of interest as in Figure 5. We see that the threshold that the hybrid

economy demands longer ZIP than does the purely forward-looking economy becomes -0.7

in Figure 9 from -0.6 in Figure 5.

Figure 10 reports the PZIP and DIF in the case of � = 1 to the unanticipated shocks

on both the price and natural rate of interest as before. Figure 11 reports the PZIP, SZIP,

and DIF in the case of � = 1 to the anticipated shocks on both the price and natural

rate of interest as before. We can con�rm the same qualitative results in Figure 10 and

Figure 11 as in the last section. One quantitative di¤erence is that the threshold that

the hybrid economy demands longer ZIP than does the purely forward-looking economy

becomes smaller as -1.6 in Figure 10 to unanticipated shocks and as -2.2 in Figure 11 to

the anticipated shocks in this parameter than in other parameters. As the elasticity of the

real interest rate to the output gap becomes smaller, the threshold that the hybrid economy

demands longer ZIP than does the purely forward-looking economy becomes smaller.

7 Concluding Remarks

In this paper, we proposed a generalized optimal interest rate rule that is optimal regardless

of whether or not the zero lower bound on nominal interest rates binds. The proposed rule
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is designed to retain information about the ZIP by using variables that are not a¤ected by

the nonnegativity constraint, such as the indicator variable that provides the information

necessary to implement the optimal monetary policy, in�ation rate, and the output gap,

so that it is optimal even under the zero lower bound on nominal interest rates. Then, we

show the optimal start and end strategies of the ZIP using a realistic model with in�ation

inertia and a variety of shocks. The nature of the ZIP changes signi�cantly according to

the degree of economic inertia and the size of the shocks.

The theoretical suggestion in this paper provides a good guideline for when to start and

end the ZIP. Practically, it is di¢ cult for central banks to commit to these particular rules.

However, the simulations above provide many implications for designing monetary policy

in a low interest rate environment.
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A Proof of Proposition 1

To prove Proposition 1, we make use of the Kuhn�Tucker conditions. When the zero lower

bound may be binding, we have the following equation from Eq. (3.2):

�2t = ��1(�xxt + �1t � ��1�1t�1): (A.1)

By substituting Eq. (A.1) into Eq. (3.1), we obtain:

��
�1t+1 + (�
 + 
 + 1)�1t � (1 + 
 + ��1(1 + ��))�1t�1 + ��1�1t�2

= ��(��
�t+1+(�
2+1)�t�
�t�1)��x(��
xt+1+(�
+1)xt�xt�1);

)  1(1�  2L)(1�  3L)(1�  4F )�
�
1t =

= ���(��
�t+1+(�
2+1)�t�
�t�1)+��x(��
xt+1+(�
+1)xt�xt�1); (A.2)

where ��1t = ����1i �1t, �
�
� � ��(�
�i)

�1, ��x � ��x(�
�i)
�1,  1 2 3 = ��2
�1,  1 2 +

 1 3 +  2 3 = (�
)�1(1 + ��1(1 + �
 + ��)),  1 +  2 +  3 = (�
)�1(1 + �
 + 
) and

 4 =  �11 ( 2 >  3). We note that Eq. (A.1) is valid with and without the zero lower

bound in the system of equations given by Eq. (3.1) through Eq. (3.6).14 It should be noted

that the expectation operator, Et, does not appear in these equations because the future

paths of shocks are perfectly foreseen thanks to the assumption of deterministic shocks. On

the other hand, we have the interest rate rule given by Eq. (3.8), which is optimal without

the zero lower bound, as shown in Giannoni and Woodford (2002):

14If the zero lower bound is not binding, from the Kuhn�Tucker conditions Eq. (3.3), we can substitute
it � i� = ��1t into Eq. (A.1), and we obtain the optimal interest rate rule given by Eq. (A.3). If the zero
lower bound is binding, we can set the optimal interest rates by Eq. (A.1) and Eq. (3.3). Therefore, Eq.
(A.1) is valid with and without the zero lower bound.
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 1(1�  2L)(1�  3L)(1�  4F )(it � i�) =

���(��
�t+1+(�
2+1)�t�
�t�1)+��x(��
xt+1+(�
+1)xt�xt�1): (A.3)

From Eq. (A.1) and Eq. (A.3), we obtain:

it = ��1t + i�: (A.4)

This relation is true only when the zero lower bound does not bind if it cannot take a

negative value.15

Here, in the case where the zero lower bound binds, the Kuhn�Tucker condition Eq.

(3.3) also holds:

�i(it � i�) + ��1t � �3t = 0;

with it = 0. Then it must be the case that16

�3t = ��i(��1t + i�):

This equation implies that the ZIP will be terminated when ��1t+ i
� becomes positive in Eq.

(A.2) (or equivalently, the ZIP will be implemented while ��1t + i� takes a negative value).

Therefore, from Eq. (A.4), we can con�rm that if it could take a negative value in Eq.

(A.3), then Eq. (A.4) always holds with and without the zero lower bound and it becomes

positive in Eq. (A.3) at the exact same time as the end of the ZIP, which is indicated by

15This is because �1t takes a negative value, but it cannot.
16If we substitute �3t = 0 into Eq. (3.3), then we have Eq. (A.4) because

�i(it � i�) + ��1t = 0, it � i� = ���1i ��1t = �
�
1t:

:
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��1t in Eq. (A.2). The above argument can be summarized in the following two equations

by rede�ning {̂t � i� = ��1t, where {̂t can take negative values:

it =Max(0; {̂t);

 1(1�  2L)(1�  3L)(1�  4F )(̂{t � i�) =

���(��
�t+1 + (�
2 + 1)�t � 
�t�1) + ��x(��
xt+1 + (�
 + 1)xt � xt�1):

We again emphasize that {̂t can even take a negative value, while it cannot under the zero

lower bound on nominal interest rates. The above argument completes the proof of Propo-

sition 1.
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Table 1: Four Situations

Economic StructuresnScale of Shocks Large Shock (LS) Small Shock (SS)
Forward-looking Economy (FE) (FE, LS) (FE, SS)
Hybrid Economy (HE) (HE, LS) (HE, SS)

Table 2: Parameter Values

Parameters Values Explanation
� 0.99 Discount Factor
� 6.25 Elasticity of Output Gap to Real Interest Rate
� 0.024 Elasticity of In�ation to Output Gap
�i 0.077 Weight for Interest Rate
�x 0.048 Weight for Output Gap
i� 1 Steady State Interest Rate
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Figure 1
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Figure 2
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Figure 3
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Figure 4
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Figure 5
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Figure 6
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Figure 7
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Figure 8
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Figure 9
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Figure 10
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Figure 11
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