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Abstract
We evaluate expected and unexpected losses of a bank loan, taking into account the
bank’s strategic control of the expected return on the loan. Assuming that the bank
supplies an additional loan to minimize the expected loss of the total loan, we
provide analytical formulations for expected and unexpected losses with bivariate
normal distribution functions.

There are two cases in which an additional loan decreases the expected loss: i)
the asset/liability ratio of the firm is low but its expected growth rate is high; ii) the
asset/liability ratio of the firm is high and the lending interest rate is high. With a
given expected growth rate and given interest rates, the two cases are identified by
two thresholds for the current asset/liability ratio. The bank maintains the current
loan amount when the asset/liability ratio is between the two thresholds.

Given the bank’s strategy, the bank decreases the initial expected loss of the loan.
On the other hand, the bank has a greater risk of the unexpected loss.
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[. Introduction

An internationally active bank, adopting the advanced internal ratings-based approach
under Basel 1l (BCBS [2005a]), has to estimate the probability of default (PD), loss given
default (LGD), and exposure at default (EaD). These three factors estimated by the
bank’s own model determine a loss distribution of the bank’s portfolio. From the
viewpoint of risk management, the two most popular concepts to capture the loss
distribution are the expected loss (EL) and unexpected loss (UL). UL is defined by
value-at-risk (VaR) minus EL. EL should be covered by the bank’s loan loss provisioning.
UL should be cushioned by the bank’s capital. Basel 11 adopts these concepts.

When measuring PD, LGD, and EaD, we have to pay attention to the relationships
among them. If EaD changes, PD and LGD will also change through a structural
relationship with EaD.

Some earlier studies examined EL and UL, taking into account the correlation
between PD and LGD (see Frye [2000], Phytkin [2003], Peura and Jokivuolle [2005], as
examples). However, most studies fix EaD to avoid dynamic development in EaD which
is related to PD and LGD.

Quite recently, a number of EaD models have been proposed. Moral [2006] and
Jiménez and Mencia [2007] focused on loan commitments to capture varying EaD.
Kupiec [2007] proposed a model which assumes both LGD and EaD have a common
systematic factor, based on the fact that both tend to increase during recession periods.
They focused on the statistical correlation among PD, LGD, and EaD rather than the
structural relationship of PD and LGD with varying EaD.

Following the Merton model, we provide analytical formulations for EL and UL with
bivariate normal distribution functions, including changes in EaD. We assume that the
bank supplies an additional loan to minimize EL at a certain time t until maturity T. An
additional loan at time t decreases EL measured at time t in two cases: i) the
asset/liability ratio of the firm is low but its expected growth rate is high; ii) the
asset/liability ratio of the firm is high and the lending interest rate is high. With a given
firm’s expected growth rate and given interest rates, the three states are identified by two
thresholds for the current asset/liability ratio. In the first state, where the ratio is larger
than the higher of the two thresholds, the additional loan helps the firm to grow, and the
bank earns a higher expected return. In the second state, where the ratio is between the



two thresholds, the bank maintains the current loan amount. In the third state, where the
ratio is smaller than the lower of the two thresholds, the additional loan helps the firm to
survive a temporary crisis and the bank has the benefit of a decrease in EL. Incorporating
the additional loan at time t, both EL and UL measured at time O are evaluated
analytically using bivariate normal distribution functions. We show some numerical
examples for EL and UL. They imply that EL measured at time 0 decreases by taking the
additional loan into account, but UL measured at time O increases by taking it into
account. The larger the correlation between the firm’s factor and the common systematic

factor gets, the larger the increase in UL gets.

Following this introduction, Section Il provides a structural model of an additional
loan, and the evaluation of EL measured at time O under EL minimization at time t.
Section |1l evaluates UL. Section IV provides numerical examples for EL and UL.
Section V summarizes the findings and provides directions for extensions to this paper.

[I. EL with an additional loan

A. Basic model and loss function

Following Merton [1974], we assume that the asset value A, of the firm is assumed to
have the geometric Brownian process below and the default of the firm occurs when the

asset value at maturity T is less than the firm’s liability.
dA, = pAdt + oA dW,. 1)

Let the bank supply a loan of the notional amount D at time O in the form of a
discount bond, that is, the bank supplies De ™" amount of cash to the firm at time 0,
where r , denotes the lending interest rate. We suppose that the firm’s liability only
consists of the bank’s lending. This means that EaD is equal to D if the bank does not

supply additional loans.

First, we assume that EaD does not change. When A, <D, the default of the firm
occurs and the bank recovers the lending by liquidating the firm’s asset value A.. The

loss to the bank at maturity is given by:*

L (X)" denotes the positive part of a real number X, i.e., (X)* =max(X,0).



L, =D™ T —1)+(D-A,)", 2)

where r,,, denotes the bank’s funding interest rate at time 0. The EL of the bank
measured at time 0 is given below:
Eo[L;]1=D(e™ ™" -1+ E,[(D~A)’]
= D(e™o )T 1)+ DD(d,) — Ae”" d(d, —oT),

1 D o?
d, =G—T{Inx—{y—7jT}. (4)

Here, ®(-) denotes a standard normal distribution function. In this model, PD is
given by ®(d,) =Pr[A; <D] and LGD is givenby (D-A;)" /{Dx PD}.2

©)

B. EL minimization at time t

Now we introduce a change in EaD. For simplicity, we make the assumption that the
bank supplies an additional loan only once at a certain time t. When the bank supplies an
additional loan amount A, EaD changes from D to D+ A. The asset value of the firm
changes from A to A +Ae ", where r_ denotes the lending interest rate at time t

and 7 denotes the interval to maturity, T —t. Then, the loss to the bank at maturity is
given by:
LT (A) - D(e(rMo*l'Lo)T _1) +A(e(rM—rL)r _1) n (D FA— AT)+, (5)

where r,, denotes the bank’s funding interest rate at time t.

The EL of the bank measured at time t is given by:
EL, (A) = E,[L, (A)] = D(e" ™™ —1) + A(e™ ™" —1) + (D + A)D(d, (A))
— (A +Ae )" 0(d, (A) - ov7),

1 D+A o’
AORS ﬁ{ln Y —(u—ﬂr} )

2 Most existing studies focused on a collateral value for the loan and assumed that the loss to the bank
is the uncovered portion of the debt relative to the collateral (see Frye [2000], Phytkin [2003], Peura
and Jokivuolle [2005], for examples). On the other hand, Altman, Resti and Sironi [2001] focused on
the firm’s asset value in their model and showed that the expected LGD, E [(D- A;)"]/D, isgiven

by @(d,)— (A, /D)e” d(d, —ovT).



We assume the bank minimizes EL,(A) through supplying an additional loan
amount A. The first derivative of EL,(A) with regard to the additional loan amount A
is given by:

OEL (A)

~ = 1 a(d, (A)) e (d, (A) - o). (8)

Here, we generalize equation (8) as:
f(d)=e™ ™ 1+ d(d)—e“ " d(d - o). 9)

The  function f(d) is convex and reaches its maximum at
d=d={(r, —p)/oc+c/2Wr . We see that f(-)<0 when r_>r, and that
f(0) <0 when g >r,, .See Appendix 1 for details.

As given in equation (7), d corresponds to the asset/liability ratio of the firm. By
supplying an additional loan A, d,(A) increases when d (0)<d , and d,(A)

decreases when d, (0)>d .

Here, we assume that x>r,, r_>r, and f(d)>0. Then, there exist two
solutions d; and d, where f(d')=0 and d, <d <d,. This implies that the bank
supplies an additional loan under one of two conditions: i) the asset/liability ratio A, /D
is larger than the threshold & ; or ii) the asset/liability ratio is smaller than another
threshold &, . The thresholds & and &, are given by:

& = g-tioVr-(u-c?12)r & = g-or-(u-ot12)r (10)

We can confirm that an additional loan reduces EL, (A) in the two cases above. The
optimal additional loan amount A" satisfies i) d, (A,)=d, for A >D¢& , and ii)
d,(A,)=d, for A < D&, . Therefore,

* _D N * - D N
=820 g AP (1)
51 —€ 982 —€

Figure 1 shows the optimal additional loan amount A" with respect to the asset

value A, just before supplying an additional loan.



Figure 1. Optimal additional loan at time t
A*
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According to the three states of A distinguished by the thresholds D& and D&, ,
the bank takes different actions to minimize EL,(A).

State | (A > D&): The firm is in a good state. When the bank supplies the optimal
additional loan amount in this state, the PD increases slightly from &(d,(0)) to
®(d,). The increase in PD incurs a rise in the EL. On the other hand, the additional
loan increases interest earnings. Because the increase exceeds the rise in EL which
results from the increase in PD, the EL decreases. The minimized EL measured at
time tis:

EL,(A) = E[L, (A})] = D(e™ ™" —1) + Dd(d,) - Ae“ ®(d; —o~7). (12)

State Il (D&, < A < D& ): The firm is in a middle state. The bank does not supply an
additional loan in this state. The EL measured at time t is:

EL, (A7) = E,[L; (0)] = D(e™* ™" ~1) + Da(d, (0)) - Ae“®(d, (0) - ov7). (13)

State 1l (A < D&,): The firm is in a bad state. When the bank supplies the optimal
additional loan amount in this state, the PD decreases from ®(d,(0)) to @(d,).
The decrease in PD leads to decrease in EL. The minimized EL measured at time t is:

EL,(A") = E [L; (A3)] = D(e"™ ™" —1) + DO(d;) - Ae*"®(d; —ov/7). (14)

C. Numerical example of EL and PD at time t

Table 1 shows numerical examples of changes in the EL and PD caused by the optimal
additional loan attime t. Let D =100, T=2,t=1, £ =5%, 0=10%, ro=r_=1%, ryo =



rv = 0.5%. In this case, D& =115.67 and D&, =89.74 for d, =-1.905 and
d, = 0.632. We can confirm that the PD increases with the additional loan A" in state I,
corresponding to the case of A =120 and 125, and that the PD decreases with the
additional loan A" in state Ill, corresponding to the case of A =80 and 85. In state I,
corresponding to the case of A =90 and 105, A" =0 and both EL and PD do not

change.
Table 1. EL and PD with/without an additional loan at time t
A A EL; (A) EL. (0) PD{(A") PD; (0)
80 105.19 13.54 15.06 73.64% 96.26%
85 51.21 9.85 10.26 73.64% 88.00%
90 0.00 6.16 6.16 72.69% 72.69%
115 0.00 -0.87 -0.87 3.23% 3.23%
120 26.01 -0.99 —-0.96 2.84% 1.15%
125 56.02 -1.11 -0.98 2.84% 0.37%
D. Evaluation of EL measured at time O

The discussion above considers the bank’s strategies at time t. Here, we derive EL
measured at time 0, taking those strategies at time t into account. First, we obtain the
probability that each of the three states occurs. Second, we obtain the component of EL
on each state. Finally, we derive EL measured at time O by summing up those

components.

State | (A, > D&, ): The probability that the firm is in this state at time t is given by:

Pr{A > D&]1=®(-5;), (15)
where
5, =d,NT/t—d;Jzlt. (16)

The component of EL attributable to this state is given by:

.]= D{@(d,) + ™" —Bad(-5)
A>DgG (17)
— AT D(-5; + ot)D(d, —o7),

E,[L; (A1

using equation (12). See Appendix 2 for details.



State Il (D&, < A, < D&, ): The probability that the firm is in this state at time t is given
by:

Pr[D&, <A <D&1=0(5,) - D(5,), (18)
where
5, =d,NT/t—d;/z/t. (19)

The component of EL attributable to this state is given by:
EolLy (O)1,,-.,s - 1= D™ —11{0(5,) - ()}
+D{CDZ(é‘l*,do;p)—@2(5;,d0;p)} (20)
— A {D, (5, - ot dy 0T p) - ®,(5; - ot dy —oT; o)},
using equation (13), where

p=AtIT, (21)

and @,(x,y;p) is a distribution function of the bivariate standard normal
distribution with correlation p.
State 111 (A, < D&,): The probability that the firm is in this state at time t is given by:
PrlA, < D&;1=@(5;). (22)

The component of EL attributable to this state is given by:

.= D{O(d;) + e —13d(5;)
A<D (23)
— A D(d; — oNT)D(5, - at),

E,[L; (A1

using equation(14).

EL in total

The EL measured at time 0 is evaluated as:

Eo[L; (A)]=E,[L, (Aj.)lApDél*] +Eol[Ly (0)1D§2*§A[§D§1*]+ E,[L; (A*2)1A<D§2*] - (24)

By substituting equations (17), (20), and (23) for equation (24), we obtain:



oLy (47)] = D(e"™ " -1)
+ D{O(d)D(-5]) + D(d;)D(S;) + D, (5, . dy; o)~ @, (65,3 £)}
— A{D(d, - oNT)D(=5, +ot) + D(d; — oT)D(S — o)
+@,(8; —ot,dy —oNT; p) - D,(5; —ovt,dy —oT; p)}.

(25)

We have derived an analytical formation of EL measured at time O taking into
account the bank’s strategy depending on the future value of the firm’s assets.
Formulation (25) is expressed by bivariate normal distributions. It can be calculated
easily, because bivariate normal distribution functions can be evaluated by numerical
approximation methods. See Drezner [1978] for an example of those methods.

[1l. UL with an additional loan

The previous section obtained EL measured at time 0 taking into account the bank’s
strategy at time t. This section derives UL measured at time 0 taking it into account. First,
we show the equivalence between UL and SEL. Second, we derive SEL measured at time
0. This leads to UL measured at time 0.

A. Equivalence between UL and SEL

We evaluate the VaR to obtain the UL. For a given confidence level « € (0,1), the VaR is
defined as the « th quantile of the distribution of loss, and is denoted by g, (L) .

The VaR is equivalent to a conditional EL under these assumptions, which are
adopted by Basel 11 (BCBS [2005b]). The first assumption is that the portfolio is well
diversified, that is, it is composed of many kinds of loans to various firms. The second
assumption is that all loans are correlated through the correlation between each loan and
a single systematic factor, X. On those assumptions, the VaR of the portfolio q, (L) is
given by a conditional expectation of the loss E[L|X =x,,], where x,_, is the
(1— ) th quantile of the distribution of X. See Gordy [2003], Vasicek [2002], for details.

Assuming that the portfolio is well diversified, and has a single systematic factor X,
the UL of the portfolio is given by UL = Z:ﬁlULi , Where:



UL, = E[L; | X =x._,]1-E[L]. (26)

Equation (26) implies that UL, is the contribution of exposure i in the UL of the
portfolio. Here, we call E[L,|X =x_,] “stressed EL,” SEL hereafter. We omit i
hereafter for simplicity. The valuation of UL and its decomposition is equivalent to the
evaluation of SEL.

We illustrate how to describe the stressed condition X = x,_, . The stochastic process
of A, is driven by one Brownian motion process W, as in equation (1). Similar to
BCBS [2005b], we suppose that the Brownian motion W, is composed of a single
systematic factor X, and an idiosyncratic factor Y, as follows:

W, =+/RX, ++/1-RY,. (27)

Here, R denotes the asset correlation among bank loans. The stressed condition
X =x,_, atthe time of the default corresponds to the (1—«) th quantile of the factor
X; . The quantile is given by X; =—/T® ().

SEL after supplying the optimal additional loan at time t is given by:
SELt (A*) = D(e(I’MOerO)T _1) +A" (e(rM -1z _1)

+E[(D+A - A) | Xy =—TO (@), X,.Y,], (28)

where t the optimal additional loan amount A" is determined by equation (11) following
EL minimization at time t depending on the value of A, .

B. Evaluation of SEL at time 0

We derive SEL measured at time O given the bank’s optimal strategy at time t. We
evaluate SEL with the constraint X, =—\/?CD’1(a), similar to the derivation of EL

measured at time 0. SEL is given by the sum of the contributions for the three states as:
E,[SEL, (A)] (29)
= E,[SEL, (A)1 1+ E,[SEL, (0)1 1+ E,[SEL, (A*z)l/\@g;]-

A>D& D& <A<DE

State | (A, > D& ): E,[SEL (A))1, _..] isgiven as below. See Appendix 3 for details.

A>Dg



E,[SEL, (A*l)lA(wgf] = D(e™ T —1)d(-5;)
+§*—1_r, [ " —1){Ae“D(-5] +o+/t) - D& D(-5))}
—e L
1
+ A D, (=8, + ot,h + Rt/ \17; p") (30)
—e B URT2G, (5T 4 (- RN — o (l-R)z/\7;p7)}
—De D, (-5; 0 p7) —e TP (5] — RN — o\ p),
where 7, h;, p" are given as equations (31)—(33).
n=(0-R)r+Rt, (31)
* -1
h:Edi\/?Jr(D (a)«/RT’ i_12. (32)
n
p =Ryt/n. (33)
State Il (D&, < A, <D¢&): E,[SEL, (0)1,..., 0.1 s givenby:
EO[SEL'[ (0)1D§;SASD§I] = D(e(rMO_rLO)T _1){CD(5:) - q)(é‘;)}
+D{®2(d5’5:;ps)_®2(d515;;ps)} (34)
- Aoe(ﬂﬂZR/Z)Tiaﬁmil(a){q)z(ds — Oy ’51* — P50 Ps)
— D, (ds _0515; = Ps0s;Ps)h
where dg, ps. o aregiven as equations (35)-(37).
d, +VR®(a) ®(PD)+~RD(a)
dg = - , (35)
1-R 1-R

ps = JA-RUT (36)
o, =0,1-R)T . (37)

State 11l (A < D&,)): E,[SEL, (A))1
(32).

acoz ] i given as below. h, is given as equation
2

10



E, [SEL, (A;)1
1

* e—r,_r

S
+ A {®,(5; —owt,h; + oRt/\[n;-p")

—e eV BURTI2G, (57— o (1-RWEh; —o(L-R)r/\[ni-p")}
— De @, (5;,hyi-p ) —e D, (8] + oRAE b, — o fni-p )]

At<D§;] — D(e(rMO_rLO)T _1)(1)(5;)

[(e™ 7 —1){A " D(5, - ot) - D& ®(5;)}

+

(38)

SEL in total

Finally, from equations (29), (30), (34), and (38), SEL measured at time O is
evaluated as:
E,[SEL, (A")] = D(e™ ™" 1)
+§% [ ~1{AL“D(-5; + o) - DEDB(-5;)}

=

+{A" D, (=5, +ot,h + Rt/ \n; p") — De " {®, (-5, ,h; p ")}

—e {ARCTIER D, (5] + o (L-RIWELN —o(L-R)r/7:p7)
—De "D, (-5, - oRt I, — o\ p 1)}

bt [T —D){AR“D(S; - o) - DEDS)} (39)

*

& e
+{Ae" D, (5, —at,h; + oRt/fni—p") - De @, (5, ,h;—p")}
—e VA eI VB (57— o(1-R)WE, N, —o(l-R)z/\ni-p")
~De D, (55 +oREL N, ~ofi-p")}]
+ D{q)z(dsv&:;ps)_q)z(ds'5;;:03)}
- De_dsasmglz{q)z(ds _0'5151* — P50 Ps) —D,(ds _0'515; — PsTs; Ps)}-

Although the expression looks complicated, it is a simple combination of certain
bivariate normal distribution functions and a univariate one. It is as tractable as the EL

formulation in (25). Using it, we can analyze the parameter’s effects on UL.

IV. Numerical example

In this section, we show how varying EaD under the EL minimization strategy shifts EL

11



and UL measured at time 0 from the original values. LetD =100,t=1,T=2, u=5%, o
= 10%, ro=r.= 1%, ryo = rm = 0.5% as in Table 1. In addition, let R = 0.12, and « =
99.9% for UL valuation. Table 2 shows ELs and ULs with an optimal additional loan A"
for certain values of A,. For comparison, we also show ELs and ULs without an
additional loan, i.e., A" =0. We also show ULs with and without an optimal additional
loan in the case of R = 0.24. The table shows that the EL minimizing principle increases
ULs despite the decrease in ELs. The larger the asset correlation R is, the more the UL

increases.

Table 2. EL and UL with/without an additional loan
R=0.12 R=0.24
SEL(A")  SEL(0)  UL(A") UL(O) | UL(A")  UL(0)
80 10.78 12.00 30.16 23.18 19.37 1118 27.40 1581
85 745  8.03 22.26 18.62 14.81 10.60{ 21.30 15.37
90 466  4.90 15.97 14.32 11.31 9.42 | 16.82 14.16
95 254  2.63 11.18 10.43 8.64 780} 1356 12.28
100 1.06 1.10 7.69 7.12 6.63 6.02 | 11.17 9.97
105 0.11  0.15 5.32 4.48 5.21 4.32 9.59 7.58
110 -0.47 -0.40 3.91 2.50 4.38 2.90 8.85 5.39
120 -1.06 -0.86 3.16 0.23 4.22 1.09 9.63 2.25

A, EL(AY) EL(0)

Note: For simplicity, let EL(A") = E,[L, (A")], SEL(A") = E,[SEL,(A")].
UL(A") = E,[SEL, (A)] - E,[L; (A")]. EL(0)=E,[L, (0)]. SEL(0) = E,[SEL,(0)]. and
UL(0) = E,[SEL, (0)]- E,[L; (0)] -

V. Conclusions

In this paper, we developed a structural model incorporating the relationship between PD,
LGD, and EaD. We assumed that a bank takes strategic control of EaD by supplying an
additional loan. Our model involves dependence of EaD on the stochastic asset value of
the firm. The dependence changed from EL and UL with a fixed EaD to those with
stochastic EaD. We derived analytical formulations for EL and UL using bivariate normal

distribution functions and provided numerical examples.

There are two cases where an additional loan decreases EL.: i) the asset/liability ratio
of the firm is low however the firm’s expected growth rate is high; ii) the asset/liability

12



ratio of the firm is high and the lending interest rate is high. With a given firm’s expected
growth rate and given interest rates, the two cases are identified by two thresholds for the
asset/liability ratio at time t. The bank maintains the loan amount when the asset/liability
ratio is between the two thresholds. Given the bank’s strategy, the bank decreases the EL
measured at time 0. On the other hand, the bank has a greater risk of the UL.

Focusing on the analytical evaluation of EL and UL incorporating the change in EaD,
our model examines one simple case of stochastic development in EaD. We leave the
following points to be studied on more realistic assumptions.

a. Modeling the firm’s demand for an additional loan

b. Use of an adjustable lending rate for the additional loan according to the firm’s
credit risk

c. Multiple timings for the supply of additional loans until maturity

d. Choice of an alternative bank optimization function

e. Change in the parameters of the firm’s asset development, # and o .

As for points a, b, and c, one possible approach is an equilibrium model of loan
demand and supply with a flexible lending rate, where additional loans are executable at
any time during a given loan period.

As for point d, the extension from our setting requires the identification of the bank’s
preference about the trade-off between return and risk. A simple alternative is to
minimize EL subject to the upper limit of UL, which defines risk capital allocated to the
business undertaking the loan.

As for point e, we fix x and o to derive analytical solutions for EL and UL. A
possible interpretation is that a bank chooses an appropriate loan period in which these
parameters for the firm’s growth are stable.

Despite the many assumptions required to obtain analytical formulations for EL and
UL, our model shows the rationality of an additional loan under EL minimization
because of a decrease in PD and an increase in interest earnings. It also shows the
mechanics of how EaD affects PD and LGD systematically. The ideas presented here
may provide a clue to estimating EaD, PD, and LGD within the advanced internal
ratings-based approach in Basel 11.
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Appendix 1. Decision on an additional loan at time t

A. Critical value of asset at time t

The first derivative of f(d) given in equation (8) is:

f'(d) = p(d) e "V g(d - o7)

2 (A-l)
={L-et e ().
It follows that:
>0 if d<d
f'(d = A-2
(){<o if d>d, (A-2)
where
_ 2
g_lh-u+ol2 - (A-3)
(@2
Characteristic values of f(d) are given as:
i —alm-r)r _
dILrpw f(d)=e 1, (A-4)
(|j|m f (d) — e("M -n)r _e(H*I’L)T :{eer _e,ur}e—rLr ’ (A-S)
f ((T) = e(rM -n)r 1+ (D(d_) _ e(H*I’L)T(D(d__ O'\/;) . (A-6)

From equations (A-4)—(A-6), on the assumption f(d) >0, there exists d, such that
f(d,)=0 on d; <d if r_>r,, and there exists d, such that f(d,)=0 on
d<d, if u>r,.

Here, we consider the level of asset A, at which the bank supplies an additional loan
for given values of t, T, r,, r,, u, o. We define J(A) to be d,(0) as a
function of A below.

d(A)=d,(0)=— {In%—[g—“—z}} (A7)

OoNT

and define the function h(A,) as:

h(A) = lim EL&) _

A—0 OA

e™ VT —1+ 0(d(A))—e" " D(d(A)-o7). (A-)

The bank supplies an additional loan if h(A,) <0. We can confirm that the condition
h(A) <0 is equivalent to the condition d(A)<d, or d(A)>d,.

If d(A)<d, , then A >De /27 _pg f d(A)>d, , then

14



A < De Vot _ per  DE and D&, are the thresholds of A, for which the

bank supplies an additional loan.
Now, we derive an optimal additional loan. When A, > D&/, then the relation

A A +Ae .
SISO S S o A-9
D D+A % (A-9)

holds for an additional loan amount A >0 using d; <d . It implies that the optimal

loan amount A satisfies:
A+Ae
— =g A-10
D+A] g (A-10)

Similarly, when A < D&, the following relation holds.

A A +AeTV
RSP A S A-11
D D+A 52 (A-11)

It implies that the optimal loan amount A’, satisfies

A+Ne" .
A Y A-12
D +A, &2 (A-12)

From equations (A-10) and (A-12), we obtain equation (11).

B. Parameter relation for the optimal additional loan

We assume that the firm accepts the additional loan. If the firm maximizes the expected
value of the equity after accepting an additional loan A, this assumption is consistent
with the firm’s behavior in the case of x >r_ . The expected value of the equity is
evaluated as (A +Ae’”)e‘”q)(dt(A)—a\/?)—(D +A)D(d,(A)), and the marginal
expected value of the equity is given by e ™ d(d, (A) — /) —D(d,(A)). If w>r,,
the marginal expected value at A=0, e“ ™ d(d,(0) - o+/z) - d(d,(0)), is always
nonnegative. It implies that an additional loan increase the expected value of the equity.

The optimal additional loan amount may be infinite if r. >r, and uz>r,. If
r.<r, or u<r,,the amount is always finite. The proof is given in subsection D in
this appendix.

These relations are summarized as Table A- 1.

15



Table A- 1 Parameter relation for an additional loan at time t

Parameter Loan Demand of
Supply of additional loan by the bank
condition amount Upply ot additionat foan by the ban the firm
finite  Doneif A > D& or A <D¢&,
L>r >r, . A & A 2 consistent
_infinite _Done regardlessof the levelof A
(s u>r, _flr_nt.e Doneif A >D¢& or A <D¢, unknown
o infinite _Doneregardless of the levelof A
u>r, >r_ finitt Doneif A <D¢, consistent
r.>r, >u finitt Doneif A >D¢& unknown
ry >u>r,
W= A No additional loan
2 2u
C. Equivalent condition that the optimal additional loan is finite

Under the condition OEL,(A)/0A|,_,<0, if OEL,(A)/0A],,,.<0 then the optimal
additional loan amount is infinite. Although 0°EL,(A)/0A° is always positive*,
0%EL, (A)/0A® converges to 0 as A —oo. It implies that the marginal expected loss
converges to a constant as:

i EL(A)

A— aA

e(rM - )z _1+ q)(d_) _ e(,ll—rL)TQ)(d_ _ O_\/;) . (A'13)

The necessary and sufficient condition that the optimal additional loan amount is
finite is that the right hand side of equation (A-13) is positive. It is equivalent to:

f(d)>0. (A-14)

D. Parameter conditions that the optimal additional loan is finite

In this subsection, we prove that the optimal additional loan is finite if r, <r,, or u<r,, .

For preparation, we show proposition A-1.

Proposition A-1 ®(-a +5s/2)-e“®d(-a—-s/2)>0 forany a¢eR and s>0.

(Proof) Let X be a random variable distributed as In X ~ N(as —s*/2,s%). Then:

2 2  Dea-hr)2
3 &;(A) is evaluated as 0 EL‘Z(A) = (A —De ™)
oA oA o (D+A)(A +Ae™)

7 9(d (A)) .
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Pr(l1—X)">0)=Pr(X <) =®(-a+5s/2)>0. (A-15)

By definition, (1-X)" >0 and, from (A-15), the probability that (1—X)" >0 is
positive. Therefore,

—a+s/2

0<E[@-X)"]= L (L—e¥ =) g(y)dy = D(-a + 5/ 2) —e“D(—a —5/2) .

(QE.D.)

If r . <r, then we can confirm that e™ " -1>0 and
O(d)—e“ "™ d(d —o+/7) >0 by applying proposition A-1 with a=(u—r)rlo
and s=o+/7 . This implies that the optimal additional loan is finite if r_<r,, .

On the other hand, if «<r,,, then:
lim B ) 5 e g, O(d)—e“ ™ d(d - o7)
A—o OA (A'16)
= e VD (-d + or) - e D(-d)}.
By applying proposition A-1 with o = (r, —,u)\/;/O' and s=o+/7, the right hand
side of equation (A-16) is positive. It implies that the optimal additional loan is finite if

HETy .

Appendix 2. EL with an additional loan in each state
State |

From equation (12),

E,[Ly (A1 = E,[E [L; (ADIL

/\>D§f] A¢>D§f]

= D{‘D(d;)_}_e(l’mo—l’LO)T _1}Pr[At > Dé:l*]_e/trq)(dl* _O-\/;)E[Atl (A‘17)

A>D§f]'

Here, the expectation in the second term on the right hand side of equation (A-17) is

evaluated as:

ElAL, o 1= [ AC“ e g(v)dv = Ae" [ g(v—ot)dv
= A" fL—D(5, —ot)} = A" D(=5, +ot).

(A-18)

By substituting equations (15) and (A-18) for equation (A-17), we obtain equation (17).
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State 11
From equation (13),

E,[L; (O)L ]=D(e™ " ~)PI[DE; < A < D&

D& <A<DE

- A-19
+ DE[@(d (A,..., .o 1 -€"E J[APA(A)-ovr N ! a9

where J(A) IS given as equation (A-7). Let:

INA =InA —(u—c?12t+oAltv,
using the standard normal random variable v . Then, EO[CD(J(At))lnggA‘SD{] in

equation (A-19) is evaluated as:

Eo[®(d (AN .y o] j D (d, VT 17 —WHT 7)g(v)dv

(A-20)
= (1)2(51 ,do,p)—®2(52,d0,p),
where p isgiven as equation (21). Similarly,
EO[AICD(E(AI) - O-\/;)ngzsASDéf]
= AU [V (dy T 7~ o7 ~ W T)p(v)dv
% (A-21)

= A& [ (AT T - oz ~utT2)g(v - o)y
= A" {®, (8, —ot,d, VT ; p) - @, (5, — ot d, —oT; p)}.

By substituting equations (18), (A-20) and (A-21) for equation (A-19), we obtain
equation (20).

State 111

From equation (14),

EolLr (A5)1, . 1= DE®D(d;) + e ~BPI[A < D]
. (A-22)
—e" d(d, —a\/?)EO[Atlwgg].
Similar to equation (A-18),
Eo[AL, . 1= Ae“®(5; —ovlt). (A-23)

By substituting equations (22) and (A-23) for equation (A-22), we obtain equation (23).
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Appendix 3. SEL with an additional loan in each state
State |

From equation (28),

EG[SEL, (A1, ,.-1= D™ ~1)PrA > D& T+ (€™ ™ ~DE [A;L

A>D¢&
+E[E[(D+A; — A ) [ Xy =—Td(a), X,,Y. 1L

o]
AP (A4
A>DE 1
The expectation in the second term on the right hand of equation (A-24) is evaluated as:

EJ[AL, ,.1-D& PrA > D]

. A -D¢
E,[AL, 1= Eo[g* _e_rf, Lyoog 1= & —e
a * * 1 (A-25)
_ ARMD(=5, + ot) - DE D(-6;)

*

é:l _ e—I’Lz'

Let X, ,=X;-X, and Y, =Y, -V,. Using equation (11), D+A, — A, in equation
(A-24) is expressed as:
D+A*1 _ AT _ D+A*1 _(Ar +A’;e—rl_r)e(yfaz/2)1ea(«/EXT,,+«/ﬁYT,,)

— (D + A’;){l_ e*dfa\/;eo'(‘/ﬁxnt*'\/ﬁ\(nt)} (A_26)
— (D + A’;){l_ e—dfax/?ea{x/ﬁ(—ﬁd‘fl(a)—xt)+x/ﬁYT7t}}.

Using this relation, the third term on the right hand side of equation (A-24) is evaluated
as:

EO[Et[(D +A*1 - AT)+ | X = —\/?q)_l(a)a X, ’Yt]lA(>D§f]
_ N1 _ a-9ioVr o VR (-VTO ™ (@)-X ) +VI-RY;_ }y +
_E,[(D+A){l-e e Y1, 0] (A2
- 1 Eo[(Al _ De—rLr)(l_ e—dfaﬁe—oﬁ®’l(a)e—aﬁx‘ea«/ﬁYT,t )+1 ) ]
51 _e—rLT A>Dé

19



E,[(A —De ™)(1—e e M0 g Xgrd iy ]

2 * 1 _ -
— EO [(Aoe(,u—a /z)teU(Vth*’\/l_RYt) _ De—r,_r)(l_e—dlo'x/re—O'«/RTd) (oz)e o‘VRXteJVI RYT,t)
x1 1 . 4 ]
VRX+v1-RY,;>8; " V1-RY;_ <d; VT +VR (VTP () +X,)

o d; +VRT /07 (@) ++/Rt/ 7x ,
_ -LO Ib‘f—«/ﬁx J,w JR (Aoe(,H; /2)teax/f(«/ﬁx+\/1—Ry) _ De—r,_r)
Vi-R

(1—e e Mo g xRN g W)y ) (x)dwelyclx
_ AoeMJ‘_ZcD(—gf +\F/2EX +GMJ‘D(d; +\/RT/TCDl(a)+\/Rt/TX]¢(X_G\/ﬁ)dX

J1- 1-R
2 2 * -1 0 - 5* + V RX
4 A eWottgot W-RIT/2g-dioVr g-oRTOMe) [ qf "9 TNRA - [ Dy
AO J-—oo [1_ R ( )
* 1
q)[dl +«/RT/rd; (R05)+«/Rt/z'x_a i R)TJW)O‘X
. * * -1
pee[” q{ 511+ \R/Rx}l{dl +JRT /qu> (;) +«/Rt/rxj¢(x)dx

—00

n De—rLTe—dfax/?e70x/ﬁ®’1(a)e02(Rt+(l—R)r)/2joo (D[_ 51 + \/EX]
1-R

1-R

(I)(dl* ++/RT /TCD_l(O{)—I— Rt/zx g ((1_ R)TJ¢(X+U\/ﬁ)dX

Using the relation

= (a++/Rx b++/Rt/zx
jwq{ 1—RJ®[ V1-R

byz RVt ]

J¢(x)dx = q){a, J@-R)r +Rt | JA-R)r +Rt

equation (A-27) is reduced to:

EJEL(D+A; - A)" [ Xy =—TO (@), X, V1L, ;]
i g*_%[Aoe%z(—éf +ovth +oRt/ i p")
1

2 2 . 4 . . « (A-28
_Aoe(,u—o /2)tea (1-R)T /2-d;o\c-oRT® (a)®2(_51 +G(1—R)\/f, hl _O_(l_ R)T/\/;,p ) ( )

—De VD, (-5, h; p")
+ De—rLre—dIO'«/?—O'\/ﬁCD’l(a)-#o‘Z(Rt+(1—R)r)/2q)2 (_51* _ O'R\/E, h; _ O'\/;, p*)]’

where 7, h;, p" are given as equations (31)—(33). By substituting equations (15),
(A-25), and (A-28) for equation (A-24), we obtain equation (30).
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State 11

From equation (28),

E, [SEL, (0)1 ]= D™ T ~1)PrDE < A < D&]

D& <A<Dg

T E,[(D — Ajelo" /AT got RTe @y iRy o (A-29)

D& <A<DE 1
The second term on the right hand side of equation (A-29) is evaluated as:

(u=0%12)T Ao {-VRTO () +VI-R (Y, +Y;_ )\ +
E,[(D—Age ¢ ") Logncog ]

L OGsVT-yVt o/ —VI-Ry

=7 [t (D— At Ter T e ERE I () (w)g () dxcwely
~JR

dsx/?—y\/_ 5; —\1- y 5, —J1-Ry
N Ho (= R (—\/ﬁ )}o(y)dy

— Aoe(u—azR/Z)T—oJWQ*l(a)J‘w q)(ds \/T/__ yt _ GM) (A-30)
o T

5, —J1-Ry 5, —V1-Ry B -
x{O(— R ) —D( R )3o(y —o/(1-R)t)dy

=D{CDZ(dS,§f;ps)—®2(ds,5;;ps)}
~ Al AT OL0, (ds o [1-R)T. 8] ~o(1-RIVE ;)
~®,(ds - o /A-R)T,5; - o(L-R)Vt; ps)},

-of o

where dg, p are given as equations (35) and (36). By substituting equations (18) and
(A-30) for equation (A-29), we obtain equation (34) using equation (37).

State 111

Similar to the derivation of SEL for state I, from equation (28),

E,[SEL, (A*Z)lA{ wzl= D(e™o T _1)Pr[A < D&, 1+ (™ " —1)E,[A, 1, o]
] " (A3))
HE[ED+A, = A) | X =T (a), X, Y], .-
Here,
. A -D& Ae“®(5; - ovt) - DED(S;)
EO[A21A<D§;] - [5 p Mt A(<D§2] 52 g7 J (A‘32)
and
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EJ[ELD+A5 —A)" [ Xy =T @), X, V1L, ;.1

S 1 EO [(Al _ De—rLf)(l_ e—d;o-\/?e_a\/ﬁq)*l(a)efo'\/ﬁxleJ\/ﬁYT,‘ )+1 5 *]
éz _e_rLT At< ‘52
1 S;—Rx  dy+/RT /zd L (a)+/Rt/ 7
:—I“’J N J VIR (Aoem—azfzneaﬁ(ﬁmﬁy) —De ™)
e L
. . A-33
(1—e e oI g o MmN ) g ) g y) (x) dwidydlx A5
1 * * *
- o (AR oL+ oRUi-p)
=

B efah;\/;7c72[/2+o—2(17R)T/2q)2 (6, —o(l—RWt,h, —o(1- R)T/\/;;—p*)}
~De™{®,(8;.h;-p") —e 2D, (85 + oRWEL N, — ofri-p )},

where 7, h;, o are defined as equations (31)—(33). By substituting equations (22),
(A-32) and (A-33) for equation (A-31), we obtain equation (38).
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