
 

 

IMES DISCUSSION PAPER SERIES 
 
 

 

 
 

 
 
 

INSTITUTE FOR MONETARY AND ECONOMIC STUDIES 
 

BANK OF JAPAN 
 

2-1-1 NIHONBASHI-HONGOKUCHO 

CHUO-KU, TOKYO 103-8660 

 JAPAN 

 

You can download this and other papers at the IMES Web site: 

http://www.imes.boj.or.jp 
 

Do not reprint or reproduce without permission. 

 

Analytical solutions for expected and unexpected losses  
with an additional loan 

 
 

Satoshi Yamashita and Toshinao Yoshiba 
 

Discussion Paper No. 2007-E-21 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

NOTE:  IMES Discussion Paper Series is circulated in 

order to stimulate discussion and comments. Views 

expressed in Discussion Paper Series are those of 

authors and do not necessarily reflect those of the 

Bank of Japan or the Institute for Monetary and 

Economic Studies.   



 

IMES Discussion Paper Series 2007-E-21 
December 2007 

 
Analytical solutions for expected and unexpected losses  

with an additional loan 
 

Satoshi Yamashita* and Toshinao Yoshiba** 
 

Abstract 
We evaluate expected and unexpected losses of a bank loan, taking into account the 
bank’s strategic control of the expected return on the loan. Assuming that the bank 
supplies an additional loan to minimize the expected loss of the total loan, we 
provide analytical formulations for expected and unexpected losses with bivariate 
normal distribution functions. 

There are two cases in which an additional loan decreases the expected loss: i) 
the asset/liability ratio of the firm is low but its expected growth rate is high; ii) the 
asset/liability ratio of the firm is high and the lending interest rate is high. With a 
given expected growth rate and given interest rates, the two cases are identified by 
two thresholds for the current asset/liability ratio. The bank maintains the current 
loan amount when the asset/liability ratio is between the two thresholds.  

Given the bank’s strategy, the bank decreases the initial expected loss of the loan. 
On the other hand, the bank has a greater risk of the unexpected loss.  
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I. Introduction 

An internationally active bank, adopting the advanced internal ratings-based approach 

under Basel II (BCBS [2005a]), has to estimate the probability of default (PD), loss given 

default (LGD), and exposure at default (EaD). These three factors estimated by the 

bank’s own model determine a loss distribution of the bank’s portfolio. From the 

viewpoint of risk management, the two most popular concepts to capture the loss 

distribution are the expected loss (EL) and unexpected loss (UL). UL is defined by 

value-at-risk (VaR) minus EL. EL should be covered by the bank’s loan loss provisioning. 

UL should be cushioned by the bank’s capital. Basel II adopts these concepts. 

When measuring PD, LGD, and EaD, we have to pay attention to the relationships 

among them. If EaD changes, PD and LGD will also change through a structural 

relationship with EaD. 

Some earlier studies examined EL and UL, taking into account the correlation 

between PD and LGD (see Frye [2000], Phytkin [2003], Peura and Jokivuolle [2005], as 

examples). However, most studies fix EaD to avoid dynamic development in EaD which 

is related to PD and LGD. 

Quite recently, a number of EaD models have been proposed. Moral [2006] and 

Jiménez and Mencía [2007] focused on loan commitments to capture varying EaD. 

Kupiec [2007] proposed a model which assumes both LGD and EaD have a common 

systematic factor, based on the fact that both tend to increase during recession periods. 

They focused on the statistical correlation among PD, LGD, and EaD rather than the 

structural relationship of PD and LGD with varying EaD.  

Following the Merton model, we provide analytical formulations for EL and UL with 

bivariate normal distribution functions, including changes in EaD. We assume that the 

bank supplies an additional loan to minimize EL at a certain time t until maturity T. An 

additional loan at time t decreases EL measured at time t in two cases: i) the 

asset/liability ratio of the firm is low but its expected growth rate is high; ii) the 

asset/liability ratio of the firm is high and the lending interest rate is high. With a given 

firm’s expected growth rate and given interest rates, the three states are identified by two 

thresholds for the current asset/liability ratio. In the first state, where the ratio is larger 

than the higher of the two thresholds, the additional loan helps the firm to grow, and the 

bank earns a higher expected return. In the second state, where the ratio is between the 
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two thresholds, the bank maintains the current loan amount. In the third state, where the 

ratio is smaller than the lower of the two thresholds, the additional loan helps the firm to 

survive a temporary crisis and the bank has the benefit of a decrease in EL. Incorporating 

the additional loan at time t, both EL and UL measured at time 0 are evaluated 

analytically using bivariate normal distribution functions. We show some numerical 

examples for EL and UL. They imply that EL measured at time 0 decreases by taking the 

additional loan into account, but UL measured at time 0 increases by taking it into 

account. The larger the correlation between the firm’s factor and the common systematic 

factor gets, the larger the increase in UL gets. 

Following this introduction, Section II provides a structural model of an additional 

loan, and the evaluation of EL measured at time 0 under EL minimization at time t. 

Section III evaluates UL. Section IV provides numerical examples for EL and UL. 

Section V summarizes the findings and provides directions for extensions to this paper.  

 

 
II. EL with an additional loan 

A. Basic model and loss function 

Following Merton [1974], we assume that the asset value tA  of the firm is assumed to 

have the geometric Brownian process below and the default of the firm occurs when the 

asset value at maturity T is less than the firm’s liability. 

 tttt dWAdtAdA σμ += . (1) 

Let the bank supply a loan of the notional amount D at time 0 in the form of a 

discount bond, that is, the bank supplies TrLDe 0−  amount of cash to the firm at time 0, 

where 0Lr  denotes the lending interest rate. We suppose that the firm’s liability only 

consists of the bank’s lending. This means that EaD is equal to D if the bank does not 

supply additional loans. 

First, we assume that EaD does not change. When DAT < , the default of the firm 

occurs and the bank recovers the lending by liquidating the firm’s asset value TA . The 

loss to the bank at maturity is given by:1 

                                                 
1 +)(X  denotes the positive part of a real number X, i.e., )0,max()( XX =+ . 
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 +− −+−= )()1( )( 00
T

Trr
T ADeDL LM , (2) 

where 0Mr  denotes the bank’s funding interest rate at time 0. The EL of the bank 

measured at time 0 is given below: 
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Here, )(⋅Φ  denotes a standard normal distribution function. In this model, PD is 

given by ]Pr[)( 0 DAd T <=Φ  and LGD is given by }PD/{)( ×− + DAD T .2 

 

B. EL minimization at time t 

Now we introduce a change in EaD. For simplicity, we make the assumption that the 

bank supplies an additional loan only once at a certain time t. When the bank supplies an 

additional loan amount Δ , EaD changes from D  to Δ+D . The asset value of the firm 

changes from tA  to τLr
t eA −Δ+ , where Lr  denotes the lending interest rate at time t 

and τ  denotes the interval to maturity, tT − . Then, the loss to the bank at maturity is 

given by: 

 +−− −Δ++−Δ+−=Δ )()1()1()( )()( 00
T

rrTrr
T ADeeDL LMLM τ , (5) 

where Mr  denotes the bank’s funding interest rate at time t.  

The EL of the bank measured at time t is given by:  
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2 Most existing studies focused on a collateral value for the loan and assumed that the loss to the bank 
is the uncovered portion of the debt relative to the collateral (see Frye [2000], Phytkin [2003], Peura 
and Jokivuolle [2005], for examples). On the other hand, Altman, Resti and Sironi [2001] focused on 
the firm’s asset value in their model and showed that the expected LGD, DADE T /])[(0

+− , is given 

by )()/()( 000 TdeDAd T σμ −Φ−Φ .  
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We assume the bank minimizes )(ΔtEL  through supplying an additional loan 

amount Δ . The first derivative of )(ΔtEL  with regard to the additional loan amount Δ  

is given by: 

 ))(())((1
)( )()( τστμτ −ΔΦ−ΔΦ+−=

Δ∂
Δ∂ −−

t
r

t
rrt dede

EL
LLM . (8) 

Here, we generalize equation (8) as: 

 )()(1)( )()( τστμτ −Φ−Φ+−≡ −− dededf LLM rrr . (9) 

The function )(df  is convex and reaches its maximum at 

τσσμ }2//){( +−≡= Lrdd . We see that 0)( <−∞f  when ML rr >  and that 

0)( <∞f  when Mr>μ . See Appendix 1 for details. 

As given in equation (7), d  corresponds to the asset/liability ratio of the firm. By 

supplying an additional loan Δ , )(Δtd  increases when ddt <)0( , and )(Δtd  

decreases when ddt >)0( . 

Here, we assume that Mr>μ , ML rr >  and 0)( >df . Then, there exist two 

solutions *
1d  and *

2d  where 0)( * =idf  and *
2

*
1 ddd << . This implies that the bank 

supplies an additional loan under one of two conditions: i) the asset/liability ratio DAt /  

is larger than the threshold *
1ξ ; or ii) the asset/liability ratio is smaller than another 

threshold *
2ξ . The thresholds *

1ξ  and *
2ξ  are given by: 

 τσμτσξ )2/(*
1

2*
1 −−−= de , τσμτσξ )2/(*

2

2*
2 −−−= de . (10) 

We can confirm that an additional loan reduces )(ΔtEL  in the two cases above. The 

optimal additional loan amount *Δ  satisfies i) *
1

*
1 )( ddt =Δ  for *

1ξDAt > , and ii) 
*
2

*
2 )( ddt =Δ  for *

2ξDAt < . Therefore, 
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e
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2 . (11) 

Figure 1 shows the optimal additional loan amount *Δ  with respect to the asset 

value tA  just before supplying an additional loan. 
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Figure 1. Optimal additional loan at time t 
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According to the three states of tA  distinguished by the thresholds *
1ξD  and *

2ξD , 

the bank takes different actions to minimize )(ΔtEL . 

State I ( *
1ξDAt > ): The firm is in a good state. When the bank supplies the optimal 

additional loan amount in this state, the PD increases slightly from ))0(( tdΦ  to 

)( *
1dΦ . The increase in PD incurs a rise in the EL. On the other hand, the additional 

loan increases interest earnings. Because the increase exceeds the rise in EL which 

results from the increase in PD, the EL decreases. The minimized EL measured at 

time t is:  

 )()()1()]([)(EL *
1

*
1

)(*
1

* 00 τσμτ −Φ−Φ+−=Δ=Δ − deAdDeDLE t
Trr

Ttt
LM . (12) 

State II ( *
1

*
2 ξξ DAD t ≤≤ ): The firm is in a middle state. The bank does not supply an 

additional loan in this state. The EL measured at time t is:  

 ))0(())0(()1()]0([)(EL )(* 00 τσμτ −Φ−Φ+−==Δ −
ttt

Trr
Ttt deAdDeDLE LM . (13) 

State III ( *
2ξDAt < ): The firm is in a bad state. When the bank supplies the optimal 

additional loan amount in this state, the PD decreases from ))0(( tdΦ  to )( *
2dΦ . 

The decrease in PD leads to decrease in EL. The minimized EL measured at time t is: 

 )()()1()]([)(EL *
2

*
2

)(*
2

* 00 τσμτ −Φ−Φ+−=Δ=Δ − deAdDeDLE t
Trr

Ttt
LM . (14) 

 

C. Numerical example of EL and PD at time t 

Table 1 shows numerical examples of changes in the EL and PD caused by the optimal 

additional loan at time t. Let D = 100, T = 2, t = 1, μ = 5%, σ = 10%, rL0 = rL = 1%, rM0 = 
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rM = 0.5%. In this case, 115.67*
1 ≅ξD  and 89.74*

2 ≅ξD  for  1.905*
1 −≅d  and 

0.632 *
2 ≅d . We can confirm that the PD increases with the additional loan *Δ  in state I, 

corresponding to the case of =tA 120 and 125, and that the PD decreases with the 

additional loan *Δ  in state III, corresponding to the case of =tA 80 and 85. In state II, 

corresponding to the case of =tA 90 and 105, 0* =Δ  and both EL and PD do not 

change. 

Table 1. EL and PD with/without an additional loan at time t 

At Δ* ELt (Δ*) ELt (0) PDt (Δ*) PDt (0) 
80 105.19 13.54 15.06 73.64% 96.26% 
85 51.21 9.85 10.26 73.64% 88.00% 
90 0.00 6.16 6.16 72.69% 72.69% 

115 0.00 −0.87 −0.87 3.23% 3.23% 
120 26.01 −0.99 −0.96 2.84% 1.15% 
125 56.02 −1.11 −0.98 2.84% 0.37% 

 

D. Evaluation of EL measured at time 0 

The discussion above considers the bank’s strategies at time t. Here, we derive EL 

measured at time 0, taking those strategies at time t into account. First, we obtain the 

probability that each of the three states occurs. Second, we obtain the component of EL 

on each state. Finally, we derive EL measured at time 0 by summing up those 

components. 

 

State I ( *
1ξDAt > ): The probability that the firm is in this state at time t is given by:  

 )(]Pr[ *
1

*
1 δξ −Φ=> DAt , (15) 

where 

 tdtTd // *
10

*
1 τδ −= . (16) 

The component of EL attributable to this state is given by: 
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using equation (12). See Appendix 2 for details. 
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State II ( *
1

*
2 ξξ DAD t ≤≤ ): The probability that the firm is in this state at time t is given 

by: 

 )()(]Pr[ *
2

*
1

*
1

*
2 δδξξ Φ−Φ=≤≤ DAD t , (18) 

where 

 tdtTd // *
20

*
2 τδ −= . (19) 

The component of EL attributable to this state is given by: 
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 (20) 

using equation (13), where 

 Tt /=ρ , (21) 

and );,(2 ρyxΦ  is a distribution function of the bivariate standard normal 

distribution with correlation ρ . 

State III ( *
2ξDAt < ): The probability that the firm is in this state at time t is given by:  

 )(]Pr[ *
2

*
2 δξ Φ=< DAt . (22) 

The component of EL attributable to this state is given by: 
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using equation(14). 

 

EL in total 

The EL measured at time 0 is evaluated as:  

 ]1)([]1)0([]1)([)]([ *
2

*
1

*
2

*
1

*
200

*
10

*
0 ξξξξ DATDADTDATT

ttt
LELELELE

<≤≤>
Δ++Δ=Δ . (24) 

By substituting equations (17), (20), and (23) for equation (24), we obtain: 
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 (25) 

 

We have derived an analytical formation of EL measured at time 0 taking into 

account the bank’s strategy depending on the future value of the firm’s assets. 

Formulation (25) is expressed by bivariate normal distributions. It can be calculated 

easily, because bivariate normal distribution functions can be evaluated by numerical 

approximation methods. See Drezner [1978] for an example of those methods. 

 

 
III. UL with an additional loan 

The previous section obtained EL measured at time 0 taking into account the bank’s 

strategy at time t. This section derives UL measured at time 0 taking it into account. First, 

we show the equivalence between UL and SEL. Second, we derive SEL measured at time 

0. This leads to UL measured at time 0. 
 

A. Equivalence between UL and SEL 

We evaluate the VaR to obtain the UL. For a given confidence level )1,0(∈α , the VaR is 

defined as the α th quantile of the distribution of loss, and is denoted by )(Lqα . 

The VaR is equivalent to a conditional EL under these assumptions, which are 

adopted by Basel II (BCBS [2005b]). The first assumption is that the portfolio is well 

diversified, that is, it is composed of many kinds of loans to various firms. The second 

assumption is that all loans are correlated through the correlation between each loan and 

a single systematic factor, X. On those assumptions, the VaR of the portfolio )(Lqα  is 

given by a conditional expectation of the loss ]|[ 1 α−= xXLE , where α−1x  is the 

)1( α− th quantile of the distribution of X. See Gordy [2003], Vasicek [2002], for details. 

Assuming that the portfolio is well diversified, and has a single systematic factor X, 

the UL of the portfolio is given by ∑ =
=

M

i i1
ULUL , where: 
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 ][]|[UL 1 iii LExXLE −== −α . (26) 

Equation (26) implies that iUL  is the contribution of exposure i in the UL of the 

portfolio. Here, we call ]|[ 1 α−= xXLE i  “stressed EL,” SEL hereafter. We omit i 

hereafter for simplicity. The valuation of UL and its decomposition is equivalent to the 

evaluation of SEL. 

We illustrate how to describe the stressed condition α−= 1xX . The stochastic process 

of tA  is driven by one Brownian motion process tW  as in equation (1). Similar to 

BCBS [2005b], we suppose that the Brownian motion tW  is composed of a single 

systematic factor tX  and an idiosyncratic factor tY  as follows: 

 ttt YRXRW −+= 1 . (27) 

Here, R  denotes the asset correlation among bank loans. The stressed condition 

α−= 1xX  at the time of the default corresponds to the )1( α−  th quantile of the factor 

TX . The quantile is given by )(1 α−Φ−= TX T . 

SEL after supplying the optimal additional loan at time t is given by: 
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YXTXADE

eeDSEL LMLM
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Φ−=−Δ++

−Δ+−=Δ
 (28) 

where t the optimal additional loan amount *Δ  is determined by equation (11) following 

EL minimization at time t depending on the value of tA . 

 

B. Evaluation of SEL at time 0 

We derive SEL measured at time 0 given the bank’s optimal strategy at time t. We 

evaluate SEL with the constraint )(1 α−Φ−= TX T , similar to the derivation of EL 

measured at time 0. SEL is given by the sum of the contributions for the three states as: 
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1ξDAt > ): ]1)([ *
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Δ  is given as below. See Appendix 3 for details. 
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where η , *
1h , *ρ  are given as equations (31)−(33).  

 RtR +−≡ τη )1( , (31) 

 
η

ατ RTdh i
i

)(1*
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≡ , 2,1=i , (32) 

 ηρ /* tR≡ . (33) 
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 is given by: 
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where Sd , Sρ . Sσ  are given as equations (35)-(37). 
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 TtRS /)1( −≡ρ , (36) 

 TRS )1( −≡ σσ . (37) 
 

State III ( *
2ξDAt < ): ]1)([ *

2

*
20 ξDAt

t
SELE

<
Δ  is given as below. *

2h  is given as equation 

(32). 
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SEL in total 

Finally, from equations (29), (30), (34), and (38), SEL measured at time 0 is 

evaluated as:  
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Although the expression looks complicated, it is a simple combination of certain 

bivariate normal distribution functions and a univariate one. It is as tractable as the EL 

formulation in (25). Using it, we can analyze the parameter’s effects on UL. 

 

 

IV. Numerical example 

In this section, we show how varying EaD under the EL minimization strategy shifts EL 
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and UL measured at time 0 from the original values. Let D = 100, t = 1, T = 2, μ = 5%, σ 

= 10%, rL0 = rL = 1%, rM0 = rM = 0.5% as in Table 1. In addition, let R = 0.12, and α = 

99.9% for UL valuation. Table 2 shows ELs and ULs with an optimal additional loan *Δ  

for certain values of 0A . For comparison, we also show ELs and ULs without an 

additional loan, i.e., 0* =Δ . We also show ULs with and without an optimal additional 

loan in the case of R = 0.24. The table shows that the EL minimizing principle increases 

ULs despite the decrease in ELs. The larger the asset correlation R is, the more the UL 

increases. 

Table 2. EL and UL with/without an additional loan 

R = 0.12 R = 0.24 
A0 EL(Δ*) EL(0) 

SEL(Δ*) SEL(0) UL(Δ*) UL(0) UL(Δ*) UL(0) 

80 10.78 12.00 30.16 23.18 19.37 11.18 27.40 15.81 
85 7.45 8.03 22.26 18.62 14.81 10.60 21.30 15.37 
90 4.66 4.90 15.97 14.32 11.31 9.42 16.82 14.16 
95 2.54 2.63 11.18 10.43 8.64 7.80 13.56 12.28 
100 1.06 1.10 7.69 7.12 6.63 6.02 11.17 9.97 
105 0.11 0.15 5.32 4.48 5.21 4.32 9.59 7.58 
110 −0.47 −0.40 3.91 2.50 4.38 2.90 8.85 5.39 
120 −1.06 −0.86 3.16 0.23 4.22 1.09 9.63 2.25 

Note: For simplicity, let )]([)( *
0

* Δ≡Δ TLEEL , )]([)( *
0

* Δ≡Δ tSELESEL , 

)]([)]([)( *
0

*
0

* Δ−Δ≡Δ Tt LESELEUL , )]0([)0( 0 TLEEL ≡ , )]0([)0( 0 tSELESEL ≡ , and 

)]0([)]0([)0( 00 Tt LESELEUL −≡ . 

 

 
V. Conclusions 

In this paper, we developed a structural model incorporating the relationship between PD, 

LGD, and EaD. We assumed that a bank takes strategic control of EaD by supplying an 

additional loan. Our model involves dependence of EaD on the stochastic asset value of 

the firm. The dependence changed from EL and UL with a fixed EaD to those with 

stochastic EaD. We derived analytical formulations for EL and UL using bivariate normal 

distribution functions and provided numerical examples. 

There are two cases where an additional loan decreases EL: i) the asset/liability ratio 

of the firm is low however the firm’s expected growth rate is high; ii) the asset/liability 
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ratio of the firm is high and the lending interest rate is high. With a given firm’s expected 

growth rate and given interest rates, the two cases are identified by two thresholds for the 

asset/liability ratio at time t. The bank maintains the loan amount when the asset/liability 

ratio is between the two thresholds. Given the bank’s strategy, the bank decreases the EL 

measured at time 0. On the other hand, the bank has a greater risk of the UL. 

Focusing on the analytical evaluation of EL and UL incorporating the change in EaD, 

our model examines one simple case of stochastic development in EaD. We leave the 

following points to be studied on more realistic assumptions. 

a. Modeling the firm’s demand for an additional loan 

b. Use of an adjustable lending rate for the additional loan according to the firm’s 
credit risk 

c. Multiple timings for the supply of additional loans until maturity 

d. Choice of an alternative bank optimization function 

e. Change in the parameters of the firm’s asset development, μ  and σ . 

As for points a, b, and c, one possible approach is an equilibrium model of loan 

demand and supply with a flexible lending rate, where additional loans are executable at 

any time during a given loan period. 

As for point d, the extension from our setting requires the identification of the bank’s 

preference about the trade-off between return and risk. A simple alternative is to 

minimize EL subject to the upper limit of UL, which defines risk capital allocated to the 

business undertaking the loan. 

As for point e, we fix μ  and σ  to derive analytical solutions for EL and UL. A 

possible interpretation is that a bank chooses an appropriate loan period in which these 

parameters for the firm’s growth are stable. 

Despite the many assumptions required to obtain analytical formulations for EL and 

UL, our model shows the rationality of an additional loan under EL minimization 

because of a decrease in PD and an increase in interest earnings. It also shows the 

mechanics of how EaD affects PD and LGD systematically. The ideas presented here 

may provide a clue to estimating EaD, PD, and LGD within the advanced internal 

ratings-based approach in Basel II.  
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Appendix 1. Decision on an additional loan at time t 

A. Critical value of asset at time t 

The first derivative of )(df  given in equation (8) is: 

 
).(}1{

)()()(
)2/(

)(

2

dee

deddf
dr

r

L

L

φ

τσφφ
τστσμ

τμ

−−

−

−=

−−=′
 (A-1) 

It follows that: 

 
⎩
⎨
⎧

><
<>′

,0
,0

)(
ddif
ddif

df  (A-2) 

where 

 τ
σ

σμ 2/2+−
= Lrd . (A-3) 

Characteristic values of )(df  are given as: 

 1)(lim )( −= −

−∞→

τLM rr

d
edf , (A-4) 

 
τμτττμτ LMLLM rrrrr

d
eeeeedf −−−

∞→
−=−= }{)(lim )()( , (A-5) 

 )()(1)( )()( τστμτ −Φ−Φ+−= −− dededf LLM rrr . (A-6) 

From equations (A-4)−(A-6), on the assumption 0)( >df , there exists *
1d  such that 

0)( *
1 =df  on dd <*

1  if ML rr > , and there exists *
2d  such that 0)( *

2 =df  on 
*
2dd <  if Mr>μ . 

Here, we consider the level of asset tA  at which the bank supplies an additional loan 

for given values of t , T , Mr , Lr , μ , σ . We define )(~
tAd  to be )0(td  as a 

function of tA  below. 

 
⎭
⎬
⎫

⎩
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−== τσμ

τσ 2
ln1)0()(~ 2

t
tt A

DdAd . (A-7) 

and define the function )( tAh  as: 

 ))(~())(~(1
)(

lim)( )()(

0
τστμτ −Φ−Φ+−=

Δ∂
Δ∂

≡ −−

→Δ t
r

t
rrt

t AdeAde
EL

Ah LLM . (A-8) 

The bank supplies an additional loan if 0)( <tAh . We can confirm that the condition 

0)( <tAh  is equivalent to the condition *
1)(~ dAd t <  or *

2)(~ dAd t > . 

If *
1)(~ dAd t < , then *

1
)2/( 2*

1 ξτσμτσ DDeA d
t => −−− . If *

2)(~ dAd t > , then 



 

15 15

*
2

)2/( 2*
2 ξτσμτσ DDeA d

t =< −−− . *
1ξD  and *

2ξD  are the thresholds of tA  for which the 

bank supplies an additional loan. 

Now, we derive an optimal additional loan. When *
1ξDAt > , then the relation 

 *
1ξ

τ

≥
Δ+

Δ+
>

−

D
eA

D
A Lr

tt , (A-9) 

holds for an additional loan amount 0>Δ  using dd <*
1 . It implies that the optimal 

loan amount *
1Δ  satisfies: 

 *
1*

1

*
1 ξ

τ

=
Δ+

Δ+ −

D
eA Lr

t . (A-10)

Similarly, when *
2ξDAt < , the following relation holds. 

 *
2ξ

τ

≤
Δ+

Δ+
<

−

D
eA

D
A Lr

tt . (A-11)

It implies that the optimal loan amount *
2Δ  satisfies 

 *
2*

2

*
2 ξ

τ

=
Δ+

Δ+ −

D
eA Lr

t . (A-12)

From equations (A-10) and (A-12), we obtain equation (11). 

 

B. Parameter relation for the optimal additional loan 

We assume that the firm accepts the additional loan. If the firm maximizes the expected 

value of the equity after accepting an additional loan Δ , this assumption is consistent 

with the firm’s behavior in the case of Lr>μ . The expected value of the equity is 

evaluated as ))(()())(()( ΔΦΔ+−−ΔΦΔ+ −
tt

r
t dDdeeA L τσμττ , and the marginal 

expected value of the equity is given by ))(())(()( ΔΦ−−ΔΦ−
tt

r dde L τστμ . If Lr>μ , 

the marginal expected value at 0=Δ , ))0(())0(()(
tt

r dde L Φ−−Φ− τστμ , is always 

nonnegative. It implies that an additional loan increase the expected value of the equity. 

The optimal additional loan amount may be infinite if ML rr >  and Mr>μ . If 

ML rr ≤  or Mr≤μ , the amount is always finite. The proof is given in subsection D in 

this appendix. 

These relations are summarized as Table A- 1. 
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Table A- 1 Parameter relation for an additional loan at time t 
Parameter 
condition 

Loan 
amount 

Supply of additional loan by the bank 
Demand of 
the firm 

finite Done if *
1ξDAt >  or *

2ξDAt <  
ML rr >≥μ  

infinite Done regardless of the level of tA   
consistent 

finite Done if *
1ξDAt >  or *

2ξDAt <  
ML rr ≥> μ  

infinite Done regardless of the level of tA  
unknown 

LM rr ≥≥μ  finite Done if *
2ξDAt <  consistent 

μ>≥ ML rr  finite Done if *
1ξDAt >  unknown 

LM rr >≥ μ    

μ≥≥ LM rr   
No additional loan 

 

 

C. Equivalent condition that the optimal additional loan is finite 

Under the condition 0|/)( 0 <Δ∂Δ∂ =ΔtEL , if 0|/)( <Δ∂Δ∂ ∞→ΔtEL  then the optimal 

additional loan amount is infinite. Although 22 /)( Δ∂Δ∂ tEL  is always positive 3 , 
22 /)( Δ∂Δ∂ tEL  converges to 0 as ∞→Δ . It implies that the marginal expected loss 

converges to a constant as: 

 )()(1
)(

lim )()( τστμτ −Φ−Φ+−=
Δ∂

Δ∂ −−

∞→Δ
dede

EL
LLM rrrt . (A-13)

The necessary and sufficient condition that the optimal additional loan amount is 

finite is that the right hand side of equation (A-13) is positive. It is equivalent to: 

 0)( >df . (A-14)

 

D. Parameter conditions that the optimal additional loan is finite 

In this subsection, we prove that the optimal additional loan is finite if ML rr ≤  or Mr≤μ .  

For preparation, we show proposition A-1.  

 

Proposition A-1 0)2/()2/( >−−Φ−+−Φ ses s αα α  for any R∈α  and 0>s . 

(Proof) Let X be a random variable distributed as ),2/N(~ln 22 sssX −α . Then: 

                                                 
3 2
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 0)2/()1Pr()0)1Pr(( >+−Φ=<=>− + sXX α . (A-15)

By definition, 0)1( ≥− +X  and, from (A-15), the probability that 0)1( >− +X  is 
positive. Therefore, 

)2/()2/()()1(])1[(0
2/ 2/2

sesdyyeXE ss sssy −−Φ−+−Φ=−=−< ∫
+−

∞−

−++ ααφ αα α . 

(Q.E.D.) 

 

If ML rr ≤  then we can confirm that 01)( ≥−− τLM rre  and 

0)()( )( >−Φ−Φ − τστμ ded Lr  by applying proposition A-1 with στμα /)( Lr−=  

and τσ=s . This implies that the optimal additional loan is finite if ML rr ≤ . 

On the other hand, if Mr≤μ , then: 
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 (A-16)

By applying proposition A-1 with στμα /)( −= Lr  and τσ=s , the right hand 

side of equation (A-16) is positive. It implies that the optimal additional loan is finite if 

Mr≤μ . 

 

Appendix 2. EL with an additional loan in each state 

State I 

From equation (12),  
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Here, the expectation in the second term on the right hand side of equation (A-17) is 

evaluated as: 
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By substituting equations (15) and (A-18) for equation (A-17), we obtain equation (17). 
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State II 

From equation (13), 
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where )(~
tAd  is given as equation (A-7). Let: 

 vttAAt σσμ +−−= )2/(lnln 2
0 ,  

using the standard normal random variable v . Then, ]1))(~([ *
1

*
2

0 ξξ DADt
t

AdE
≤≤

Φ  in 

equation (A-19) is evaluated as: 
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where ρ  is given as equation (21). Similarly, 
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By substituting equations (18), (A-20) and (A-21) for equation (A-19), we obtain 

equation (20). 

 

State III 

From equation (14),  
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Similar to equation (A-18),  
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. (A-23)

By substituting equations (22) and (A-23) for equation (A-22), we obtain equation (23).  
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Appendix 3. SEL with an additional loan in each state 

State I 

From equation (28),  

 

].1],),(|)[([

]1[)1(]Pr[)1(]1)([

*
1

*
1

00
*
1

1*
10

*
10

)(*
1

)(*
10

ξ

ξ
τ

ξ

α

ξ

DAttTTt

DA
rr

t
Trr

DAt

t

t

LMLM

t

YXTXADEE

EeDAeDSELE

>
−+

>
−−

>

Φ−=−Δ++

Δ−+>−=Δ
 (A-24) 

The expectation in the second term on the right hand of equation (A-24) is evaluated as: 
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Let tTtT XXX −≡−  and tTtT YYY −≡− . Using equation (11), TAD −Δ+ *
1  in equation 

(A-24) is expressed as: 
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Using this relation, the third term on the right hand side of equation (A-24) is evaluated 

as: 
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Here, 
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Using the relation 
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equation (A-27) is reduced to: 
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where η , *
1h , *ρ  are given as equations (31)−(33). By substituting equations (15), 

(A-25), and (A-28) for equation (A-24), we obtain equation (30). 



 

21 21

 

State II 

From equation (28), 
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The second term on the right hand side of equation (A-29) is evaluated as: 
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where Sd , Sρ  are given as equations (35) and (36). By substituting equations (18) and 

(A-30) for equation (A-29), we obtain equation (34) using equation (37). 

 

State III 

Similar to the derivation of SEL for state I, from equation (28), 
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Here,  
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and 
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(A-33)

where η , *
2h , *ρ  are defined as equations (31)−(33). By substituting equations (22), 

(A-32) and (A-33) for equation (A-31), we obtain equation (38). 
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