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Abstract 

Endogenous sampling with matching (also called “Mixed Sampling”) occurs when the 
statistician samples from the non-right-censored subset at a predetermined proportion 
and matches on one or more exogenous variables when sampling from the 
right-censored subset. This is widely applied in the duration analysis of firm failures, 
loan defaults, insurer insolvencies etc. due to the low frequency of observing 
non-right-censored sample (bankrupt, default and insolvent observations in respective 
examples). However, the common practice of using estimation procedures intended for 
random sampling or for the qualitative response model will yield either inconsistent or 
inefficient estimator. This paper proposes a consistent and efficient estimator and 
investigates its asymptotic properties. In addition, this paper evaluates the magnitude of 
asymptotic bias when the model is estimated as if it were a random sample or an 
endogenous sample without matching. This paper also compares the relative efficiency 
of other commonly used estimators and provides a general guideline for optimally 
choosing sample designs. The Monte Carlo study with a simple example shows that 
random sampling yields an estimator of poor finite sample properties when the 
population is extremely unbalanced in terms of default and non-default cases while 
endogenous sampling and mixed sampling are robust in this situation. 
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Endogenous Sampling and Matching Method in Duration Models

1 Introduction

Endogenous sampling is a sample design in which the statistician stratifies the population based on

endogenous variables, such as choices or alternatives in discrete choice probability models, and then selects

samples at different rates from the different strata. In financial and labor economic research, one frequently

has to analyze data that measures the time until the occurrence of certain event, such as default and unem-

ployment. Due to the restriction of the observation window, the event may not occur to some observations

during the study period. Such observations are called “right censored.” In duration analysis, endogenous

sampling refers to the design that the population is divided into two subsets (non-right-censored and right-

censored) and the statistician samples only from one subset or from both subsets at a predetermined ratio.

Endogenous sampling is widely used in the duration analysis of such phenomena as firm failures, loan

defaults, and insurer insolvencies, because in these areas default cases are rarely observed, relative to non-

default cases, while they are the most interesting to the researchers. In addition, many studies augment the

endogenous sampling by exogenous sampling, which is referred to as “matching.” First, a random sample is

drawn from the default subsets; a second sample is then drawn from the non-default subsets in such a way

that the distributions of some exogenous variables are matched for the two samples; finally, the combined

sample is used for estimation. Unfortunately, these empirical applications either used standard estima-

tion procedures intended for random sampling, or used ad hoc modified estimation procedures without

investigating their statistical properties. Thus, they failed to consider the full implications of endogenous

sampling, as well as those of the matching procedure. Since the sample is no longer representative of the

population, without proper adjustment, any statistical inference about the population would be biased.

The seriousness of this problem calls for a rigorous treatment for non-random sampling in duration analysis.

The importance and necessity of such treatment is best illustrated by a series of examples:

(1) Lane et al. (1986) analyze bank failures in the U.S. from 1979 to 1983 in order to identify the factors

that increase the default risk of commercial banks and to construct a model to predict the default

probability, based on the banks’ characteristics. Lane et al. matched each failed bank with one or

more non-failed banks, based on geographic location and four other criteria. A Cox Proportional

Hazards model is estimated using the PHGLM procedure provided by SAS software.

(2) Luoma and Laitinen (1991) study Finnish company failures using empirical data, consisting of “36

Finnish failed limited companies and their non-failed mates.” Luoma and Laitinen did not describe
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how the non-failed “mates” were chosen. A Cox Proportional Hazards model is estimated using the

BMDP statistical software.

(3) Kim et al. (1995) investigate property-liability and life insurer insolvencies in the US. They selected

the default and non-default samples in an equal proportion in the framework of proportional hazard

models. In their duration analysis, Kim et al. used the weighted maximum likelihood estimation

method originally proposed by Manski and Lerman (1977) in the qualitative response model.

(4) Lee and Urrutia (1996) study the insolvency problem in the US property-liability insurance industry

in the 1980’s. They chose insolvent insurers based on data availability. An equal number of matching

solvent insurers were then selected, based on state domicile and total admitted assets. Lee and Urrutia

realized that their procedure created a choice-based sample and claimed to have “appropriately”

corrected the over-sampling problem by making the adjustments following Palepu (1986) and BarNiv

(1990), who addressed the problem in the context of a discrete choice probability models.

The common feature of the above examples is that all of these papers apply duration models with

non-random sampling schemes, although they differ in sample design details, estimation methods, and, as

will be clarified later, in the appropriateness of their estimation methods.

The properties of endogenous sampling have been investigated in various models, most notably in qual-

itative response models, as summarized in Section 9.5 of Amemiya (1985). However, the first paper that

considered this problem in duration models, at least as far as we know, is Amemiya (2001), who derives

the asymptotic properties of the Endogenous Sampling Maximum Likelihood Estimator (ESMLE) in a

duration model, in which defaults and non-defaults are sampled in a certain proportion. A counterintuitive

finding for the case of a scalar parameter is that the optimal sampling proportion for the duration model is

always 0 or 1, never in between. In other words, depending on the functional assumptions, it is optimal to

use only the default sample or the non-default sample. Amemiya (2001) proves that the Random Sampling

Maximum Likelihood Estimator (RSMLE) is inconsistent under an endogenous sampling scheme. Further-

more, Amemiya (2001) compares the two estimators with regard to their respectively favorable conditions,

showing that in certain cases ESMLE can be more efficient than RSMLE. One weakness of ESMLE is the

necessity of estimating the starting-time distribution of the spells. With regard to this problem, Amemiya

(2001) proposes a Conditional ESMLE and investigates the effects of estimating the starting-time distrib-

ution from a separate sample.

However, Amemiya (2001) deals only with the case of endogenous sampling without matching and does

not address the frequently used method of mixing endogenous sampling with the matching procedure in

duration analysis. The wide application of such sample designs in many empirical studies has heightened
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the need to provide a consistent estimator with its statistical properties fully characterized. Furthermore,

it would be interesting to directly compare Amemiya (2001)’s ESMLE with the Manski-Lerman Weighted

Maximum Likelihood Estimator (WMLE) in the context of duration analysis, which was applied in Kim

et al. (1995) as a solution to the over-sampling problem generated by their sample design.

In this paper, we focus on the maximum likelihood estimator under the mixed sampling scheme de-

scribed above (See Section 3 for a rigorous definition). We aim to answer two questions: first, how to

properly estimate a duration model with non-random samples; second, whether it is advantageous to ap-

ply non-random sampling to duration models. The next section compares the statistical properties of

Manski-Lerman WMLE with those of ESMLE within the context of the duration model. Section 3 derives

the asymptotic distribution of MSMLE (Mixed Sampling Maximum Likelihood Estimator ). Section 4

investigates the relative efficiencies of RSMLE, ESMLE and MSMLE. Using a simple example, we show

that none of the estimators unambiguously dominates the others. However, ESMLE and MSMLE could

outperform RSMLE when the population is extremely unbalanced in terms of the frequency of defaults

and non-defaults. A Monte Carlo study confirms this statement for small sample sizes. Finally, Section 5

summarizes the findings and offers a general guideline for sampling in empirical duration analysis.

2 Manski-Lerman Weighted Maximum Likelihood Estimator in

Duration Models

2.1 Asymptotic Properties of WMLE

The references cited above used the WMLE, originally proposed by Manski and Lerman (1977) for the

qualitative response model, without questioning its validity. Although the estimator can be shown to be

consistent for the duration model as well, it cannot be recommended for the duration analysis for two rea-

sons. First, the Manski-Lerman estimator has the intrinsic assumption that the true probability of choice

(for the qualitative response model) or of default (for the duration model) is known. This assumption may

be justified for the qualitative response model, where, for example, the true proportion of people riding

a train in the entire region can be estimated reasonably well. However, for most duration model applica-

tions, this assumption is inappropriate. For example, the true proportion of firms that default cannot be

accurately estimated, given the small sample size that one could possibly obtain. Furthermore, even if the

true probability of default is known, it is equally easy and more efficient to maximize the true likelihood

function than the weighted log likelihood, as will be demonstrated below.
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Following Amemiya (2001)’s notation, we assume that the duration data are obtained from the following

data generating process. A spell, defined as individual duration of stay in one state, starts in an interval

(a, b), and the starting time X is distributed according to the density h(x). The duration T is distributed

according to the density f(t|β) and the distribution function F (t|β), where β is a parameter vector. For

simplicity, we assume that X and T are independent. Let D represent the indicator function of whether a

spell is a default (t < b − x) or a non-default (t ≥ b − x), and P1(P0) be the probability of default (non-

default), which WMLE assumes to be known to the statistician. Prior knowledge of the causal structure

is assumed to allow the statistician to specify f(t|·) up to a parameter vector β, contained in a subset B of

a finite-dimensional Euclidean space. The goal is to estimate β from a sample generated by the following

design: default samples are selected with probability λ1 and non-defaults with probability λ0(= 1 − λ1).

WMLE defines weights as Wj = Pj

λj
for j = 0, 1 and maximizes the following weighted likelihood:

S =
∑
1

W1 · ln f(x, t|D = 1) +
∑
0

W0 · ln f(x|D = 0)

=
∑
1

W1 · ln
[
h(x)f(t)

P1

]
+

∑
0

W0 · ln
[
h(x)[1− F (b− x)]

P0

]
, (1)

subject to

P (D = 1) =
∫ b

a

h(x)F (b− x) dx = P1, (2)

or equivalently

P (D = 0) =
∫ b

a

h(x)[1− F (b− x)] dx = P0, (3)

where
P
1 and

P
0 mean summarizing over the default and non-default samples, respectively.

One can show the consistency of WMLE in the same way as to prove consistency of WMLE in the

qualitative response model (see Amemiya (1985) Section 9.5.2). To derive the asymptotic distribution, it

is convenient to rewrite the constraint in the form of

β = g(α), (4)

where α is a (k − 1) vector and k is the dimension of β.

By Amemiya (1985)’s Theorem 4.1.3, we have

√
N(α̂WMLE − α) → N(0, AV (α̂WMLE)) (5)

AV (α̂WMLE) = (A + B)−1

[
P1

λ1
A +

P0

λ0
B

]
(A + B)−1, (6)
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where

A =
∫ b

a

∫ b−x

0

h(x)
f(t)

∂f(t)
∂α

∂f(t)
∂α′

dt dx (7)

B =
∫ b

a

h(x)
1− F (b− x)

∂(1− F (b− x))
∂α

∂(1− F (b− x))
∂α′

dx. (8)

Therefore, using a Taylor series approximation

β̂WMLE − β ∼= G(α̂WMLE − α), (9)

where G = ∂β
∂α′ , we can derive the asymptotic distribution of WMLE as

√
N(β̂WMLE − β) → N(0, AV (β̂WMLE)) (10)

AV (β̂WMLE) = G · (A + B)−1

[
P1

λ1
A +

P0

λ0
B

]
(A + B)−1 ·G′. (11)

2.2 Comparing WMLE with ESMLE, assuming that P1 (P0) is known

To compare WMLE with ESMLE, we have to make the very restrictive assumption that the probabili-

ties of default and non-default are known, which is associated with WMLE.

Imposing this assumption to the derivation in Amemiya (2001), we have

√
N(β̂ESMLE − β) → N(0, AV (β̂ESMLE)) (12)

AV (β̂ESMLE) = G ·
[

λ1

P1
A +

λ0

P0
B

]−1

·G′. (13)

We can show through simple algebra 1 that

AV (β̂ESMLE) ≤ AV (β̂WMLE). (14)

When α is a scalar, it is also possible to compare the two estimators under their respective optimal (in

terms of asymptotic efficiency) sampling designs, which are

λ∗1(WMLE) =
1

1 +
√

P0 B
P1 A

(15)

λ∗1(ESMLE) = 1{ A
P1

> B
P0
}. (16)

Then, the asymptotic variances under the two sample designs are, respectively:

AV ∗(β̂WMLE) = G · (A + B)−1
[√

P1 A +
√

P0 B
]2

(A + B)−1 ·G′ (17)

AV ∗(β̂ESMLE) = G ·
[
P1

A
· 1{ A

P1
> B

P0
} +

P0

B
· 1{ A

P1
≤ B

P0
}

]
·G′. (18)

1AV (β̂ESMLE) ≤ AV (β̂WMLE) ⇔
�
A + P0 λ1

P1 λ0
B
�−1 ≤

�
P0 λ1
P1 λ0

B
�−1

, which is true since both A and B are non-negative

definite. See Appendix A for details.
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It can be easily shown that under their respective optimal sampling designs, ESMLE dominates WMLE

in terms of asymptotic efficiency.2

3 Matching in Duration Models

As we mentioned above, researchers usually use samples that are not only based on endogenous vari-

ables, but are also matched on one or more exogenous variables. For this purpose, we introduce a new

variable. Assume that matching is based on covariate Z, which is distributed according to density g(z).

Conditional on covariate Z, the duration T is distributed according to the density f(t|z) and the distribu-

tion function F (t|z). We further assume that X and T are independent conditional on Z.3

We assume that the matching sampling scheme is designed as follows: for fixed N1 and N0, we first

randomly sample N1 defaults; then, we compute the empirical distribution of Z among the default samples,

denoted by ĝ1(z). N0 non-defaults are then drawn, such that the empirical distribution of Z among these

non-default samples are the same as ĝ1(z). Let N = N1 + N0 be the total number of observations under

such a matching sampling scheme, λ1 = N1
N and λ0 = 1− λ1 = N0

N , all of which are predetermined by the

statistician.

3.1 Likelihood function

The likelihood of a single observation in the subsample of defaults (ti < b− xi) is given by

f(xi, ti, zi|Di = 1) =
h(xi)f(ti|zi)g(zi)

P (Di = 1)
, (19)

where

P (D = 1) = P (T < b−X) =
∫

Z

∫ b

a

h(x)F (b− x|z)g(z) dx dz. (20)

The likelihood of a single observation in the subsample of non-defaults with attribute z (ti < b−xi, zi =

z) is given by

2If A
P1

> B
P0

, then AV ∗(β̂ESMLE) ≤ AV ∗(β̂WMLE) ⇔ √
P1 A +

√
P0 B ≥ (A + B)

q
P1
A
⇔ A

P1
≥ B

P0
; If A

P1
≤ B

P0
, then

AV ∗(β̂ESMLE) ≤ AV ∗(β̂WMLE) ⇔ √
P1 A +

√
P0 B ≥ (A + B)

q
P0
B
⇔ A

P1
≤ B

P0
.

3Although this assumption is usually made in duration analysis, it does involve a loss of generality. The relaxation of this

assumption is a matter of future research.
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f(xi|z,Di = 0) =
h(xi)[1− F (b− xi|z)]g(z)

P (Di = 0)g(z|Di = 0)

=
h(xi)[1− F (b− xi|z)]

P (Di = 0|z)
, (21)

where

P (D = 0|z) = P (T ≥ b−X|z) =
∫ b

a

h(x)[1− F (b− x|z)] dx. (22)

Let ĝ1(z) = ĝ(z|D = 1) be the empirical conditional distribution of z among the subsample of defaults.

The endogenous sampling process with matching implies that we will sample with probability λ1 from the

stratum of defaults, and with probability [λ0 · ĝ1(z)] from the stratum of non-defaults with attribute z.

Therefore, assuming the parameter of interest, β, only characterizes f , but not h or g, the likelihood for

such a generated sample is:

LM (β; x, t, z,D) =
∏
1

λ1f(xi, ti, zi|Di = 1) ·
∏
0

λ0ĝ1(z)[f(xi|z, Di = 0)], (23)

where
Q
1 and

Q
0 mean taking the product over the default and non-default samples, respectively.

Ignoring the terms that do not depend on β, we have the log likelihood of the sample as follows:

ln LM =
∑
1

ln f(ti|zi)−N1 lnP (D = 1) +
∑
0

ln[1− F (b− xi|zi)]−
∑
0

ln P (D = 0|zi). (24)

3.2 Consistency of MSMLE β̂

1
N

∂ ln LM

∂β
=

1
N

∑
Di

1
f(ti|zi)

∂f(ti|zi)
∂β

− λ1
1

P (D = 1)
∂P (D = 1)

∂β

+
1
N

∑
(1−Di)

1
1− F (b− xi|zi)

∂[1− F (b− xi|zi)]
∂β

− 1
N

∑
(1−Di)

1
P (D = 0|zi)

∂P (D = 0|zi)
∂β

. (25)

The consistency of MSMLE β̂ follows from Theorem 2.2.1 (The Generalized Amemiya conditions) of

Goto (1993) under certain regularity conditions (See Appendix B.). Here, we only verify that 1
N

∂ ln LM

∂β → 0

in probability.
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plim
1
N

∑
Di

1
f(ti|zi)

∂f(ti|zi)
∂β

= λ1E

[
1

f(t|z)
∂f(t|z)

∂β

∣∣∣∣ D = 1
]

= λ1
1

P (D = 1)

∫

Z

∫ b

a

∫ b−x

0

1
f(t|z)

∂f(t|z)
∂β

h(x)f(t|z)g(z) dt dx dz

= λ1
1

P (D = 1)
∂P (D = 1)

∂β
. (26)

plim
1
N

∑
(1−Di)

1
1− F (b− xi|zi)

∂[1− F (b− xi|zi)]
∂β

= λ0 E

[
1

1− F (b− x|z)
∂[1− F (b− x|z)]

∂β

∣∣∣∣ D = 0
]

= λ0

∫

Z

∫ b

a
1

1−F (b−x|z)
∂[1−F (b−x|z)]

∂β h(x)[1− F (b− x|z)] dx

P (D = 0|z)
· g1(z) dz

= λ0

∫

Z

1
P (D = 0|z)

∂P (D = 0|z)
∂β

· g1(z) dz, (27)

where

g1(z) = g(z|D = 1) = plimĝ1(z).4 (28)

plim
1
N

∑
(1−Di)

1
P (D = 0|zi)

∂P (D = 0|zi)
∂β

= λ0

∫

Z

1
P (D = 0|zi)

∂P (D = 0|zi)
∂β

· g1(z) dz. (29)

Thus, the consistency of MSMLE β̂ follows from Equations (26), (27) and (29).

3.3 Asymptotic Variance of MSMLE β̂

We derive the asymptotic variance using the following formula:

AV [
√

N(β̂ − β)]−1 = lim E

[
1
N

∂ ln L

∂β

∂ ln L

∂β′

]
. (30)

Rearranging the terms on the right-hand side of Equation (25) and multiplying them by
√

N , we have

4We implicitly assume that the empirical distribution of Z among the default samples can be consistently estimated, that

is, plim ĝ1(z) = g1(z). This assumption is true only if we have a large enough number of defaults in our constructed sample.
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1√
N

∂ ln LM

∂β

=
1√
N

∑
Di

(
1

f(ti|zi)
∂f(ti|zi)

∂β
− 1

P (D = 1)
∂P (D = 1)

∂β

)

+
1√
N

∑
(1−Di)

(
1

1− F (b− xi|zi)
∂[1− F (b− xi|zi)]

∂β
− 1

P (D = 0|zi)
∂P (D = 0|zi)

∂β

)
.

(31)

Since

E




(
1

f(t|z)
∂f(t|z)

∂β − 1
P (D=1)

∂P (D=1)
∂β

)

×
(

1
f(t|z)

∂f(t|z)
∂β′ − 1

P (D=1)
∂P (D=1)

∂β′

)
∣∣∣∣∣∣
D = 1




=

∫
Z

∫ b

a

∫ b−x

0




(
1

f(t|z)
∂f(t|z)

∂β − 1
P (D=1)

∂P (D=1)
∂β

)

×
(

1
f(t|z)

∂f(t|z)
∂β′ − 1

P (D=1)
∂P (D=1)

∂β′

)

 h(x)f(t|z)g(z) dt dx dz

P (D = 1)

=

∫
Z

∫ b

a

∫ b−x

0
h(x)g(z)

f(t|z)
∂f(t|z)

∂β
∂f(t|z)

∂β′ dt dx dz − 1
P (D=1)

∂P (D=1)
∂β

∂P (D=1)
∂β′

P (D = 1)
, (32)

and

lim E




(
1

1−F (b−x|z)
∂[1−F (b−x|z)]

∂β − 1
P (D=0|z)

∂P (D=0|z)
∂β

)

×
(

1
1−F (b−x|z)

∂[1−F (b−x|z)]
∂β′ − 1

P (D=0|z)
∂P (D=0|z)

∂β′

)
∣∣∣∣∣∣
D = 0




=
∫

Z

∫ b

a




(
1

1−F (b−x|z)
∂[1−F (b−x|z)]

∂β − 1
P (D=0|z)

∂P (D=0|z)
∂β

)

×
(

1
1−F (b−x|z)

∂[1−F (b−x|z)]
∂β′ − 1

P (D=0|z)
∂P (D=0|z)

∂β′

)

 h(x)[1− F (b− x|z)] dx

P (D = 0|z)
· g1(z) dz

=
∫

Z

∫ b

a
h(x)

1−F (b−x|z)
∂[1−F (b−x|z)]

∂β
∂[1−F (b−x|z)]

∂β′ dx− 1
P (D=0|z)

∂P (D=0|z)
∂β

∂P (D=0|z)
∂β′

P (D = 0|z)
· g1(z) dz,

(33)

therefore, the asymptotic variance of MSMLE β̂ is given by

AV (MSMLE)−1 = lim E

[
1
N

∂ ln LM

∂β

∂ ln LM

∂β′

]

= λ1

∫
Z

∫ b

a

∫ b−x

0
h(x)g(z)

f(t|z)
∂f(t|z)

∂β
∂f(t|z)

∂β′ dt dx dz − 1
P (D=1)

∂P (D=1)
∂β

∂P (D=1)
∂β′

P (D = 1)

+ λ0

∫

Z

∫ b

a
h(x)

1−F (b−x|z)
∂[1−F (b−x|z)]

∂β
∂[1−F (b−x|z)]

∂β′ dx− 1
P (D=0|z)

∂P (D=0|z)
∂β

∂P (D=0|z)
∂β′

P (D = 0|z)
· g1(z) dz.

(34)

9



3.4 Estimation of Mixed Sample when g(z) is Unknown

The above discussion is based on the assumption that the marginal distribution g(z) is known to the

statistician. However, in many empirical contexts such prior knowledge is not likely to be available. This

section covers the case when g(z) is estimated from a separate random sample.

Kiefer and Wolfowitz (1956) shows that the empirical distribution is the maximum likelihood estimated

of an unknown distribution function. Therefore, suppose the sample from which g(z) is estimated is of size

K, the log likelihood function of β will be modified as

ln L̃M =
∑
1

ln f(ti|zi)−N1 ln P̂ (D = 1) +
∑
0

ln[1− F (b− xi|zi)]−
∑
0

ln P (D = 0|zi), (35)

where

P̂ (D = 1) =
1
K

K∑

k=1

∫ b

a

h(x)F (b− x|zk) dx. (36)

Note that

1√
N

∂ ln L̃M

∂β

=
1√
N

∂ ln LM

∂β
− λ1

√
N

[
1

P̂ (D = 1)
∂P̂ (D = 1)

∂β
− 1

P (D = 1)
∂P (D = 1)

∂β

]

LD=
1√
N

∂ ln LM

∂β
− λ1

√
N




∂P̂ (D=1)
∂β − ∂P (D=1)

∂β

P (D = 1)
−

∂P (D=1)
∂β (P̂ (D = 1)− P (D = 1))

P (D = 1)2


 ,

where LD= denotes equivalency in the limit distribution.

The consistency follows from Theorem 2.3.1 in Goto (1993) under certain regularity conditions (See

Appendix B). Since this is a two-step estimator, the asymptotic efficiency might be affected by the fact

that g(z) is estimated. In fact, if we define Ω = lim E
[

1
N

∂ ln LM

∂β
∂ ln LM

∂β′

]
; W1(z) =

∫ b

a
h(x)F (b − x|z) dx;

W2(z) =
∫ b

a
h(x)∂F (b−x|z)

∂β dx, the asymptotic variance of β̃ can be defined as

AV
[√

N(β̃ − β)
]

= Ω−1

[
Ω +

N

K

V ar(W2(z))
P (D = 1)2

+
N

K

V ar(W1(z))
P (D = 1)4

∂P (D = 1)
∂β

∂P (D = 1)
∂β′

−2
N

K

1
P (D = 1)3

∂P (D = 1)
∂β

Cov(W1(z), W2(z)′)
]

Ω−1. (37)
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Equation (37) shows that for the two-step estimator β̃ to have the proper asymptotic property, K must

increase to infinity at least as fast as N.

4 Comparison of the Maximum Likelihood Estimators under dif-

ferent Sample Designs

4.1 Relative Asymptotic Efficiency

The question of the relative efficiency of different sample designs is natural to raise in an investigation

such as ours. However, the nonlinear structure precluded much progress in solving this problem. As shown

below, the relative efficiency depends on the choice of λ′s and functional forms of the densities, as well as

prior knowledge of the parameters to be estimated. An explicitly Bayesian approach to the design problem

might be a possible solution. This paper, however, will not undertake this task. Instead, we limit our-

selves to a general discussion of the optimal design problem and illustrate the result with a simple example.

In order to compare the asymptotic efficiency of MSMLE with that of endogenous sampling without

matching, we introduce covariate z into Amemiya (2001)’s endogenous sampling model and derive the log

likelihood and the asymptotic distribution of ESMLE without matching as5 6

ln LE =
∑
1

ln f(ti|zi)−N1 ln P (D = 1) +
∑
0

ln[1− F (b− xi|zi)]−N0 ln P (D = 0) (38)

√
N(β̂ESMLE − β) → N(0, AV (β̂ESMLE)) (39)

AV (ESMLE)−1

=
λ1

P1
·
[∫

Z

∫ b

a

∫ b−x

0

h g

f

∂f

∂β

∂f

∂β′
dt dx dz − 1

P1

∂P1

∂β

∂P1

∂β′

]

+
λ0

P0
·
[∫

Z

∫ b

a

h g

1− F

∂(1− F )
∂β

∂(1− F )
∂β′

dx dz − 1
P0

∂P0

∂β

∂P0

∂β′

]
, (40)

5We use the following simplified notation from now on: P1 = P (D = 1), P0 = P (D = 0), which are defined in equation

(20), (41) respectively. We also suppress the arguments of density and distribution functions.
6Please refer to Amemiya (2001) for derivation.
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where

P0 = P (D = 0) =
∫

Z

∫ b

a

h(x)[1− F (b− x|z)]g(z) dx dz. (41)

Similarly, by introducing covariate z into the derivation of Equation (21) in Amemiya (2001), we have

ln LR =
∑
1

ln f(ti|zi) +
∑
0

ln[1− F (b− xi|zi)] (42)

√
N(β̂RSMLE − β) → N(0, AV (β̂RSMLE)) (43)

AV (RSMLE)−1

=
∫

Z

∫ b

a

∫ b−x

0

h g

f

∂f

∂β

∂f

∂β′
dt dx dz +

∫

Z

∫ b

a

h g

1− F

∂(1− F )
∂β

∂(1− F )
∂β′

dx dz

(44)

Comparing Equations (34), (40) and (44) we see that the relative efficiency depends on the choice of

λ′s and the functional form of the densities, as well as β, the parameters to be estimated. Notice that

when covariate z has no prediction power in terms of default probability, i.e. if P (D = 0|z) = P (D = 0),

matching on z will not add additional efficiency to what an endogenous sample can achieve, i.e. in that

special case AV (MSMLE) = AV (ESMLE). In general though, none of the estimators unambiguously

dominates the others. To illustrate this point, we consider a very simple example:

Example 1. Assume:

h(x) = 1 0 ≤ x ≤ 1 (45)

f(t|z) = eβz · e−eβz·t t ≥ 0 (46)

z =





1 with probability p

0 with probability (1− p)
(47)

Substituting the above assumptions into Equations (34), (40) and (44) yields:
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AV (ESMLE)−1

=
λ1 p

P1
·
[
1− 3e−β + 3e−β−eβ

+ eβ−eβ

+ 2e−eβ
]
− λ1 p2

P 2
1

[
e−β − e−β−eβ − e−eβ

]2

+
λ0 p

P0
·
[
−eβ−eβ − 2e−eβ − 2e−β−eβ

+ 2e−β
]
− λ0 p2

P 2
0

[
e−β − e−β−eβ − e−eβ

]2

=
λ1 p

P1
·
[
1− 3e−β + 3e−β−eβ

+ eβ−eβ

+ 2e−eβ
]

+
λ0 p

P0
·
[
−eβ−eβ − 2e−eβ − 2e−β−eβ

+ 2e−β
]

−
[
λ1 p2

P 2
1

+
λ0 p2

P 2
0

] [
e−β − e−β−eβ − e−eβ

]2

(48)

AV (RSMLE)−1

= p ·
[
1− 3e−β + 3e−β−eβ

+ eβ−eβ

+ 2e−eβ
]

+ p ·
[
−eβ−eβ − 2e−eβ − 2e−β−eβ

+ 2e−β
]

= p ·
[
1− e−β + e−β−eβ

]
(49)

AV (MSMLE)−1

=
λ1 p

P1
·
[
1− 3e−β + 3e−β−eβ

+ eβ−eβ

+ 2e−eβ
]
− λ1 p2

P 2
1

[
e−β − e−β−eβ − e−eβ

]2

+
λ0 p

(
1− e−β + e−β−eβ

)

P1
· −eβ−eβ − 2e−eβ − 2e−β−eβ

+ 2e−β

−e−β−eβ + e−β

−
λ0 p

(
1− e−β + e−β−eβ

)

P1
·
[

e−β−eβ

+ e−eβ − e−β

−e−β−eβ + e−β

]2

(50)

P1 and P0 in the above equations can be calculated as

P1 = p ·
∫ 1

0

∫ 1−x

0

eβ · e−eβ ·t dt dx + (1− p) ·
∫ 1

0

∫ 1−x

0

e−t dt dx

= p
(
1− e−β + e−β−eβ

)
+ (1− p) · e−1 (51)

P0 = p
(
e−β − e−β−eβ

)
+ (1− p) · (1− e−1). (52)

Table 1 illustrates the relative efficiency of the three classes of estimators under different assumptions

of the true values of β and p. The examples are listed in ascendant order of the true probability of default

P (D = 1), which is a function of β and p. For a sample of size N, the asymptotic variance for any estimator

13



Table 1: Inverse of Asymptotic Variance (scaled by 1
N )

Inverse of Asymptotic Variance

β p P (D = 1) RSMLE ESMLE MSMLE

λ1 = 0 λ1 = 1 λ1 = 0.3 λ1 = 0.5 λ1 = 0.7

-3 0.8 0.0932 0.0196 0.0003 0.1607* 0.0482 0.0804 0.1125

-2 0.7 0.1557 0.0453 0.0019 0.1888* 0.0570 0.0946 0.1323

0.5 0.4 0.4248 0.2040* 0.1506 0.1399 0.1088 0.1177 0.1266

1 0.3 0.4544 0.1969* 0.1834 0.1516 0.1793 0.1714 0.1635

2.3 0.9 0.8466 0.8098 0.8273 0.7326 0.8863* 0.8424 0.7985

2.7 0.95 0.9046 0.8862 0.8903 0.8335 0.9358* 0.9066 0.8773

β̂ can be calculated as 1
N divided by the corresponding value displayed in the table. As can be seen, none

of the estimators unambiguously dominates the others. For each pair of β and p, we observe a rather large

variation of the asymptotic variances of different estimators, which indicates that the sample design plays

an important role in duration analysis. Despite the inconclusiveness of relative efficiency, the table seems

to reveal a very intuitive pattern: when the population is extremely unbalanced in terms of the ratio of de-

faults and non-defaults; that is, when P (D = 1) takes extremely small or large values, over-sampling from

the less frequent subsample would usually result in a significant efficiency gain, while random sampling is

preferable when the population is relatively balanced.

This phenomenon is further illustrated in Figure 1, which was obtained by fixing p = 0.9 and varying β

from -10 to 10. The horizontal axis displays the variation of P (D = 1) as a result of changes in the value

of β. Panel (a) shows inverted asymptotic variances (scaled by 1
N ) for all six estimators, while Panel (b)

displays those of the most efficient estimators within each class. As can be seen, the curves for endogenous

sampling, with or without matching, reach their local maxima at the two tails of P (D = 1). The same

pattern persists when we change the value of p, except that as p becomes smaller, the middle range in which

RSMLE dominates ESMLE and MSMLE shrinks dramatically, and the range on the right tail, in which

MSMLE outperforms ESMLE, increases considerably. Both Table 1 and Figure 1 suggest a general guide-

line for sampling in empirical duration analysis : it might be optimal to consider endogenous sampling, with

or without matching, when the population is extremely unbalanced, whereas the random sampling design is

usually a better choice when no significant difference in the observed frequency of defaults and non-defaults.

The above discussion, based on Example 1, only applies to the case when β is a scalar parameter. It is
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noted in Amemiya (2001) that the optimal choice of λ1 in the endogenous sampling design is either 1 or

0. However, this conclusion is true only for the case of scalar parameter and cannot be generalized to the

vector parameters case. One of the possible criteria in terms of relative efficiency in the vector case can be

defined over a linear combination of the parameter vector, that is

min
λ1

AV [
√

N(c′(β̂ − β))], (53)

where c′c = 1. Notice that the asymptotic variances of both
√

N(β̂ESMLE − β) and
√

N(β̂MSMLE − β)

take the form of [λ1A+(1−λ1)B]−1, for appropriate A’s and B’s (see Equations (40) and (34)). Therefore,

we can apply the following discussion to both sample designs:

AV [
√

N(c′(β̂ − β))] = c′ · [λ1A + (1− λ1)B]−1 · c
= c′B− 1

2

[
I + λ1B

− 1
2 (A−B)B− 1

2

]−1

B− 1
2 c

= g′ [I + λ1D]−1
g

=
K∑

k=1

g2
k

1 + λ1dk
, (54)

where K is the dimension of the vector β; {dk}K
k=1 are the eigenvalues of the matrix

[
B− 1

2 (A−B)B− 1
2

]
;

D = diag[d1, . . . , dk] = H ′
[
B− 1

2 (A−B)B− 1
2

]
H; g = H ′B− 1

2 c.

Equation (54) shows that optimal choice of λ1 depends on the characteristics of the variance-covariance

matrix, which, in turn, depends on the distributions and the true parameters. We can easily offer examples

where the optimal λ1 is an interior value.

4.2 Asymptotic Bias

Amemiya (2001) demonstrates that RSMLE is inconsistent under the endogenous sampling scheme

without matching. This statement is also valid for the case of the mixed sampling scheme. When the data

is collected through a mixed sampling scheme, the first order condition of ln LR does not have zero mean.

Instead,

EM

[
1
N

∂ ln LR

∂β

]
= λ1

1
P (D = 1)

∂P (D = 1)
∂β

+ λ0

∫

Z

1
P (D = 0|z)

∂P (D = 0|z)
∂β

· g1(z) dz, (55)

which is not zero, in general.7

7EM means that the expectation is taken with respect to the true likelihood under mixed sampling.
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Not surprisingly, ESMLE is also inconsistent under the mixed sampling scheme. Its inconsistency can

be illustrated by investigating the expectation of the first order condition of lnLE with respect to the true

likelihood under the mixed sampling:

EM

[
1
N

∂ ln LE

∂β

]
= λ0

∫

Z

1
P (D = 0|z)

∂P (D = 0|z)
∂β

· g1(z) dz,

− λ0
1

P (D = 0)
∂P (D = 0)

∂β
, (56)

which, in general, is not zero either.

Since some of the examples cited at the beginning of the paper ignored the problem of mixed sampling

scheme and estimated the model either by conventional means (as if the data is from a random sample),

or by modified method for qualitative response model (as if the data is from a endogenous sample without

matching), it is interesting to study the magnitude of the bias when using the wrong estimators. For this

purpose, we again consider the simple exponential example given in the above section.

Tables 2 and 3 present the results of asymptotic bias when the data obtained by mixed sampling is

estimated as if it were random or endogenous sampling without matching, using the maximum likelihood

estimator. Let γ be the probability limit of the biased estimator, and β be the probability limit of MSMLE

(which is equal to the true value of the parameter, denoted as β∗ ). For any given case, the value in each

cell is calculated as γ− β . Given the true value β∗, γ is defined by solving E∗
[

1
N

∂ ln L(γ)
∂γ

]
= 0. When the

mixed sample is estimated as if it were random, we obtain an explicit function of γ as

γ = β∗ + ln

[
λ(1− eeβ∗

)(1− eeβ∗
+ eeβ∗+β∗)

(1 + λ)(1− 2eeβ∗ + e2eβ∗ ) + (1− λ)eeβ∗+2β∗ + eβ∗ − e2eβ∗+2β∗

]
. (57)

In the case when the mixed sample is estimated as if it were endogenous without matching, we have to re-

sort to numerical approximation. The direction of the bias is not certain. However, based on the examples

displayed in the table, the bias is generally upward when defaults are rarely observed in the population

and downward when the population is relatively balanced or concentrated over the non-defaults. Such bias

exists when the mixing nature of the sample is either ignored or partially treated.

4.3 Finite Sample Properties

We have explored the asymptotic properties of the three estimators in the previous two sections. In this

section, we will focus on how sample size affects the performance of different estimators using the Monte
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Table 2: Asymptotic Bias for Mixed Sample Estimated as a Random Sample

Asymptotic Bias

β p P (D = 1) λ1 = 0.3 λ1 = 0.5 λ1 = 0.7

-3 0.8 0.0932 2.6029 3.1906 3.6105

-2 0.7 0.1557 1.6173 2.2051 2.6249

0.5 0.4 0.4248 -0.6065 -0.0238 0.3902

1 0.3 0.4544 -0.9011 -0.3257 0.0798

2.3 0.9 0.8466 -1.1697 -0.6356 -0.2754

2.7 0.95 0.9046 -1.1821 -0.6565 -0.3049

Table 3: Asymptotic Bias for Mixed Sample Estimated as a Endogenous Sample Without Matching

Asymptotic Bias

β p P (D = 1) λ1 = 0.3 λ1 = 0.5 λ1 = 0.7

-3 0.8 0.0932 0.2886 0.1081 0.0442

-2 0.7 0.1557 0.7473 0.1997 0.0774

0.5 0.4 0.4248 -0.3702 -0.2600 -0.1603

1 0.3 0.4544 -0.6614 -0.4890 -0.3182

2.3 0.9 0.8466 -0.2793 -0.2138 -0.1373

2.7 0.95 0.9046 -0.2214 -0.6139 -0.5374
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Carlo method.

The data generating process (DGP) is as follows: for Random Sampling MLE, we assume that the data

is generated randomly as in Example 1; for Endogenous Sampling MLE, we specify a probability λ1, and

sample defaults and non-defaults according to this pre-specified probability; for Mixed Sampling MLE,

we first specify the number of defaults N1 and randomly sample N1 default cases, then we calculate the

empirical distribution of the matched variable z among the defaults; Using this empirical distribution we

finally sample non-defaults. The DGP is repeated for different sample sizes. The likelihood functions and

the first order conditions of each estimator are presented in Appendix C.

To illustrate the finite sample properties of the three estimators, we consider both a case of an ex-

tremely unbalanced population in terms of the frequency of defaults and non-defaults and a case where

the population distribution is relatively balanced.

Case 1. First of all, we consider a case in which the data set is extremely unbalanced. In particular, we

assume β∗ = −3 and p = 0.8 in Example 1, which implies that the probability of default in the population

P (D = 1) is as low as 0.09. When applying endogenous sampling and mixed sampling, we assume the

probability of sample default case λ1 to be 0.7.

Figure 2 shows the three estimators with a sample size varying from 50 to 1500. For each fixed sample

size, we simulate 100 times and reported the mean of the estimators. We experimented with a larger

number of replications and the shape of the convergence is the same. As can be seen, RSMLE converges

much slowly when the sample size is small, while both ESMLE and MSMLE are very robust to changes in

sample size. Figure 4 reports the empirical variance of the estimators based on the Monte Carlo simulations

{V (βk)}; the mean of the estimated asymptotic variances {mean(AV (βk))}; and the asymptotic variances

{AV (βk)} for the three different estimators {k = RSMLE, ESMLE, MSMLE}. The same pattern ap-

pears: when the sample size is small, RSMLE’s estimated variance is much larger than its asymptotic

variance. In contrast, both ESMLE and MSMLE’s finite sample variances are good proximates of their

asymptotic variances even with a very small sample size. Notice that to cover the full range of estimated

asymptotic variance for RSMLE, panel (a) is drawn on a much larger scale than Panels (b) and (c). If

we used a much finer scale as panels (b) and (c), we would also observe a large gap between the average

empirical variance for RSMLE and its asymptotic variance for small sample sizes. The gap disappears as

the sample size grows. For both ESMLE and MSMLE, the empirical variances approximate the asymptotic

variances very well, even for small sample sizes.
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Case 2. Next, we consider the case in which the default probability in the population is relatively balanced.

In particular, we simulate the case of β∗ = 1 and p = 0.3, which implies that the probability of default

in the population P (D = 1) is about 0.45. Again, we assume that λ1 = 0.7 when applying endogenous

sampling and mixed sampling.

Figure 3 reports the mean of estimated βRSMLE , βESMLE and βMSMLE from 100 simulations. Figure

5 presents the empirical variance of the estimators based on the Monte Carlo simulations {V (βk)}; the

mean of the estimated asymptotic variances {mean(AV (βk))}; and the asymptotic variances {AV (βk)} for

the three different estimators {k = RSMLE, ESMLE, MSMLE}. The two figures show that all three

estimators are quite robust to the variation of sample size, although RSMLE slightly outperforms MSMLE

and ESMLE in terms of small sample properties when the population is relatively balanced.

However, the above Monte Carlo study is based on an extremely simple example with only one co-

efficient to estimate. For a model with more coefficients to estimate, it is reasonable to believe that a

non-random sampling scheme has an advantage over random sampling given that most empirical studies

deal with data set that are extremely unbalanced.

In this Monte Carlo study, we fix λ1 at 0.7. Using the same DGP, Appendix D illustrates the effect of

varying λ1 on the performance of ESMLE and MSMLE.

5 Conclusion

Due to the low frequency of observing right-censored (default) sample, many empirical duration analy-

ses apply a mixed sampling procedure to collect data, that is, to over sample from the right-censored

(default) subset and match on one or more exogenous variables when sampling from the non-right-censored

(non-default) subset. However, the common practice of using estimation procedures intended for random

sampling or for the qualitative response model under choice-based sampling will yield either inconsistent

or inefficient estimators. This paper has established the fact that the parameters of a duration model can

be estimated consistently under a mixed sampling procedure using MSMLE (Mixed Sampling Maximum

Likelihood Estimator) and derived its asymptotic properties. In addition, this paper studies the relative

efficiency of RSMLE, ESMLE and MSMLE through a simple example, which suggests a general guideline

for sampling design in duration analyses: to over sample default cases will usually gain efficiency when such

cases are rarely observed; on the other hand, random sampling is generally better when the population

is relatively balanced in terms of the frequency of default and non-default cases. In the case of vector
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Figure 5: Monte Carlo variance and Asymptotic Variance [Balanced population]
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parameters, the optimal choice of sampling proportions can have an interior solution. Since many empir-

ical studies cited in the references tend to ignore the mixed sampling property, this paper also evaluates

the asymptotic bias when the model is estimated as if it were a random sample or an endogenous sample

without matching. We observe large bias in certain examples, which indicates the importance of taking

the sample designs into consideration when estimating duration models.

Despite the wide usage of mixed sampling in duration studies, we are not aware of any rigorous theoret-

ical treatment of the problem yet. It is hoped that the present paper has bridged this gap in the literature

and will improve the quality of empirical studies using duration models.

This paper, however, has several restrictive assumptions, and therefore, raises some future research

topics. For example, we are not yet in a position to treat cases where the matching procedure is based on

more than one exogenous variable, although our conclusion can be directly applied to the case in which

the matching procedure is based on linear combinations or other functions of multiple exogenous variables.

In addition, we completely ignore the problem of heterogeneity. In future research, we will relax these

restrictions and generalize the results to a more realistic level.

24



Appendices

A Proof of Equation 14

We copy Equations (11) and (13) here for convenience:

AV (β̂WMLE) = G · (A + B)−1

[
P1

λ1
A +

P0

λ0
B

]
(A + B)−1 ·G′ (A-1)

AV (β̂ESMLE) = G ·
[

λ1

P1
A +

λ0

P0
B

]−1

·G′ (A-2)

To show AV (β̂ESMLE) ≤ AV (β̂WMLE), is equivalent to showing:

λ1

P1
A +

λ0

P0
B ≥ (A + B)

[
P1

λ1
A +

P0

λ0
B

]−1

(A + B), (A-3)

Let h = λ1 P0
λ0 P1

, we can rewrite the above inequality as

A +
1
h

B ≥ (A + B) [A + hB]−1 (A + B)

= A + (2− h)B + (1− h)2B [A + hB]−1
B. (A-4)

Rearranging the above inequality yields

1
h

B ≥ B [A + hB]−1
B

⇔ (hB)−1 ≥ [A + hB]−1
. (A-5)

Equation (14) follows from the fact that both A and B are non-negative definite.

B Consistency of MSMLE

The consistency of MSMLE when g(z) is known and unknown follows from the two theorems in Goto (1993).

Theorem 2.2.1 (The Generalized Amemiya Conditions). The MLE of γ is consistent if the density f(x|γ)

of i.i.d random variables {xi} satisfies the following four assumptions:

Assumption 1 (Parameter space): The closure Γ of the parameter space Γ is a compact metric space.

Assumption 2 (Continuity): f(x|γ) is a measurable function of x in a Euclidean space for all γ ∈ Γ and

continuous in γ for almost all x.

Assumption 3 (Identifiability): If γ 6= γ0 (the true value), then there exists some set A such that
∫

A
f(x|γ) dx 6= ∫

A
f(x|γ0) dx.

Assumption4 (Integrability): E supγ∈Γ | ln f(x|γ)| < ∞, where the expectation is taken under the true

value γ0.
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Theorem 2.3.1 The MLE of γ is consistent if the density f(x|γ) of i.i.d random variables {xi} satisfies

the following four assumptions:

Assumption 1 (Parameter space): The parameter space is Γ = Θ × M (i.e., the product of a subset Θ

of RK and a subset M of HS , the product space of S identical H’s, where H denotes the space

of uniformly-bounded nondecreasing measurable functions.) with the metric defined as d(γ1, γ2) =
∑K

i=1

∣∣θi
1 − θi

2

∣∣ +
∑S

i−1

∫
Z

∣∣Hi
1(z)−Hi

2(z)
∣∣ dz.

Assumption 2 (Continuity): f(x|γ) is a measurable function of x in a Euclidean space for all γ ∈ Γ and

continuous in γ for almost all x, where Γ = Θ×M is the completion of Γ = Θ×M . In addition, if

Θ is not bounded, lim|θ|→∞ f(x|θ, H) = 0 for almost all x’s and all H’s.

Assumption 3 (Identifiability): If γ 6= γ0 (the true value), then there exists some set A, such that
∫

A
f(x|γ) dx 6= ∫

A
f(x|γ0) dx.

Assumption4 (Integrability): For the true value γ0, E | ln f(x|γ0)| < ∞. For any γ ∈ Γ, there exist ρ > 0,

such that E
[
supd(γ′,γ)≤ρ ln f(x|γ′)

]+

< ∞. In addition, if Θ is not bounded, there exists ρ > 0,

such that E
[
supd(γ′,0)≤ρ ln f(x|γ′)

]+

< ∞, where all the expectations above are taken under the

true value γ0.

C Likelihood functions for the Monte Carlo Study

1. RSMLE

Log Likelihood Function

l(β; D, X, T, Z, p) =
∑

i

[
D(βz − eβzt)− (1−D)eβz(1− x))

]
+ constant (C-1)

First Order Condition ∑

i

[
D(z − eβztz)− (1−D)zeβz(1− x)

]
= 0 (C-2)

2. ESMLE

Log Likelihood Function

l(β; D, X, T, Z, p) =
∑

i

[
D(βz − eβzt− ln P1)− (1−D)(eβz(1− x) + lnP0)

]
+ constant (C-3)
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First Order Condition

∑

i

[
D(z − eβztz)− (1−D)zeβz(1− x)

]−
(

N1

P1
− N0

P0

)
∂P1

∂β
= 0 (C-4)

3. MSMLE

Log Likelihood Function

l(β;D,X, T, Z, p) =
∑

i

[
D(βz − eβzt− ln P1) + (1−D)(βz − eβz(1− x)− ln(1− e−eβz

))
]
+constant

(C-5)

First Order Condition

∑

i

[
z − eβzz

(
Dt + (1−D)

(
1− x +

e−eβz

1− e−eβz

))]
− N1

P1

∂P1

∂β
= 0 (C-6)

D Effects of varying λ1 on ESMLE and MSMLE

Case D-1. Unbalance Population: β = −3, p = 0.8, P (D = 1) = 0.09.

Case D-2. Balance Population: β = 1, p = 0.3, P (D = 1) = 0.45.

In both of the cases, we fix the sample size at 500 and estimate βESMLE and βMSMLE from 100 sim-

ulations. Figures D-1 and D-2 report the mean of estimated βESMLE and βMSMLE as λ1 varies, for the

unbalanced and balanced cases respectively. Figures D-3 and D-4 present the empirical variance of the

estimators based on the Monte Carlo simulations {V (βk)} and the asymptotic variances {AV (βk)} for the

two estimators {k = ESMLE, MSMLE}. The values of βRSMLE and AV (βRSMLE) are circled on the

vertical axes for comparison. Figures D-1 and D-3 show that when P (D = 1) is extremely small, βESMLE

and βMSMLE consistently outperform βRSMLE as long as λ1 > P (D = 1). Figure D-2 and D-4 shows that

the opposite is true when the population is relatively balanced.

27



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−3.25

−3.2

−3.15

−3.1

−3.05

−3

−2.95

ESMLE & MSMLE estimates with varying λ
1
 ( # replication = 100 ;  β*= −3 )

λ
1

β
ESMLE

β
MSMLE

β*

β
RSMLE

Figure D-1: βESMLE and βMSMLE with varying λ1 [Unbalanced population]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

ESMLE & MSMLE estimates with varying λ
1
 ( # replication = 100 ;  β*= 1 )

λ
1

β
ESMLE

β
MSMLE

β*

β
RSMLE

Figure D-2: βESMLE and βMSMLE with varying λ1 [Balanced population]
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Figure D-3: Monte Carlo variance and asymptotic variance [Unbalanced population]
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Figure D-4: Monte Carlo variance and asymptotic variance [Balanced population]
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