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We propose a test for the slope of a trend function when it is a priori unknown
whether the series is trend-stationary or contains an autoregressive unit root. Let
a be the sum of the autoregressive coefficients in the autoregressive
representation of the series. The procedure is based on a Feasible Quasi
Generalized Least Squares method from an AR(1) specification with parameter « .
The estimate of « is the OLS estimate obtained from an autoregression applied
to detrended data and is truncated to take a value 1 whenever the estimate is in a

T ° neighborhood of 1. This makes the estimate "super-efficient" when « =1 and
implies that inference on the slope parameter can be performed using the standard
Normal distribution whether « =1 or |« |[<1. Theoretical arguments and simulation
evidence show that 8=1/2 is the appropriate choice. Simulations show that our
procedure has good size properties and greater power than the tests proposed by
Vogelsang (1998). Applications to inference about the growth rates of GNP for

many countries show the usefulness of the method.

Keywords:. Linear Trend, Unit Root, Median-Unbiased Estimates, GLS Procedure,
Super Efficient Estimates
JEL classification: C22

*Department of Economics, Boston University (E-mail: perron@bu.edu)
**Institute for Monetary and Economic Studies, Bank of Japan (E-mail:
tomoyoshi.yabu@boj.or.jp)

This paper is drawn from chapter 1 of Tomoyoshi Yabu’s Ph.D. Dissertation at Boston
University (See Yabu (2005)). We wish to thank Eiji Kurozumi for useful comments. The
views expressed in this paper are those of the authors and do not necessarily reflect the official
views of the Bank of Japan or IMES.


mailto:akira.ootani@boj.or.jp

1 Introduction

Many time series are well captured by deterministic linear trend. With a logarithmic
transformation, the slope of the trend function represents the average growth rate of
the time series, a quantity of substantial interest. To be more precise, consider the

following model for a time series process {y;}:

Yy = b+ Pt 4+ uy (1)

where u; is the deviations of the series from the trend. The parameter (3 is then of
primary interest. Hypothesis testing on the slope of the trend function is important
for many reasons. First, assessing whether a trend is present is of direct interest. One
application, among many, pertains to global warming. Second, Perron (1988) showed
that the correct specification of the trend function is important in the context of
testing for a unit root in the noise component u;. He shows that unit root tests that
omit a trend when one is present leads to an inconsistent test. On the other hand,
including one when not needed leads to a substantial loss of power (e.g., DeJong et al.,
1992). Third, it is often of considerable interest to form confidence intervals on the
rate of growth of series such as real GNP or other index of real aggregate production.
For example, this allows cross-country comparisons or sub-period comparisons to
determine if structural changes are present.

There is a large literature on issues pertaining to inference about the slope of
a linear trend function, most of it related to the case where the noise component
is stationary, i.e. integrated of order zero, I(0). A classic result due to Grenander
and Rosenblatt (1957) states that the estimate of § obtained from a simple least-
squares regression of the form (1) is asymptotically as efficient as that obtained from
a Generalized Least Squares (GLS) regression when the process for u; is correctly

specified. However, it is now recognized that many economic time series of interest



are potentially characterized as having a noise component u; with an autoregressive
root that is unity, i.e. integrated of order one, I(1) (e.g. Nelson and Plosser, 1982),
or a root that is close to one. In the former case, the least square estimate of (3
obtained from (1) is no longer asymptotically efficient, but the sample mean of the
first-differenced series is. In the case of a root close to one, the standard Grenander
and Rosenblatt (1957) result still holds but the limiting Normal distribution is a poor
approximation in sample sizes of interest. In most practical applications, the noise
component is either 7(0) or I(1) and in general no a priori knowledge about which
holds is available. The limiting distribution of test statistics depends on the I(0)
or /(1) dichotomy so that methods of inference that are robust to both possibilities
are needed. Consider the standard t-statistic based on the OLS regression. The t-
statistic for testing [ converges in distribution to a N(0,1) random variable when wu;
is 1(0). On the other hand, as shown by Phillips and Durlauf (1988), the t-statistic
normalized by 7 1/2, has a non-degenerate non-Normal limiting distribution when the
errors are I(1). This dichotomy is one of the major source of problems that makes
inference about the slope of the trend function a difficult issue.

Several papers have tackled the issue of constructing tests and confidence intervals
about the parameter § when it is not known a priori whether the noise component
ug is I(1) or not. Sun and Pantula (1999) proposed a pre-test method which first
applies a test of the unit root hypothesis and then chooses the critical value to be
used for the t-statistic according to the outcome of the test. Using this method,
however, the probability of using the critical values from the I(0) case does not
converges to zero when the errors are I(1), and the simulations reported accordingly
show substantial size distortions. Canjels and Watson (1997) consider various Feasible
GLS methods. Their analysis is, however, restricted to the cases where u; is either

I(1) or the autoregressive root is local to one (i.e., uy = aru; 1 +e; with ar = 1+¢/T



and e; being I(0)). Hence, they do not allow I(0) processes for the noise. Also, even
with I(1) or near I(1) processes, their method yields confidence intervals that are
substantially conservative with common sample sizes. Roy et al. (2004) consider a
test based on a one-step Gauss Newton regression that uses a truncated weighted
symmetric least-squares estimate of the autoregressive parameter (as suggested by
Roy and Fuller, 2001). The limit distribution of their test is not the same in the I(1)
and I(0) cases, but their simulations show that the size is similar in finite samples.
Vogelsang (1998) is the only one, to our knowledge, who proposes a test valid with
either (1) or I(0) errors (see section 2.4) but its power is very low in the I(1) case. He
then advocates the use of an additional statistic which have complementary properties
with the usual drawback induced by the use of multiple tests.

We propose a new robust test statistic that is valid with either 7(0) or I(1) noise
in the sense that the limit distribution is the same in both cases. It applies a Feasible
GLS procedure with an estimate of the sum of the autoregressive coefficients that
is truncated to take a value of 1 when the usual estimate is in a neighborhood of
1. Hence, it is super-efficient when the true value is 1. As a result, the limiting
distribution of our statistic does not depend on whether the noise is I(0) or I(1) and
is the usual standard Normal. Theoretical arguments are provided to show that the
size of the neighborhood where truncation applies should be of order T%/2. Also, to
improve the finite sample performance, we advocate the use of a median unbiased
estimate of the sum of the autoregressive coefficients. The resulting statistic is easy
to implement, its size is close to the nominal level in finite samples and its power
exceeds that of previously suggested procedures.

The outline of the paper is as follows. In section 2, we analyze the simple AR(1)
case and lay out the basic framework, the test, its large sample properties and sim-

ulations about its finite sample size and power. In section 3, we consider extensions



to a general class of processes for u;. Section 4 considers the usefulness of our test in
the context of the proper specification of the trend component when conducting unit
root tests. Section 5 contains applications of our procedure to the data analyzed by
Vogelsang (1998) and Canjels and Watson (1997). Section 6 contains brief concluding

comment and an appendix some technical derivations.

2 The AR(1) Case

We begin by considering the leading case with AR(1) errors so that the univariate

time series {y;;t = 1,..., T}, is generated by
Y=p+ Ot +uw;  w=oau+e (2)

where e, ~ i.i.d.(0,0?) and E(e}) < oo. For simplicity we let ug be some finite
constant. Here —1 < o < 1 so that both stationary and integrated errors are allowed.
The analysis extends easily to more general trend functions of the form Y ., 3,t" +
>y 2o bi(t — T j)"1(t > T ), where 1(-) is the indicator function. If m # 0, m
breaks are present occuring at dates Tp; (j = 1,...,m). When the break dates are
known, all our main theoretical results remain valid, though some equations may have
a different form. For simplicity of exposition, we consider throughout the simpler first-
order linear trend, which is the leading case of interest in practice. The GLS estimator

considered is the one that applies Ordinary Least Squares (OLS) to the regression
ye— oy =1 —a)u+plt —alt —1)] +e (3)

for t =2,..., T, together with y; = p+ 8 4 u;. Consider the infeasible GLS estimate
of 3 that assumes a known value of . It is well known that the ¢-statistic for testing
the null hypothesis that 5 = 3, tg, is then asymptotically distributed as a N(0, 1)

random variable for any values of « in the permissible range.



Canjels and Watson (1997) considers the case where the initial value uy has a
variance that can depend on 7. Two methods are advocated. First, the estimator
described above, which is the GLS estimator assuming uy = 0 and works best when
the variance of u is small. The second is the Prais-Winsten (1954) estimator with the
first observation specified by (1—a?)/2y; = (1—a?)2u+(1—a?)264(1—a?)/?u;.
This estimator is superior when the variance of ug is not small. We shall not be
concerned about the effect of the initial condition in this paper and, hence, we have
assumed a fixed value for simplicity and will use the specification defined after (3).

Nevertheless, all our results remain valid using one or the other GLS estimate.
2.1 The Feasible GLS estimate

Consider the Cochrane-Orcutt (1949) Feasible GLS (FGLS) estimate of 3 that uses
the estimate & = i, sty 1/ 3, 4> ;where {a;} are the OLS residuals from a
regression of y; on {1,t}. When |a| < 1, TY?(& — a) —? N(0,1 — o?) and from the
Grenander-Rosenblatt (1957) result, the OLS and FGLS estimates of 3 are asymp-
totically equivalent and the ¢-statistic from the FGLS procedure, denoted tg , still has

a N(0,1) limit distribution. Things are different when o = 1. From standard results,

T(a—1) ;»/0 W*(r)dW(r)//O W*(r)2dr =k (4)

with W*(r), 0 < r < 1, the residual process from a continuous time regression of
a unit Wiener process W (r) on {1,r} and where = denotes weak convergence in
distribution under the Skorohod topology. It is shown in the appendix that, provided

T(& — 1) = Op(1), the t-statistic from the Feasible GLS procedure is such that

T T T
th = [T e—T(a— 1T wy] = T(a— 1T te (5)
t=2 t=2

t=2

~T(a— DT Y tu ]|/ [02(1 — T(a@ — 1) + Ta — 1)2/3)] /% + 0,(1)
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Given (4), T2 ey = oW (1), T2 Juy =0 fol W (r)dr, T2 3]ty =
o fol rW (r)dr and T-3/2 31 te, = afol rdW (r), the limit can be expressed as

W(1) — /ifol W (r)dr — /i[fol rdW (r) — lifol rW (r)dr]
(1 -k +rK2/3)1/2

F
lg =

(6)

which is, indeed, different from a Normal distribution. Now suppose that x, the limit
of T(& — 1), is zero. Then t§ = W(1) =* N(0,1), we would recover in the I(1) case
the same limit distribution as in the I(0) case and no discontinuity would be present.
Our main idea exploits this feature. The proposed estimate of « is a super-efficient

estimate when a = 1, defined by

. a if |a—1| >dT=°
g = (7)

1 if |a—1] <dT?
for some § € (0,1) and d > 0. Hence, when & is in a T~% neighborhood of 1 it is
assigned a value of 1. When the GLS procedure is applied with &g, we denote the
resulting t-statistic by tg $. The following Theorem, proved in the appendix, shows

that this indeed changes nothing in the stationary case and deliver a t-statistic with

a Normal limit distribution when o = 1.

Theorem 1 a) TY?*(dg — a) —¢ N(0,1 — a?) when |a| < 1; and b) T(&s — 1) —, 0

when o = 1. Hence t§ —* N(0,1) for both |o] <1 and oo =1.

Constructing the GLS regression using the truncated estimate effectively bridges

the gap between the 1(0) and I(1) cases, and the Normal limit distribution applies.
2.2 The case with o local to unity

The result obtained in Theorem 1 is pointwise in o with 0 < a < 1 and may not hold
uniformly, in particular in a local neighborhood of 1. Hence, it is of interest to see
what happens when the true value of « is close to but not equal to one. Adopting the

standard local to unity approach, we have the following result proved in the Appendix.
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Theorem 2 Suppose the data are generated by (2) with o = ap = 1+ ¢/T for some

¢ <0, then T(ég — 1) —, 0 and tf —* N(0, (exp(2c) — 1)/2c).

The results are fairly intuitive. Since the true value of « is in a 7! neighborhood
of 1, and &g truncates values of & in a T—° neighborhood of 1 for some 0 < § < 1
(i.e., a larger neighborhood), in large enough samples &g = 1. Then, the estimate of
[ is the first-difference estimator, B rp=T7"1 Z;‘rzl Ay, and the t-statistic satisfies:
Bep—0 TS0 Au TV up — T2y,

CstdBer) st awr T s

since T~%up = 0J.(1), T-?uy = 0,(1), and T~ 3.1 Au? —, . Here J.(1) =

Je(1)

trp

[ exp(e(1 — s))dW (s) ~ N(0, (exp(2c) — 1)/2¢).

Note that when ¢ = 0, we recover the result of Theorem 1 for the I(1) case.
However, when ¢ < 0, the variance of the limiting distribution is different from 1. In
fact, the variance is lower than 1, so that, without modifications, a conservative test
may be expected for values of « close to 1, relative to the sample size. Also, one can
note that the limit of the variance as ¢ — —oo is 0, not 1, and we do not recover
the same result that applies to the I(0) case. As noted by Phillips and Lee (1996),
the local to unity asymptotic framework with ¢ — —oo involves a doubly infinite
triangular array such that the limit of the statistic depends on the relative approach
to infinity of ¢ and T. The next Theorem shows that, indeed, t5° —¢ N(0,1) as
¢ — —oo. What is especially interesting is that to obtain this result, a condition on
0 needs to be imposed. It will turn out that this condition is very useful to guide us
to a value that should provide the least size distortions when « is in a neighborhood

of 1. The following result is proved in the appendix.

Theorem 3 Let the data be generated by (2) with « = 1+ ¢/T, and &g constructed
with & > 1/2. Let ¢ = co\/T with ¢y < 0, then: 1) TY?(&s — 1) = co + 0,(1), where
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the 0,(1) term does not depend on co; 2) t5° —% N(0,1) as co — —o0 and T — oo,

This result is important for the following reasons. In order to bridge the gap
between the I(0) and I(1) cases and ensure that for values of the autoregressive
parameter local to one the test tgs has the least possible size distortions, we need
6 > 1/2. This permits the limit N (0, 1) distribution to apply as ¢ — —oo. Otherwise,
from Theorem 2, a conservative test is to be expected. This in fact restricts the
neighborhood where truncation applies. On the other hand, increasing ¢ beyond 1/2
would imply that in moderate samples the truncation applies less and less and that
&g would basically be equivalent to the OLS estimate &. These considerations suggest
that 6 = 1/2 should be the preferred choice. Indeed, simulations reported below will

show that this value leads to a procedure which works best in small samples.
2.3 Useful Modifications for Improved Finite Sample Properties

In finite samples, it is well known that the OLS estimate is biased downward, espe-
cially when the data are linearly detrended. A solution is to replace the OLS estimate
by one with less bias. We consider two such modifications: 1) the median unbiased
estimate as described by Andrews (1993), 2) a modified version of the weighted sym-
metric least-squares estimate as described by Roy and Fuller (2001).

When using the median unbiased estimate, we replace the OLS estimate & by a
value that would produce & as the median of the distribution assuming Normal errors.
The specific correction depends on the nature of the deterministic components and
Andrews (1993) provide tabulated values for the linear trend case. More precisely the
estimate is defined as follows. Let m(«) be the median function of &, then é, = 1 if

A

& > m(l), ay = m &) if m(=1) < & <m(1), and &y = —1 if & < m(—1), where

1

m(—1) = lim,—, 1 m(a), and m=" : (m(—1),m(1)] — (—1,1] is the inverse function

of m(-) that satisfies m !(m(a)) = a for @ € (-1, 1]. Note that the median unbiased
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estimate also applies a truncation device given that the parameter space is restricted
to || < 1. This occurs since for values of & above some threshold the assigned value
is 1. Now this threshold depends on the sample size T and shrinks as T increases. It
is easy to verify that this implies a truncation of the form specified by (7) with § = 1.
Since our truncation imposes 0 < 6 < 1, we can substitute the OLS estimate by the
median-unbiased estimate without changing any of the stated large sample results.
The weighted symmetric least-squares (WSLS) estimate of « is defined by aw =
Al + %Zthl a2) 'S Gyl 1. An estimate of its variance is given by 6%, =
L+ 30 4T — 3) P, — dwiy—1)? and the associated t-ratio
for testing @ = 1 is 7w = (Gw — 1)/ow. The modification proposed by Roy and
Fuller (2001) is similar in spirit to our superefficient estimate in that it also replaces
estimates in a T2 neighborhood of one. It is, however, discontinuous and depends

on the value of the t-ratio 7y, making the procedure explicitly dependent on some

pre-test. The modified value is given by &y = dw + C(7w )ow, where

¢

—Tw if Tw > Tpet
Clr) = T 3w — 3w + k(Fw +5)] ! if =5 < 7w < Tpet
T'%w — 3[Fw] ™! if —(37)Y2 <4y < -5
0 it  Fy < —(37)Y2

\

with & = [3T — 72

pct

(L, + T)|[Tpet (5 4 Tpet) (I, + T)] ™!, where with an AR(p) structure
for u, I, is the integer part of (p + 1)/2, and 7,4 is the percentile of the limiting
distribution of 7y when a = 1. The form of the WSLS estimator for an AR(p)
process is given in Fuller (1996, p. 572). If 7, = —1.96, Grw is nearly unbiased
when a < 1 and has a median of 1 when o = 1.

The procedure recommended is the following: 1) Detrend the data by OLS to
obtain residuals 4,; 2) Estimate an AR(1) for 4, yielding the estimate & (or construct

the WSLS estimate éy) ; 3) Get the corresponding median-unbiased estimate s
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(or the modified version of dy, arw); 4) Construct épss by replacing &y, by 1 if
|Gar — 1| < dT~° (or épw by 1if |arw — 1| < dT7%); 5) Apply a GLS procedure with

s to obtain an estimate § and construct the t-statistic denoted by tf" s,

2.4 Simulation evidence

We conducted simple Monte Carlo experiments to illustrate the size and power of our
test. The data are generated by vy, = Bt + u; where u; = au; 1 + e; with e; ~ 7.0.d.
N(0,1) and ug = 0. In all cases, 50,000 replications are used, and the nominal size is
5%. Under the null hypothesis Hy: # = 0 while under the alternative hypothesis H:
G > 0. We first discuss the properties of the procedure when the median unbiased
estimate &g is used and return later with a comparision with the method that
uses the truncated weighted symmetric least-squares (TWSLS) estimate. Unreported
simulations showed that the use of a bias correction is essential to bring the size of the
test to an acceptable level. We henceforth only consider the t-statistic tg MS wwhen the
OLS estimate of « is replaced by the median unbiased estimate. The null rejection
probabilities were simulated for values of « in the range [0, 1] with increments of 0.05
in the range [0.0,0.90] and in increments of 0.01 in the range [0.90, 1.0]. The sample
sizes used are T = 100, 250, and 500. We consider four cases for the value of ¢,
namely 6 = 0.3, 0.4, 0.5, and 0.6, and d is set to 1.

The results are presented in Figure 1. As expected, when § < 1/2, the test is
conservative for o near 1. When § > 1/2, the test shows substantial liberal size
distortions. What is important is that with § = 1/2 the test shows basically no size
distortion even with 7" = 100. The simulations also show that the choice of d = 1
is appropriate if the goal is to reduce size distortions to a minimum. For example,
when T' = 100, setting d = 1/2 would yield results similar to the case 6 = 0.6 and

setting d = 2 would be almost the same as using 6 = 0.3. Hence, we shall continue to
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use d = 1. Further simulations showed the procedure to have similar properties when
using two-sided 10% tests. With two-sided 5% tests, size distortions are somewhat
higher when 7' = 100 and a = 1, but decrease rapidly as 1" increases.

The only available alternative procedure that offers a test with the same critical
values under both the I(0) and (1) cases is that of Vogelsang (1998). He considers
model (1) in partial sums form so that the scaled Wald test has a non-degenerate limit
distribution under both the 7(0) and /(1) cases, though different. The novelty is that
he weights the statistic by a unit root test scaled by some parameter, which for any
given significance level can be chosen so that the asymptotic critical values are the
same. The resulting test statistic is denoted ¢-PS7. His simulations show, however,
the test to have little power in the I(1) case so that he resorts to advocating the joint
use of that test and a normalized Wald test from regression (1) estimated by OLS,
labelled T~'/?t-Wr, that has good properties in the (1) case but has otherwise very
little power in the I(0) case. This leads to problems related to the use of multiple
tests where the size of each needs to be modified.

Consider now the power of the tests. Given the theoretical and simulation results,
we henceforth use 6 = 1/2 and tests constructed with a median unbiased adjustment,
tg MS The power of our test is compared to three other tests: the t-test based on the
infeasible GLS estimate which uses the true value of «, as well as the T'/?t-W;- and
the t-PSy tests of Vogelsang (1998) for which we use a 5% nominal size and, hence,
the proper comparisons should be made assuming they are applied independently.
The power curves are plotted for a = 1.0, 0.95,0.90 and 0.80 for a range of values
of 3 > 0. The number of replications is again 50,000. Results for T" = 100, 250
and 500 were obtained but only those for 7' = 100 are explicitely reported in Figure
2. Consider first the case o = 1. The test t5 has basically the same power as

the infeasible GLS test (slightly higher when 7" = 100 because of a small liberal size
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distortion). The test is more powerful than Vogelsang’s (1998) T~1/%t-W- test which
is the preferred one for this value of a. Consistent with the results in Vogelsang
(1998), the t-PSr test has substantially lower power. When o = 0.95 or 0.90, the
power of the test ¢ is not close to that of the infeasible GLS test but it is higher
than either of Vogelsang’s tests. As T increases, the power of our test gets closer to
that of the infeasible GLS test. For instance, when T = 500 and o = 0.9, the power
of our test is as good as the infeasible test. When o = 0.8, for any T the t5"* has
again power close to the infeasible test and still higher than the test t-PSy (the test
T~Y2t-Wry is so conservative that power is non zero only for high values of 3).

Roy et al. (2004) consider the same problem with an AR(p) noise component that
is either stationary or has one unit root. Their procedure is based on a one step Gauss
Newton regression using the TWSLS estimate. Consider a first-order expansion of

the regression (3) around initial estimates (i, Bq, &o)
e =pa(l — o) + Balt — ot — 1)] + aali-1 + wy (8)

where §;, =y, — ig — Bot, € = U — &1, and {w,} are the errors. Estimating (8) by
OLS yields the estimates (jin, 3 A>aa) and the one-step Gauss-Newton estimates are
(lens Ban- éan) = (g, Bo, o) + (Fin, Ba, da). The test statistic is tay = (Bay —
Bo)/se(Ban), where se(Bgy) is essentially the same as the standard error from the
regression (8), see Roy et al. (2004) for details. They suggest as the initial estimate
of a the TWSLS estimate with 7, = —2.85. The initial values of (u, 5) are obtained
from the Feasible GLS regression using the TWSLS estimate with 7, = —1.96. The
limit distribution of tgy is standard Normal when |a| < 1 but not so when a = 1.
Nevertheless, the simulations of Roy et al. (2004) show that even in small samples,
there are only small departures from the nominal size in the I(1) case when two-sided

5% tests are used. We now address the following two issues: a) evaluate whether
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there is any benefit in using the TWSLS estimate instead of the median unbiased
estimate; b) how our procedure performs relative to theirs in finite samples.

We conducted simulation experiments for the size and power of the tests. Table
1 presents the size of one-sided 5% tests for the Gauss Newton statistics gy, the
t5™M? test using a median unbiased estimate, labelled t5"%(MU), and the t5"* test
using the TWSLS estimate with 7, = —2.85, labelled, t;™5(TW). The exact sizes
of the tests tqy and t5"*(MU) are comparable, except when T = 100 and « is close
to or equal to one. The test t55(MU) has slightly higher liberal size distortions
when o = 1. On the other hand, the test tgy is more conservative for values of «
between 0.8 and 1.0. When comparing the tests t5"*(MU) and t;"5(TW), one sees
a similar trade-off. We again generated power results for 7" = 100, 250 and 500 but
we explicitely report only those for 7" = 100 in Figure 3. It is seen that the test
tgM3(MU) dominates t5"*(TW). Hence, in the sequel, we use the median unbiased
estimate. Comparing the tests t5™%(MU) and tgy, the results show that power is
higher (and close to that of the infeasible GLS procedure) with our test for all values

of @ when T' = 100. When T" = 250 or 500 the power of our test is, in general, higher

unless a = .95. In particular, our test is noticeably better when a = 1.

3 Generalization of the model

We now consider an extension of the analysis to the case where the error term u, is
allowed to have a more general structure than the simple AR(1) process with i.i.d.

shocks assumed so far. The data generating process is now assumed to be
Y = p+ Bt +ug; up = o1 + vy (9)

with vy = d(L)ey, d(L) = > 20 diL', Y2 dld;| < 00, d(1) # 0, and {e;} a martin-

gale difference sequence with respect to a filtration F; to which it is adapted. Also,
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E[e?|F;] = 0 and sup, Elef] < co. Again, we assume for simplicity that ug is some
constant. These conditions imply that the following functional central limit theo-
rem hold for the partial sums of v;, -2 3"y, = 5d(1)W(r). Under the stated
conditions, u; has an autoregressive representation, say A(L)u; = e; where A(L) =
1—>" a;L". In the representation (9), we want « to represent the sum of the autore-
gressive coefficients. Hence, we use the representation u; = cvuy_1 + A*(L)Au_1 + ey,
with A*(L) = Y772, a;L* where af = —3» 2, a;. We cannot use the estimate &
based on an autoregression of order one since it is inconsistent for o when the errors
u; are a general 1(0) process. Instead, we base our estimate on a truncated autore-

gression of order k. Let 4 be the residuals from a regression of y; on {1,¢}, then the

estimate of a considered is the OLS estimate o obtained from the regression

k
Uy = Qg1 + Z CiATs; + e (10)

i=1
The estimate & has the following properties provided k — oo and k*/T — 0 as T —
00, see Berk (1974) and Said and Dickey (1984). When w; is 1(0), Tl/z(a—a) = Op(1).
On the other hand, if a =1+ ¢/T, T(a— 1) = c+d(1 fo Jx(r (r)/ fol J:(’I“)Qd?“
where J7(r) is the residual function from the regression of J.(r) = [ exp(c
s))dW (s) on {1,7}. The truncated estimate ag defined by (7) with @ instead of & is
therefore still superefficient under a local unit root, i.e. T(ag — 1) —, 0.

As in the AR(1) case, to improve the finite sample performance, we consider an
approximately median unbiased estimate of a as described in Andrews and Chen
(1994). Since the distribution of & depends on («, (y,...,(;), the method is based on
an iterative procedure that jointly estimates o and the nuisance parameters ({y,...,(})
based on the regression (10) and then treats the estimate (Zl,..., Zk) as though they

were the true values of ((y,..., () and computes the median unbiased estimate a;.

One then treats &y, as given and re-computes the OLS estimates of ((y,..., ;). The
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procedure is repeated until convergence and a,;g is constructed by replacing a;; by
1if |ap — 1| < dT—%. To estimate 3 we use a quasi-FGLS procedure assuming AR(1)

errors, i.e. the OLS estimate in the transformed regression:

Y — anrsyi—1 = (1 — aps)p + B[t — aps(t — 1)] + (ue — aprsue—1) (11)

fort =2,...,T together with y; = u+ (+wu;. Denote the resulting estimate of § by B
Since vy = uy — auy_1exhibits serial correlation in general, we need to correct for this.
Hence, the statistic considered is (where the subscript RQF stands for Robust Quasi
Feasible (GLS)): thF = (B = By)/ 1/ ho(X'X)5)} where (X'X)5} is the (2,2) element
of the matrix (X'X) ! with X = [z1,...,27], 2} = [(1 — auns),t — ans(t — 1)] for
t=2,..,T and 2, = (1,1). Also, h, is a consistent estimate of (27) times the spectral
density function of v; at frequency 0. Hence, the usual estimate of the variance of the
residuals is replaced by h,. We consider two classes of estimates h,. One is based on
a weighted sum of the autocovariance function given by:

T T-1 T
hy =T 'Y 02 +T 1Y AGm) Y iy (12)
t=1 j=1

t=j+1

for some weight function A(j, m) and bandwidth m, with v; the OLS residuals from
the regression (11). The quadratic spectral window is used with the bandwidth m
selected according to the “plug-in method” of Andrews (1991) using an AR(1) ap-
proximation. We also consider autoregressive spectral density estimates. Note that
the residuals from the regression (11) are (1 — apsL)u; and, hence, in large sam-
ples, they are equivalent to v; = (1 — aL)u;. Consider first the case where |a| < 1.
A(L) is then invertible so that u; = A(L) ‘e, and v; = (1 — aL)A(L) 'e;. Since
A(1) = 1 — a, the spectral density at frequency zero of v; is simply o?. To obtain a

consistent estimate, we use the following approximate regression

k

Y — QpsYe = pt + 5t + Z PiAY—; + e
i=1
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with &, the corresponding OLS residuals. The estimate of o2 is then 6% = h, =
(T —k)~'3 ., €%, which is consistent provided k — oo and k*/T — 0 as T — oc.
Consider now the case & = 1. Then, in large samples, (1 — ayrsL)u; is equivalent to
v = Au; and an autoregressive spectral density estimate at frequency zero can be ob-
tained from the regression 0; = Zle @Vt +ny,, where 0, are the OLS residuals from
regression (11). Denote the estimate by (¢y, ..., ¢, ) and &727k = (T —k)! ZtT:k-i-l 7,
then h, = 6,27k /(1= S% )% The decision rule to select the estimate for the case
a =1 or |a| < 1is based on whether the truncated value ass is 1 or not. Asymptot-
ically, this results in a correct classification and a consistent estimate for both cases.
Hence, the procedure recommended is: 1) Detrend the data by OLS to obtain resid-
uals 4; 2) Estimate (10) by OLS with k selected using an information criterion (we
recommend using the BIC with k allowed to be in the range [0, 12(7/100)'/4]). If the
order selected is k£ = 0, the procedure of Section 2 applies, otherwise, the next steps
are applied; 3) Use the method of Andrews and Chen (1994) to obtain the approxi-
mately median unbiased estimate &y, and truncate its value to 1 if |ay, — 1] < T2
to get anrs; 4) Apply the quasi GLS procedure with aj,g to obtain the estimate of (3
and construct the t-statistic thF using one of the estimate b suggested to construct

the spectral density function at frequency zero of v;.
3.1 Finite sample simulations

This section presents results about the finite sample size and power of the test with

an AR(2) error component. The DGP is assumed to be
yo=Pttuw;  w=oueg +Y(we-1 —uwe2) + e

where e; ~ i.i.d. N(0,1) and ug = w1 = 0. Our hypotheses are Hy: f = 0 and

Hy: 8 > 0. Given the high computation costs, 1000 replications are used. We first
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consider the size properties of our test at the nominal 5% level. These are obtained for
a = 1,0.95,0.90,0.80, v» = 0.0,0.3,0.5,0.7, and T = 100, 250. We consider positive
AR coefficients since this is the most relevant case in practice. We use four variations
of our test pertaining to the choice of the estimate hy. In the first case, the estimate
(12) is used and is referred to as “NP” (for Non Parametric) and & is obtained from
(10) with & = 1 (i.e., we impose the true value). The other three are autoregresive
based estimates with & chosen as follows: 1) fixed at k = 1 (to assess the effect of
estimating k); 2) with the Akaike (1969) information criterion, AIC; 3) with the
Bayesian Information Criterion, BIC, see Schwarz (1978).

The results, presented in Table 2, show some features of interest. When the test is
based on the weighted sum of autocovariances to construct R, it is very conservative
for ¢ > 0 and a < 1, and the distortions become more serious as 1 increases. When
a = 1, the test is liberal with the distortions reducing only slightly as T" increases from
100 to 250. Using an autoregressive spectral density estimate, the size distortions are
very small even with 7' = 100 unless o = 1 and 1) is small (in which case the test is
slightly liberal) or o = 0.95 and 1) is large (in which case the test is conservative).
However, these size distortions diminish when 7' is increased to 250. Also, there is
no noticeable difference between the cases with the lag length assumed known or
estimated. Hence, our recommendation is to use the autoregressive spectral estimate
with an information criterion to select the lag length.

We now consider the power of our test relative to the t-test based on the infeasible
GLS using the true value of o, and the T—'/2¢-Wy and t-PSy tests of Vogelsang (1998),
with a 5% size so that their properties pertains to the case when both tests are applied
independently. The power curves for T' = 100 are plotted for a = 1.0,0.95,0.90, 0.80
and a range of values of § > 0. Results were obtained for vy = 0.3, 0.5 and 0.7, and

those for 1) = 0.5 are presented in Figure 4. Consider first the case a = 1. Our test is
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as powerful as the infeasible GLS test for any ¥. When a = 0.95 or 0.90, the power
of our test is not close to that of the infeasible GLS but is still competitive with the
most powerful of the T-1/%t-W; and t-PSy tests. When o = 0.8, the thF has power

close to the infeasible GLS test. Note that all tests lose power as v increases.

4 Specifying the trend function for unit root tests

As discussed in the introduction, the correct specification of a trend function is im-
portant when testing for unit roots. Ayat and Burridge (2000) used Vogelsang’s tests
to select the specification of the trend function as part of a sequential unit root testing
procedure and concluded that there is no advantage in doing so due to their lack of
power. We use simulations to see if there is any advantage in using our test as part of a
sequential unit root testing procedure. The data are generated by y; = (6t + u;, where
Uy = qug 1 + e, e ~ i.4.d. N(0,1) and up = 0. We consider o = 1.0, 0.95,0.90, 0.80
and a range of values of > 0. The sample size is T" = 100 and 10, 000 replications are
used. We consider unit root tests with only a constant, a constant and a time trend,
as well as sequential unit root tests performed as follows: 1) test the null hypothesis
of no trend, § = 0, using Vogelsang’s tests or our proposed test with a 5% nominal
size (note that Vogelsang’s procedure involves the combine use of the statistics of
T—'2t-Wy and t-PSy, hence 2.5% critical values are used for each statistic to have
an overall test with nominal size no larger than 5%); 2) if the null hypothesis is not
rejected, we conduct a unit root test with only a constant, otherwise we include a
constant and a trend. The nominal size of the unit root test is also 5%.

Figure 5 reports the size and power of the four variants when the Dickey-Fuller
(1979) unit root test is used. Consider first the size properties with & = 1. When
B = 0 and with only a constant, the test has size close to 5%. As [ increases, the

misspecification of the trend function becomes more serious so that the test has an
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increasing bias toward not rejecting the unit root. On the contrary, the unit root test
with a constant and a trend always has exact size close to nominal size since there
is no misspecification in the trend function for any values of 5. The sequential tests
have small liberal size distortions when 3 is near zero but otherwise maintain an exact
size close to nominal level. Consider now the power of the tests with o < 1. When
B = 0, the unit root test with only a constant is the most powerful test. However,
as (0 increases, the misspecification of the trend function becomes more serious and
the power of the test decreases to zero. On the contrary, the unit root test including
a trend has non-trivial power for any values of § since no misspecification occurs.
However, when [ is small the power is substantially lower than with a constant only.
The sequential unit root test with Vogelsang’s trend tests works well when [ is very
small or very large. However, when [ is moderate size, the most relevant case in
practice, the procedure evidently lacks power. In contrast, the sequential unit root
test procedure with our trend test works very well for any values of 3 due to the higher
power of the trend test applied in the first step. Of special interest is the fact that the
power function of the unit root test with our trend test is higher than the best of the
“constant only” or “constant and trend” specifications for any values of 5. This shows
that our trend test adapts well to the particular sample in selecting the appropriate
specification of the trend. We obtained similar results with the GLS-detrended unit

root tests of Elliott et al. (1996).

5 Empirical applications

We consider two empirical applications related to the data sets analyzed in Vogelsang
(1998) and in Canjels and Watson (1997). In all cases, the estimate h, is the autore-
gressive spectral estimate using the BIC to select the lag length. Vogelsang (1998)

estimated postwar real GNP quarterly growth rates for the G7 countries. The exact
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sample period for each country is indicated in Table 3. He considered the possibility
of a structural change in the slope of the trend function in 1973 (see, e.g., Perron,
1989). Hence, the interest is in comparing the estimates and confidence intervals
for the pre-1973 and post-1973 periods. Table 3 reports the estimates of real GNP
quarterly growth rates for both periods and the full sample with the 95% confidence
intervals. There are several features of interest. First, the confidence intervals for our
test statistic are much tighter than those of Vogelsang for 19 of 21 cases, as expected
from our simulation results. Second, in all cases, the point estimates of § are higher in
the pre-1973 sample compared to the post-1973 sample. For France, Germany, Italy,
and Japan, the pre-1973 and post-1973 confidence intervals using our test statistic do
not overlap, indicating a statistically significant decline in the rate of growth for these
countries. This contrasts with Vogeslang’s procedure for which non-overlapping 95%
confidence intervals occur only for France and Japan, and only using the T—'/2t-Wy
statistic. With three exceptions, (pre-1973 for France and the U.K, and post-1973
for Japan), the truncated median unbiased estimate of « is 1. The poor properties
of the test -PSt when « is close to one is reflected in its wide confidence intervals
(in many cases, the limits exceed +99). When no truncation applies, the test t-PSp
gives tighter confidence intervals than 7-/?t-Wy in 2 out of 3 cases. However, these
are between 3 and 41 times as wide as those provided by our test.

Consider now the data set analyzed by Canjels and Watson (1997) which consists
of annual real GDP per capita series over the post-war period for 128 countries (from
the Penn World Table database). We here summarize the results, which can be found
in the working paper version. The main feature of interest is that our method provides
tighter confidence intervals for 117 countries out of the 128 considered, compared with
the method of Canjels and Watson (1997). Improvements are very large when &g

is not close to one, although there are still some improvements when the truncation
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is effective and ajs is one. When no truncation is applied (i.e., ays < 1, occuring
for 24 countries), the ratio of Canjels and Watson’s confidence interval relative to
ours varies from 1.11 (Burundi) to 12.09 (Luxembourg) with the average being 5.36.
When the truncation is in effect (i.e., ayrs = 1, occuring for 104 countries), this ratio

varies from 0.35 (USSR) to 1.51 (Argentina) with the average being 1.09.

6 Conclusions

We proposed a new procedure to carry inference about the slope of a trend function
valid without prior knowledge about whether a series is I(0) or I(1). The test is
based on a Feasible quasi GLS method with a superefficient estimate of the sum of the
autoregressive coefficients o when o = 1. Simulations and empirical applications have
shown its usefulness and that it provides a clear improvement over existing methods.
Its power is basically equivalent to that based on the infeasible GLS estimate when «
is assumed known, unless « is near but not equal to one. It may appear that there is
room for improvements in this case but as argued by Roy et al. (2004, p. 1088), this

seems unlikely if we require a test that controls size in both the /(1) and I(0) cases.

7 Appendix: Technical Derivations

Proof of equation (5): With data generated by (2), using straightforward algebra

we can express the t-statistic as (see also, Canjels and Watson, 1997):

o Q11T71/27“2 — Tﬁl/z(lmﬁ
O 16 (g T Lgee — T 1g%)|H?

(A.1)
where g =1+ (T - 1)(1 —a)? =1+ op(1), ri=u; + (1 — &) Z;‘rzz uf = uy + op(1)

T2 = T+ (T — a1 — a) + (1 - a)2 > 1] = 0,(1)

T
t=2
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T T
T7qn = T7'1+(T-1&"+2a(1—a)) t+(1-&)?°> 7
t=2
= 1+T(1-a&)+T%(1—a&)*/3+ 0,(1)
T T
T Pry = TPy +a) ui+(1-a)> tu]
t=2 t=2

T T
= T_I/QZUZ +T(1- &)T_?’/QZtu;‘ +0,(1)
=2

—2
with uf = w,— éay_y, 6* = T! ZtT:l é2 and é; the residuals from a regression of
yi =y —ay_onzx; =[1—a& t—at—1)fort=2,...,T and 2} = [1,1], y] = v.

It is easy to show that 6 = o 4+ 0,(1). Equation (5) follows substituting in (A.1).

Proof of Theorem 1: Let A = {T%|& — 1| > d} and let A = {T®|a — 1| < d}. For

part (a), it suffices to show that TV/%(ég — a) — TY2(& — a) —, 0. We have

lim Pr(|T"%(ag —a&)] > €)=

T—o00
Jim Pr(|TY?(as — &)] > e|A)Pr(A) + lim Pr(|TY?(&s — &)| > €| A) Pr(A)

The first term is zero given that, if A is true, we have &g = & so that Pr(|TV?(&g —
&)| > €|A) = 0. The second term is zero since & —, o # 1 implies limz_,, Pr(A4) — 0

as T — oo. Therefore, Pr(|T"/?(dg —&)| > &) — 0 as T — co. For part (b), we have

lim Pr(|7(as —1)] > €)=

T—oo
71im Pr(|T(as —1)] > €|A)Pr(A)+ 7hm Pr(|T(&s — 1)| > ¢|A) Pr(A)

Now T(&—1) = O,(1) and 6§ € (0,1) imply that limy_., Pr(A) = Pr(T°~!|T(a—1)| >
d) — 0 as T — oo, so that the first term is zero. For the second term, if A is true,

&g = 1 so that Pr(|T(&s—1)| > ¢|A) = 0. Thus, Pr(|T(ds—1)| > &) = 0as T — oc.

Proof of Theorem 2: To prove part a) first note that with ar =1+ ¢/T, T(& —
1) = c+ fol J:(r)dVV(r)/fO1 J¥(r)2dr, with J*(r), 0 < r < 1, the residual process
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from a continuous time regression of an Ornstein-Uhlenbeck J.(r) on {1,7}, where
Jo(r) = [y exp(c(r — s))dW(s). Since the true value of « is in a 7! neighborhood
of 1, and &g truncates values of & in a T—° neighborhood of 1 for some 0 < § < 1
(i.e., a larger neighborhood), the results of Theorem 1 continue to apply in the local

to unity case and T'(&s — 1) —, 0. Now the t-statistic can be written a

T T
th = |77 (u—wy) = T(as — DT sy (A.2)
t=2 t=2
T T
—T(as — DTN " t(uy — wmy) — Tas — DTN " tuyy]
t=2 t=2

/ [02(1 = T(ag — 1) + T%(as — 1)2/3)]* + 0,(1)

We have T-V2"T (uy — ws_q) = T V25T e + T 3250 Juy — o[W(1) +
cfol Je(r)dr] = oJ.(1) ~ N(0,0%(exp(2¢c) — 1)/2c). The result of part (a) follows
using the fact that T'(ds — 1) —, 0, and that the following quantities are Op(1),
T-3/2 ZtT:Q Uy, T3/2 ZtT:Z t(uy — us—y), and T—5/2 Z;[:g tuyq.

Proof of Theorem 3: We start with the following Lemmas.

Lemma A.1 Let u; = aqui_q + e; with ey as defined by (2), and ar = exp(bﬁ) ~

1+b/T" for some b < 0 and some 0 < h < 1; then, a) Uy = Zgzg_l o/fe[T,«},j +

a?T]UO = Op(T%); b) T—2+" ZtT:I up y —p —0%/(2b); ¢c) T7! Zthl ug_1€; —p 0.

Proof: For part (a), ujry has a mean that is o(1) and

_i-h 27— (1—h) 2 o(1r-1)y _ 0(1 = O‘ZT[T_T]>
var(T™ 2 uy) = o T (I+ar+..+op ) = T1-h(1 — a2)
—ar
O'2<1 - (1 + b/Tl—h>2[Tr]> 0.2

TEh(I— (1+b/TVR)2)  —2b

Part (b) follows using similar derivations. To prove part (c), start by squaring both

sides of the equation u; = apu;_q1 + e, substract u;_; from both sides, take summa-
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tions, and then after rearrangements

T T T

1

71 Z wae = 5— T i — T g — T a2 — )T " Z up =T Z ef
—1 T t=1 t=1

1
—»pgm—O—(%x—ummﬁ—aﬂzo
using part (a), (b), T"'ug —, 0 and T~ Z;‘rzl e? —, o2

Lemma A.2 Let u; be generated as specified in Lemma A.1, and let & be the OLS

estimate in a regression of uy on w_y, then T(& — 1) = b+ Op(1)

We have, using Lemma A.1 and the fact that ' "(ap — 1) = b,

T T
A thg UtUg—1 Zt:Q Ut—1€6¢
G=== - —qgp ==
T 2 T 2
Zt:Q U_q Zt:Q Uy_q
—1 T
+ T thg Ug—1€¢
—24+h N2
T Zt:Q Uy_q

Note that the results of Lemmas A.1 and A.2 extend easily to the case with u; replaced

™" "a—1)=T"(ar—1) =b+o0,(1)

by the OLS residuals 1, though the derivations are more tedious.

To continue with the proof of Theorem 3, set b = ¢y and h = 1/2, so that
TY%(& — 1) = ¢y + 0p(1). Now consider the truncated estimate . For ¢, large and
in large samples &g = @& provide § > 1/2, and there is no truncation. Hence, for large
co, TY*(éug — 1) = ¢ + 0,(1) and we can treat the value of ¢ as known. We can then
apply the results of Phillips and Lee (1996) who cover limit results of the estimate of
(B when the quasi differencing parameter ar = 1+ ¢/7" is known. From their results

on p. 307, we deduce that tgs —4 N(0,1) as ¢g — —o0.
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Table 1: Exact Sizes of One-sided 5% Nominal Size Tests

ton TS (M) TS (TW)

o TT=100 T=250 T=500 T=100 T=250 T=500 _T=100 T=250 T=500
100 [ 0.056  0.053  0.052 0100 0.067  0.056 0.069  0.057  0.054
0.98 | 0.025  0.020 0.024 0.049 0024  0.016 0.019  0.012  0.011
0.97 | 0.023  0.023  0.032 0.049  0.028  0.027 0.019  0.016  0.020
0.95 | 0.025  0.031  0.041 0.051  0.040  0.048 0.022  0.028  0.041
0.90 | 0.032  0.043  0.048 0.058  0.058  0.056 0.034  0.051  0.055
0.80 | 0.043  0.048  0.048 0.063  0.055  0.052 0.052  0.054  0.052
0.70 | 0.050  0.049  0.049 0.062  0.053  0.051 0.057  0.052  0.050
0.60 | 0.052  0.052  0.049 0.059  0.054  0.052 0.056  0.053  0.051
0.40 | 0.050  0.052  0.049 0.054  0.053  0.050 0.051  0.052  0.050
0.00 | 0.052  0.049  0.051 0.047  0.045  0.049 0.052  0.049  0.051

Table 2: Finite Sample Null Rejection Probabilities with 5% Nominal Size
Model: y; = Bt + ugy up = qs—y + P(us—1 — us—2) + €3 Ho: =0

T=100 T=250
NP | AR NP | AR
a ¢ k=1 k=1 AIC_ BIC k=1 k=1 AIC_ BIC

1.00 0.0 0.138 0.103 0.110 0.120 0.083 0.070 0.056 0.079
0.3 0.103 0.087 0.105 0.092 0.074 0.066 0.060 0.067
0.5 0.077 0.062 0.082 0.059 0.065 0.060 0.062 0.050
0.7 0.098 0.074 0.090 0.073 0.093 0.041 0.053 0.058

095 0.0 0.092 0.064 0.063 0.053 0.069 0.044 0.046 0.040
0.3 0.025 0.036 0.044 0.036 0.016 0.040 0.038 0.038
0.5 0.008 0.023 0.026 0.020 0.005 0.034 0.035 0.038
0.7 0.004 0.011 0.017 0.013 0.002 0.017 0.024 0.012

0.90 0.0 0.098 0.069 0.055 0.056 0.083 0.066 0.066 0.051
0.3 0.036 0.054 0.061 0.049 0.023 0.057 0.060 0.065
0.5 0.021 0.056 0.057 0.058 0.007 0.079 0.070 0.067
0.7 0.002 0.055 0.054 0.049 0.004 0.070 0.067 0.060

0.80 0.0 0.098 0.072 0.058 0.065 0.070  0.060 0.064 0.044
0.3 0.039 0.074 0.072 0.058 0.019 0.060 0.065 0.075
0.5 0.013 0.059 0.095 0.075 0.016 0.075 0.060 0.055
0.7 0.011 0.074 0.080 0.074 0.007 0.077 0.059 0.064

Note: NP stands for the nonparametric method based on the weighted sum

of autocovariances and AR refers to the autoregressive spectral density estimates.



Table 3: 95 % Confidence Interval for Quarterly Growth Rates of Post War Real GNP
Vogelsang (1998)
T2t — Wr t— PSp ther
Country Period Benin< B < Bmax Width Brin< B < Bnax width & apvs kb Buin< B <Brax width
Canada  48:1-89:2 0.83 1.11 1.40 0.57 -15.36  1.15 17.66 33.02 097 100 1 0.89 1.10 1.31 0.42
48:1-73:4 096 1.20 1.45 049 094 119 144 0.50 087 100 0 099 125 151 0.52
74:1-89:2 0.41 0.80 1.19 0.78 -10.48 0.77 12.02 22.50 090 100 1 048 085 1.21 0.73
France 63:1-89:2 0.27 0.82 1.36 1.09 <99 088 >99 >99 096 100 1 0.70 0.89 1.08 0.39
63:1-73:4 098 1.31 1.64 0.66 1.20 131 143  0.23 0.06 012 0 127 131 135 0.08
74:1-89:2 030 0.53 0.76 0.45 -35.40 0.53 36.47 71.86 092 100 0O 041 056 070 0.29
Germany 50:1-89:2 0.26 0.98 1.70 1.45 <99 1.07 >99 >99 097 100 0O 0.8 109 134 049
50:1-73:4  0.75 1.37 2.00 1.24 <99 144 >99 >99 093 100 0 112 146 180 0.68
74:1-89:2 0.18 0.50 0.82 0.65 -9.78 049 10.76 20.54 0.85 1.00 0 0.23 052 081 0.58
Italy 52:1-82:4 0.66 1.14 1.63 0.98 <99 1.22  >99 >99 1.01 100 0 082 1.06 130 048
52:1-73:4 110 1.34 1.58 0.48 0.55 1.36 217 1.62 083 100 0 1.09 135 1.61 0.51
74:1-82:4 -0.06 0.62 1.30 1.36 <99 0.68 >99 >99 072 100 2 -0.15 035 086 1.02
Japan 52:1-89:2 0.81 1.74 2.67 1.86 <99 1.88 >99 >99 099 1.00 0 139 168 196 0.57
52:1-73:4 1.84 230 275 091 -3.09 229 7.67 10.76 087 100 0 1.75 218 261 0.86
74:1-89:2  0.87 1.04 1.22 0.35 -0.80 1.05 2.89  3.69 078 087 0 1.00 1.04 1.08 0.09
U.K. 60:1-89:2  0.29 0.56 0.83 0.54 -2.54 0.57 3.68 6.22 0.89 1.00 0 0.34 0.60 0.87 0.52
60:1-73:4 044 0.73 1.02 0.57 0.52 0.72 092 040 0.54 061 0 067 072 077 0.10
74:1-89:2  0.02 049 0.96 0.94 <99 042 >99 >99 095 1.00 1 029 053 078 049
U.S. 47:1-89:2  0.53 0.78 1.03 049 -1.95 080 3.56 5.51 095 1.00 1 057 0.81 1.05 048
47:1-73:4  0.58 0.88 1.18 0.61 -1.37 0.87 311 448 092 100 1 0.60 090 120 0.60
74:1-89:2  0.25 0.67 1.10 0.85 -60.05 0.64 61.32 >99 0.80 1.00 1 0.29 067 105 0.76
Note: The columns with headings “0,,;, and (3,,,,~ refer to the lower and upper bound

of the confidence interval and the column with the heading “width” refers to its width.
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