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1 Introduction

A zero lower bound on the nominal interest rate is becoming a serious concern. Many
central banks, especially in industrialized countries, have been successful in reducing
average inflation rates to a range of 0-3% in recent decades. In this kind of low inflation
era, especially when a central bank is faced by a severe recession, a zero lower bound
on the short-term nominal interest rate — a policy instrument for most of the central
banks — could be a serious constraint for the implementation of monetary policy. In the
extreme case, when the nominal interest rate actually binds at zero, a central bank will
no longer be able to stimulate the economy via the nominal interest rate channel — a
phenomenon also known as a liguidity trap. In such circumstances, standard monetary
policy, by controlling the short-term nominal interest, will become totally ineffective and
the economy will have to bear the cost of increased volatility. Blinder (2000), being
keenly aware of this predicament, succinctly warns, “Don’t go there.” The recent trend
of low inflation accompanied by the issues stemming from a zero lower bound is the
basic reason why it is becoming a realistic and serious concern for many central banks.
Reflecting the practical importance of a zero lower bound on the nominal interest
rate, much research has been made regarding the conduct of monetary policy in the
presence of such a constraint. The pioneering work is due to Fuhrer and Madigan
(1997). They conducted an impulse response analysis taking into account of the zero
lower bound and showed that stabilization policy is costly in the sense that it takes
longer for the output and the inflation rate to return to a steady state than the case
where there is no constraint.  Orphanides and Wieland (1998), in their stochastic
simulation study, showed that the probability of the economic state entering a liquidity
trap will be lower when the inflation target is set higher and concluded that the social
welfare loss can be reduced by setting a positive inflation target. Reifschneider and
Williams (2000) provided an insightful study which shows that a variant of the Taylor
rule is superior to a standard Taylor rule in stabilization capability by comparing the
efficient policy frontier of stochastic simulation results. This implies that when the
zero lower bound on the nominal interest rate is incorporated, the optimal policy is
neither a linear function of state variables nor a standard Taylor rule. Orphanides
and Wieland (2000) demonstrated that the optimal policy under the non-negativity
constraint is a nonlinear function of the inflation rate using a numerical method. Their
numerical evidence suggests a central bank to adopt an “aggressive” monetary policy
as the nominal interest rate approaches the zero lower bound. Watanabe (2000) and
Jung et al. (2001) investigated the optimal conditions for the termination of a “zero
interest rate policy” based on the forward-looking economy model following Woodford
(1999). Using a simulation technique, they show that the optimal path of the nominal

interest rate depends on historical policy conduct as well as a commitment for future



policy conduct.! Hunt and Laxton (2003) investigated the role of an inflation target in
the presence of the zero lower bound. Using the MULTIMOD simulation model, they
show that targeting too low an inflation rate will induce a central bank to be susceptible
to a deflationary spiral and suggest that the inflation rate should be targeted higher
than 2% in the long run.

Among multiple aspects of the zero bound problem, our focus is on the explicit form
of the optimal monetary policy reaction function.? The past studies are commonly aware
of the risk of the zero lower bound (or the liquidity trap), which can seriously affect the
stabilization function of the central bank. In fact, most of the past studies, such as
Blinder (2000), Goodfriend (2000), Reifschneider and Williams (2000), Orphanides and
Wieland (2000), and Hunt and Laxton (2003) point out the possibility that the optimal
monetary policy is affected by the zero lower bound before the constraint actually binds.
For example, Goodfriend (2000) claims that monetary policy must be “pre-emptive” to
prevent the constraint from binding. Unfortunately, however, the past studies have
mainly relied on conjectures or numerical/simulation methods in showing this “pre-
emptiveness” feature of monetary policy.

The main contribution of this paper is that we provide a mathematical foundation
to this “pre-emptiveness” feature of monetary policy in the presence of the zero lower
bound. In particular, we investigate how the optimal monetary policy reaction func-
tion is affected when the zero lower bound of the nominal interest rate is explicitly
incorporated to a Svensson (1997a) and Ball (1999) type model.® Based on the styl-

!For more recent studies in the context of forward-looking private agents, sece Benhabib et al. (2002)

and Eggertsson and Woodford (2003).
? Another important issue stemming from the zero lower bound constraint is the so-called “buffer

role” of the inflation target. As was first pointed out by Summers (1991), a central bank can pre-empt
the risk of being caught in a liquidity trap by targeting a small but positive inflation rate in the long-run.
However, this pre-emption strategy assumes that the inflation target (i.e., 7*) can be controlled by a
central bank, which, in reality, may not be a readily available policy option in the short-run. In this
sense, the pre-emption strategy of setting a higher inflation target can be said to be a policy option
only available in the long-run. This paper discusses the optimal monetary policy reaction based on the
assumption of a fixed inflation target, and analyzes the short-run pre-emption strategy in a situation
where the nominal interest rate is the sole control variable of a central bank. A reader further interested
in the long-run pre-emption strategy in which an inflation target is variable should refer to Orhphanides

and Wieland (1998), Hunt and Laxton (2003) and Nishiyama (2003).
31In the absence of a zero lower bound on the nominal interest rate, it is well known that the Taylor

rule, which was first introduced in a seminal work by Taylor (1993), can be rationalized as the optimal
policy reaction function of a certain class of a central bank’s dynamic optimization problem as shown in
Svensson (1997a) and Ball (1999). When a central bank’s loss function is quadratic and the economy
can be captured by a first order difference system of which state variables are the current output and
the inflation rate, the solution of the dynamic programming problem is a linear function of the state
variables, that is, the current output and the inflation rate. This is the well known property of the
so called Linear-Quadratic (LQ) regulator problem when the control variable is unbounded, which has

been intensively examined both in the economics and engineering fields of study.



ized framework of a central bank’s dynamic optimization problem following Svensson
(1997a) and Ball (1999), we derive the analytical expression of the optimal monetary
policy reaction function in the presence of the zero lower bound and prove that it is (i)
highly nonlinear, (ii) more expansionary, and (iii) more aggressive than the Taylor rule,
which is otherwise the optimal policy in the absence of the zero bound. These features
of the optimal policy reaction function are basically consistent with the policy implica-
tions shown by past studies, providing a solid analytical foundation to “pre-emptive”
monetary policy conduct in the presence of the zero lower bound.

In the real world, perhaps the most notable episode where the conduct of monetary
policy has been severely affected by the zero lower bound constraint was during the
period of stagnation of the Japanese economy in the 1990s. There has been substantial
debate regarding the Bank of Japan’s (BOJ) monetary policy conduct during the 1990s.
For instance, Ahearne et al. (2002) point out that the BOJ’s monetary policy conduct
was too slow in cutting the call rate during the early 1990s and conclude that this slow
response has been one of the factors that caused Japan’s prolonged stagnation during
the entire decade.! Bernanke and Gertler (1999) also report similar simulation evidence
based on the dynamic general equilibrium model incorporating a financial accelerator.
On the other hand, McCallum (1999), Kamada and Muto (2000), and Yamaguchi (2002)
show empirical evidence that the estimated Taylor rule can explain the BOJ’s monetary
policy conduct until the mid-1990s fairly well, while exhibiting a wide discrepancy be-
tween the actual call rate and the predicted call rate implied by the estimated Taylor
rule during the latter half of the decade. This implies that the BOJ’s low interest rate
policy during the latter half of the 1990s was too expansionary, if we take the estimated
Taylor rule for granted.

In this paper, taking the case of Japanese monetary policy in the 1990s, we empiri-
cally test the validity of the qualitative and quantitative features implied in our model.
Taking into account the left-censoring of the call rate due to the presence of the zero
lower bound, we adopt the Tobit model in estimating the BOJ’s policy reaction function
during the 1990s. The Likelihood Ratio type test based on the Tobit estimation results
(weakly) rejects the linearity of the BOJ’s policy reaction function with respect to the
inflation rate and the output gap, revealing some evidence for the concavity of the pol-
icy reaction function. This empirical evidence turns out to be qualitatively consistent
with the “aggressive” monetary policy conduct implied in our model. However, since
the qualitative evidence from the Tobit estimation is unindicative about the desirable
level of the call rate during the 1990s, we also conduct quantitative analysis based on
the numerically approximated optimal policy reaction function. By comparing the ac-
tual path of the call rate and the simulated path of the call rate during the 1990s, it

*For a counter-argument in defense of the BOJ’s monetary policy conduct in the early 1990s, see
Yamaguchi (2002).



turns out that the BOJ’s monetary policy conduct in the first half of the decade was
too contractionary and too slow in responding to the declining output and disinflation,
while the low interest rate policy by the BOJ in the latter half of the decade turns out
to be fairly consistent with the simulated path implied by the optimal policy reaction
function.

The remainder of this paper is organized as follows. Section 2 describes the set up of
the model and derives the analytical expression of the optimal policy reaction function.
Section 3 discusses the numerical strategy in approximating the optimal policy reaction
function and demonstrates the results. Section 4 addresses the empirical issues taking
the case of Japan in the 1990s and tests the qualitative and quantitative implications
of the optimal policy reaction function. Section 5 offers some concluding remarks and

discusses the future extension of the model.

2 The Model

2.1 Setup of the Model and First Order Conditions

This section describes the standard problem setting to discuss optimal monetary policy
and its modification when the zero lower bound on the nominal interest rate is incorpo-
rated. Since we assume the welfare loss function to be quadratic, which is the standard
specification in the monetary policy literature, the problem can be regarded as a well
defined stochastic linear-quadratic (LQ) regulator problem. It is well known that the
problem leads to a quadratic value function and a linear policy function,® which depend
on only the current state variables if there is no constraint on the control variable. In
this sense, the Taylor rule can be rationalized as a class of optimal reaction functions
as proved in Svensson (1997a) and Ball (1999).° In this paper, the specification of a
central bank’s loss function and the economy follows those of the Svensson-Ball type
model, and then we incorporate the zero lower bound constraint on the nominal interest

rate.

®When the policy reaction function is optimal, in other words, when it is a solution to the dynamic
optimization problem of the central bank, it is equivalent to an “optimal policy function” or an “optimal
feedback rule.” Note that these two are purely technical terms of control theory, while “optimal policy
reaction function” is usually used in economic literature. To avoid confusion, we will use policy reaction

function throughout this paper, unless there is a special need to distinguish these concepts.
®Note that the model adopted here can be completely solved by standard dynamic programming

methods, while the model in Woodford (1999) cannot, since in the Woodford model, the state equation
has non-trivial rational expectations behavior. Backus and Driffil (1986) and Woodford (1999) state that
with non-trivial rational expectation behavior, it is impossible to use standard dynamic programming

techniques to obtain the optimal policy reaction function.



First, we assume that a central bank’s loss function is given as

Ltzé{nyr)\(?Tt—ﬂ*)Q}, (1)

where 7 and y denote the inflation rate and the output gap, respectively, and 7* is the
target inflation rate of the central bank. A is a positive weight which represents the
preference of the central bank. The economy is described by the following conventional

IS and AS type formulation,

Y1 = pyr — O (it — Eymep1) +ven1 (2)

Ti41 = Tt + QYt + Epy1- (3)

Eqn (2) and eqn (3) stand for the IS equation and AS equation, respectively, where
v and € are assumed to be i.i.d. random disturbances. Although eqn (2) contains a
forward-looking variable, this can be substituted by the following relationship between

the expected inflation rate and the current inflation rate and the output gap,
Eimip1 = T + aye. (4)

Then, a central bank’s problem is formulated as an intertemporal minimization problem

with the objective function,

oo
in: E Lty
min t;ﬁ t+i (5)
subject to the IS equation yi1 = (p + ad)ys — 6 (it — m¢) + Vi1 with the zero lower

bound constraint on the nominal interest rate,
it >0

and the AS equation (3). We follow the treatment of the non-negativity constraint as
in Watanabe (2000) and apply Kuhn-Tucker conditions in this dynamic optimization
problem. Since this problem can be interpreted as a conventional optimal bounded
control problem with a linear system, we can set up a Bellman equation’ with three

Lagrange multipliers as follows,

Viye,me) = rrﬁn[% {ytZ + A(me — 77*)2} — By {(p+ ad)ys — 01 + 6m¢ — Y11 }
—Eypy e (m + oy — Te1)
— iy
+BEYV (Yer1, Tev1)]- (6)

"Here we assume a central bank’s discount factor 3 to be sufficiently small for the Contraction
Mapping Theorem to hold. For the lists of regularity conditions regarding the Contraction Mapping
Theorem, see Stokey and Lucas (1989). Throughout this paper, we simply assume that regularity
conditions are satisfied.



We must be very careful in writing the signs of Lagrange multipliers. As this is a min-
imization problem with a non-negativity constraint, each sign in front of the multiplier
must be set so that the multiplier has a positive value when the constraint is binding.

The first order conditions (FOCs) of this problem are as follows,

Et¢t+16 = (7)
1 *

—BEtMtJrl = AE(Te41 — 7)) = 6Eydpi0 — Erplyyo (8)
1

—BEt¢t+1 = Ewir— (p+ad)Ergy o — aFpy o 9)

where eqn (7), eqn (8), and eqn (9) represent the FOCs with respect to the nominal
interest rate, 4, the inflation rate, m, and the output gap, y, respectively.

To gain some intuition regarding these FOCs, suppose there is no zero lower bound
on the interest rate, so that FOC (7) becomes E;¢;,; = %, = 0 for any period ¢.
Then the only constraint which substantially matters is p;, — the Lagrange multiplier
associated with the AS eqn (3), which can be interpreted as the shadow cost of AS shock
— in this case. In other words, in the absence of the zero lower bound constraint, a
central bank can completely neutralize the ex-ante cost stemming from the IS shock,
while facing a trade-off between inflation and output stabilization in responding to AS
shocks. In the context of our model discussed in this paper, under optimal monetary
policy conduct, E;¢, ; (which represents the shadow cost of IS shocks) will be equal
to zero, while Eyp,,; (which represents the shadow cost of AS shocks) remains strictly
positive. Thus, aggregate demand disturbances cannot be a restraint on the central
bank’s monetary policy conduct in the absence of the zero lower bound.

In contrast, suppose that there exists a zero lower bound constraint and it is binding
in the current period. Then we have Ei¢;,; > 0 which implies that a shadow cost is
emerging from the IS shocks. 1In this case, even if the policy is conducted optimally,
a central bank cannot completely offset IS shocks. Thus, in the presence of a zero
lower bound constraint, a central bank is confronted with the difficult task of balancing
the opportunity costs arising from both IS and AS shocks. Note that in our model,
monetary policy has a one period lag before it affects the economy, and therefore the
zero lower bound matters for the ability of a central bank to stabilize the economy in
the following period.

Next, multiplying o on both sides of eqn (8) and subtracting eqn (9), we obtain the

following equation,

By = BEwyr11 — BaAE (T — 7°) — BpEi¢yio + Erdyyq- (10)

By updating eqn (10) one period and substituting back to eqn (9) for Eyp;, 5, we obtain
the following relationship between Fiy:11 and Eiyio.



1

BEwi+2 — aBAE (M40 — T°) — Eyyeyr = pBEidy 3 — (1 + p+ @) Epy o + 3

Eipi i
(11)

Alternatively, by using the FOC for the nominal interest rate — i.e., eqn (7) —, the
above relationship can also be expressed as a function of the Lagrange multipliers, v,

associated with the Kuhn-Tucker condition,

(1+p+ad)
4

1

BEi+2 — aBAE(Tiyo — 7)) — Eyyrpr = %Eﬂbtw - 35

Evbyiq + —2

(12)

Since the choice of Eyy;11 and ¢ is technically equivalent,® eqn (12) can be considered
to be the Euler equation of the control variable. Although it is technically possible to
express the Euler eqn (12) in terms of 4, for the convenience of algebraic manipulation,
we will take Fiy:11 as the proxy of the control variable for a while. Now it should
be noted that the Euler equation (12) contains expected values of {¢, ;}? ;. This
implies that even if a zero lower bound constraint is not binding in the current period
(therefore ¢, = E;¢y, 1 = 0 and 4; > 0 at period t), the Euler equation is affected by
Ey)y, 1 which is in general positive due to the non-zero probability of the event that the
constraint is binding in the following period. Orphanides and Wieland (2000) presents
numerical evidence to claim that even if the non-negativity constraint did not bind in
any past period, optimal monetary policy is different from the case where there is no
such constraint. Eqn (12) derived here provides the analytical expression which is

consistent with their claim.

2.2 Optimal Monetary Policy Reaction Function

Our goal here is to derive the analytical expression of the optimal monetary policy
reaction function when the constraint is not binding in the current period.  Since
Ewyiiq = é(Et’ﬂ't_A,_Q — Eymep1) and Eryiio = é(Etwt+3 — Eimiyo) from the AS eqn (3),
substituting these into the Euler eqn (12) yields the second-order difference equation in

terms of Eymiy1 as follows,
,BEt(T(H_3 — 7T*) — (1 + 0+ 0126/\) Et(T(H_Q — 7T*) + Et(7rt+1 — 7T*) = aFE; U, (13)

where

vy = % (Pﬁ¢t+2 — (14 p+ad)pr + ﬁilwt) :

8In other words, E;y:41 and i; have a one-to-one relationship given the state (m¢,ye). Note that
by applying the conditional expectation operator E; on both sides of the IS equation, it follows that
Eiyir1 = (p+ ad)y + 6my — iy



Let 61 2 be the roots of the characteristic equation, 22 — (1 4+ 34 a?8X) z+3 = 0. The

roots of the characteristic equation can be expressed as,

By — 14+ B+ a2BA+ /(1 +B+a2BN)?2 —43
’ - 2 .

Now, since (1 + 3 + a?B)\)? > 443, this implies that both roots are real. Further, by
noticing that a8\ > 0, we can infer that one root is greater than one and the other is
less than one —i.e., §; > 1 and # < 1. Then we can derive the unique solution to the

second-order difference equation as follows,
s .
91Et(7Tt+2 —7T*) = Et(ﬂt+1 —7T*) —CVZQEE}\I/H_@'. (14)
=0

Recalling that Eymyio = Eymir1 + aFyer1 from the AS equation, the solution to the

second-order difference equation can be transformed as

1-0 1 o=
Etyiq = ( a911> (Bemipr —77) — 9_12912Et‘pt+17 (15)
i=0

which can be regarded as the optimal reaction function of Ety;y1 in response to Fymiqq
(the expected inflation rate at period ¢) and the streams of expected values of {1, ,;}7°;
at period t.

Since our goal here is to derive the analytical expression of the optimal monetary
policy reaction function in terms of the nominal interest rate, we substitute Eyey1 and
Eymiyq using the IS equation and AS equation, respectively. This yields the following

optimal monetary policy reaction function,

- . | 01 —1 X 1 >0 i
7 (Wt,yt)—ﬂt+<a+6—91)yt+<a691 (7Tt—7r)+ 671 ;QQEt\I/t+i

o
(16)
where
R
02:a2ﬁ>\+ﬁ+1—\/(a2ﬁA+ﬁ+1)2_457 0<6y<1. (17)

2

9This can be easily seen by evaluating the polynomial function, f(z) = 2> — (1 + 8+ a?BA)z + 3, at
z=1. Since f(1) = —a?BX < 0 and f”(2) > 0, it should be the case that one of the characteristic

roots be greater than one and the other be less than one.



The above optimal monetary policy reaction function (16) is valid for the state
(m¢,y¢) such that if > 0. For any other state where the zero lower bound constraint is
binding, the optimal monetary policy is trivially if = 0.

Some remarks are in order regarding the fourth term of eqn (16), ©. First of all,
it should be noted that © can be expressed as a function of the current state m; and
y¢.  This result indirectly follows from the assumption that the Contraction Mapping
Theorem holds for the value function in eqn (6). Since a central bank’s value function
is a function of the current state (m,;) and the functional shape is time-invariant, as
a consequence, the optimal feedback rule is also a function of the current state (7, y:)
and is time-invariant as well — i.e., the optimal monetary policy reaction function can
be expressed as i*(m¢,y;) for any period t. Now, since the first term through the
third term in eqn (16) is obviously a linear (and time-invariant) function of (¢, y;), this
automatically requires the term © to be a time-invariant function of the current state
m and y;. In order to see this result in a more intuitive way, notice that the term
© can be expressed in terms of the sequence of {E,;}2,. Further, notice that by
differentiating eqn (6) with respect to y;+1 and invoking the envelope theorem, it follows
that

1
8

By exploiting FOC(7) and using the law of iterated expectation, we can link Fy,; and

EVy (o1, Y1) = —= B

EiVy(Teti,Yi+i) as follows
1 .
Et‘/y(ﬂ-t+’i7yt+’i) = _%Etle»i for Vi > 0. (18)

Now, using backward-substitution, m;y; and y;y; could be expressed in terms of the
current state (m,%;) and streams of random shocks {v4; }3-:1 and {Etﬂ-};:l under the
optimal policy conduct. Thus, the expected value of Vi (714, ys+i) conditioned upon
the information set available at period ¢ can be, indeed, shown to be a function of the
current state m; and y; — i.e., EtVy(Teyi, Yeti) = gi(me,y¢). In this manner, at least in
principle, it is possible to express Fy1);,; for any i as a function of the current state
7 and y¢, which in turn implies that the term © is a function of the current state as
well. However, due to the nature of the LQ stochastic problem with a bounded control
variable, the explicit functional form of © in terms of 7; and y; does not exist in general.
This is one of the reasons why we rely on the numerical method in Section 3. As a
matter of fact, we numerically demonstrate © to be a function of the current state in
Section 3.

Second remark regarding the term © is the non-linearity with respect to the current
state variables 7, and y;. It should be noted that the optimal monetary policy reaction

function (16) is linear in state variables m; and y; except for the fourth term, ©. Suppose



there is no zero lower bound constraint, so that W;,; = 0 for any ¢. Then the optimal
reaction function is linear and is exactly the same as the familiar result shown in Svensson
(1997a), which can be regarded as one type of the Taylor rule. However, once the zero
lower bound is introduced, even if the constraint is not binding at the current state,
there exists a non-zero probability that such a constraint may bind in the future, which
alters the optimal monetary policy conduct from the case where there is no zero lower
bound. In other words, E1),,;’s (which can be expressed as a function of the current
state m; and y; for any 7) will, in general, take positive values that the optimal reaction
function will deviate from the standard Taylor rule. Indeed, this very deviation from
the Taylor rule is captured by the term © in eqn (16). As such, by recalling that the
term © is a function of the sequence of {Ey),,,;}52, and also considering that Ey, ;s
will likely take higher (lower) values when the nominal interest rate is close to (apart
from) the zero lower bound constraint, there is no reason to believe that the term ©
is linear in the current state variables. Analyzing the term © further, the following
two propositions can be made with regard to the qualitative properties of the optimal

monetary policy reaction function in the presence of the zero lower bound constraint.

Proposition 1 (Expansionary Policy) Let i7" (

7, y¢) be the optimal monetary
policy reaction function when there is no zero bound on the nominal interest rate. Let
i*(m¢,yt) be the optimal monetary policy reaction function in the presence of a zero bound
on the nominal interest rate. Then for any state (m¢,y:) where i* is strictly greater than

zero, the monetary policy i* will be at least as expansionary as the monetary policy
Z'Taylor’ i.e., i < iTaylo'r"

Proof. See Appendix. m

Proposition 2 (Aggressive Policy) For any state (m¢,y:) where i* is strictly greater

than zero, the monetary policy i* will be at least as aggressive as the monetary policy
itaylor je.. 9i*/Om, > 9iTWr |Om, and 0i*/Oyy > OiTWT Oy,

Proof. See Appendix. m

2.3 Discussion

Proposition 1 implies the conventional wisdom described as “pre-emptive” monetary
policy in terms of interest rate control implementation. But since the pre-emptiveness
seems to have much broader meanings,'’ we suggest that one could acquire much clear
insight about the idea if we regard this as an analogy of the well-known precautionary
savings. As we will discuss later, since the value function is not quadratic any more, the

certainty equivalence property does not hold in spite of the quadratic period-by-period

For instance, see Blinder (2000).

10



loss function. Carroll and Kimball(1996) proved that when the third derivative of the
utility function is strictly positive, the consumer increases savings when the income
risk increases. What essentially matters here is the positive third derivative of the
period-by-period utility function which makes the value function non-quadratic. In
comparison with our case, the zero lower bound makes the value function non-quadratic,
which induces the central bank to increase its savings (interpreted as a lower nominal
interest rate) in the face of future risk. Thus the mechanism behind this kind of pre-
emptive monetary policy is quite similar to that of precautionary savings at least from
the mathematical point of view.

Proposition 2, which refers to the aggressiveness of optimal monetary policy, is closely
related to the concavity of the optimal policy reaction function. Given that the optimal
policy reaction function eqn (16) converges to the Taylor rule as the inflation rate and
the output gap approach positive infinity, Proposition 2 seems to imply the concavity of
the optimal policy reaction function. However, these two concepts are slightly different.
Proposition 2 merely states that the slope of the policy reaction function (defined as
aggressiveness) is never less than that of the Taylor rule, while concavity of the policy
reaction function implies that the slope itself is monotone and non-increasing in the
output gap and the inflation rate. In other words, concavity means that central banks
have to respond to changes in the state of the economy more substantially in recessions
than in booms. We do not provide the analytical proof of this kind of concavity, but
rather we numerically show it in the following section.

Before we move on to the next section, it is useful to shed some light on the monetary
policy debate between those proponents suggesting to “preserve the ammunition” and
those suggesting to “take aggressive action” in face of the zero lower bound constraint.
Proponents'! of “preserving the ammunition” suggest cutting the interest rate parsimo-
niously as the interest rate approaches the zero bound constraint. Their reasoning is as
follows. By cutting the interest rate parsimoniously, a central bank can preserve room
for maneuvering. In this way, a central bank can preserve power to stimulate the econ-
omy which can be potentially used to salvage the economy, especially when the economy
has entered a deflationary spiral. On the other hand, proponents'? of “taking aggressive
action” suggest cutting the interest rate aggressively as the interest rate approaches the
zero bound constraint. Their reasoning is basically in line with our argument in this
paper. In other words, in the presence of the zero bound constraint, it is in the interest
of a central bank to lean toward more expansionary monetary policy so that they can

prevent the economy from falling into a deflationary spiral. Thus, in this regard, this

"' This view is occasionally seen in some non-technical journals or newspapers intended for the general
public. However, to the best of our knowledge, we have never encountered this kind of view in academic

journals.
Y2 This is the view shared by Reifschneider and Williams (2000), Orphanides and Wieland (2000),

Ahearne et al. (2002), and Hunt and Laxton (2003) among others.
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paper can be thought to be another paper that supports the view of “taking aggressive
action” in the face of the zero bound constraint. Now, in the context of the model in
this paper, what will go wrong when a central bank conducts monetary policy so as to
preserve the ammunition? A major flaw is that such policy is putting a contractionary
pressure (relative to the optimal monetary policy) on the economy when the economy is
on the verge of a deflationary spiral. Namely, by not providing a sufficient stimulus to
the economy, a central bank is inadvertently aiding, rather than pre-empting, the defla-
tionary pressure to grow, raising the risk of falling into a deflationary spiral. Although
such a policy might preserve some room for a rate-cut even when the economy actually
falls into a deflationary spiral, such a rate-cut will be “too-little, too-late” in extricating
the economy from a state of deflationary spiral. This is the reason why the policy
conduct of “preserving the ammunition” is deemed sub-optimal, moreover destructive,

at least in the model considered in this paper.

3 Numerical Analysis

Although the analytical expression has been derived in eqn (16), it is in general not
possible to obtain a closed form expression of the optimal policy reaction function. In
order to further analyze the nature of the optimal policy reaction function, we take a
numerical approach in this section.'® In particular, we adopt the numerical approx-
imation method known as the collocation method (see Judd, 1998, Ch.11 and 12 and
Miranda and Fackler, 2002, Ch.8 and 9) in this paper. As can be seen from the Bellman
equation posed in eqn (6), the dynamic programming problem requires us to solve the
mathematical problem known as the functional fixed-point problem. In other words,
our goal is to pin down the function V'(7,y) such that the Bellman equation (6) is met.
Now, due to the infinite-dimensional nature of a functional space, one is inherently faced
with an infinite-dimensional fixed-point problem. The idea of the collocation method
is to reduce this infinite-dimensional fixed-point problem into a finite-dimensional prob-

lem by approximating the function V(m,y) by a finite number of basis functions'* —

a
strategy also known as discretization of the functional space. Thus, in the sense that
the collocation method is no more than an approximation, the numerical analysis in this
section should not be regarded as the proof of the qualitative features of the optimal
policy reaction function shown in Section 2. Rather, the strength of the numerical
method is that it enables us to verify the qualitative features and, further, enables us

to evaluate the optimal policy reaction function quantitatively.

L3 For the pioneering work in taking a numerical approach to the optimal policy reaction function, see

Orphanides and Wieland (2000).
M For further details and explanations regarding the collocation method adopted in this paper, see the

Appendix.
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3.1 Parameters

As a preliminary step to implementing the collocation method, we first estimate the
parameters of the state transition equations. Table 1 reports the OLS estimation
results of eqn (2) and eqn (3) based on Japanese data for the last two decades. In order
to control for the influence of the real exchange rate on the output gap, we included the
real exchange rate as a regressor in the IS equation. The only potentially controversial
matter is the theoretical restriction imposed on the coefficient of 7;, which we call n for
convenience. Theory requires n to be equal to one so that monetary policy is assured to
be neutral in the long run. This restriction turned out to be reasonable for the Japanese
data. As seen in Table 1, the Wald-test did not reject the null hypothesis of n =1 at a
5% significance level. Thus, we have restricted 7 equal to one when estimating the AS
equation. The estimation result is reported in the bottom portion of Table 1. Based

on this estimation result, we now proceed to implement the collocation method.

3.2 Numerical Results
3.2.1 Optimal Monetary Policy with a Zero Bound

The collocation nodes are set uniformly for both state variables m and y in the range
[-10, 10]. As for the benchmark case, we have set the target inflation rate, 7*, to 2%,
the central bank’s preference parameter, A, to 1 and the standard deviation of both
stochastic disturbance terms v and € to 1.5. The central bank’s discount rate, 3, has
been set at 0.615.

Figure 1 shows the interpolated optimal policy reaction function with a zero bound
on the nominal interest rate. This figure should be interpreted as the numerical coun-
terpart of the optimal policy reaction function, eqn (16), derived in Section 2. A careful
inspection of Figure 1 reveals some non-linearity of the policy reaction function, espe-
cially when the nominal interest rate is near the zero bound. This nonlinear feature
observed in Figure 1 is in sharp contrast to the linear optimal policy reaction function
(i.e., Taylor rule), which is implied when there is no zero bound on the nominal interest
rate.

Figure 2 shows the interpolated value function with a zero bound which corresponds
to the value function in eqn (6). The qualitative feature to be noted here is the
asymmetry of the curvature, which implies that the value function is not quadratic.'6
Recall that the value function means the cost-to-go, a minimized sum of period-by-period
losses given the current state, for the central bank. We can observe that the surface of

the computed value function in Figure 2 goes up sharply in the region where both the

1% At a first glance, the choice of the discount rate may appear to be counter-intuitive. This issue will
be further discussed later.
16Note that when there is no bound on the interest rate, the value function will be quadratic.
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inflation rate and the output gap are negative. This means that stabilizing the economy
is costly to the central bank when the economy is in that particular state. Practitioners
or central bankers often describe this phenomenon as a “deflationary spiral” in the sense
that the economy is almost impossible to stabilize or is on a downward divergent path
to a serious recession. This deflationary spiral phenomenon not only seems to be the
most notable harm of the zero lower bound qualitatively, but also we emphasize that
this harm is quantitatively a serious obstacle for the actual implementation of monetary
policy. We have already mentioned that we set 3, the central bank’s subjective discount
rate, equal to 0.6. While we were computing the numerical results, we found it difficult
to reach convergence in the value function when (3 was set higher than 0.6. This implies
that the Contraction Mapping Theorem for the Bellman equation (6) does not hold
when (3 is set larger than 0.6. In this regard, recall that § is a component of the roots
(see eqn (17)) of the characteristic equation (i.e., eqn (13)) presented in Section 2. We
need a small 65 so that the stationary optimal policy reaction function could exist. A
sufficiently small 3 ensures that this necessary condition for the existence of a stationary
optimal policy reaction function is met, otherwise the economy diverges so rapidly that
an optimal reaction function does not exist. Putting it another way, in order to keep the
optimal policy reaction function and the value function visible under both deflationary
and non-deflationary spiral regimes, we need a sufficiently low value of 3. Although it
may not make sense to pass a value judgement on 3, 0.6 seems to imply that given that
all those parameters in the transition matrix are correctly estimated, the central bank
in this economy is confronted with an extremely hard task to accomplish.

For comparison, we depict the optimal policy reaction function without a zero bound
(i.e., Taylor rule) and the reaction function with a zero bound under both deterministic
(i.e., 0 set to zero) and stochastic (i.e., o set to 1.5) environments in Figure 3 and Figure
4. Figure 3 shows the relationship between the nominal interest rate and the output
gap, holding the inflation rate constant. Figure 4 shows the relationship between the
nominal interest rate and the inflation rate, holding the output gap constant.

Figures 3 and 4 vividly show the key features of the optimal reaction function char-
acterized by the propositions in Section 2. First of all, the level of the optimal policy
reaction function with a zero bound is positioned lower than that of the Taylor rule.
Note that this very gap between the optimal policy reaction function and the Taylor
rule represents the term O in eqn (16). This gap implies that it is optimal for a central
bank to pursue more expansionary monetary policy (relative to the Taylor rule) in the
presence of the zero bound constraint, which is consistent with Proposition 1 proved in
Section 2. The intuition is as follows. As a side-effect of the presence of the zero bound
constraint, the deflationary spiral region emerges in the state space. With a threat
of a deflationary spiral present, it is in the interest of the central bank to lean toward

expansionary monetary policy than in the case where the threat is non-existent.
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The second observation is related to Proposition 2 proved in Section 2. As can be
seen from Figure 4, the slope of the optimal policy reaction function with respect to the
inflation rate is steeper than that of the Taylor rule (provided that the zero lower bound
constraint is non-binding).!'” Further, we observe the optimal policy reaction function
to be concave in the state variable (provided that the zero lower bound constraint is
non-binding). This concavity is closely related to the concept of “aggressive” monetary
policy conduct. In other words, as the nominal interest rate approaches the zero bound,
the threat of a deflationary spiral becomes more realistic so that it is in the interest of
a central bank to pursue even more expansionary monetary policy. This particular
behavior by a central bank can be interpreted as “aggressive” monetary policy conduct.
Moreover, provided that the risk of a deflationary spiral is monotonically increasing as
the nominal interest rate is decreasing toward zero, it is natural to conceive the optimal
policy reaction to be concave with respect to the state variables.!

Finally, one can also observe the violation of the certainty-equivalence property!'?
of optimal monetary policy by comparing the optimal policy reaction function under a
deterministic environment and a stochastic environment. The reaction function under
a stochastic environment is positioned lower than that in a deterministic environment.
The basic question here is: why does the uncertainty change the qualitative shape of
the optimal policy reaction function? It is reasonably intuitive to think that the larger
the variance of the state variables, the higher the probability for them to get caught in
the deflationary spiral region. Accordingly, it is optimal for the central bank to take
expansionary policy at an early stage, so that it can keep the economy under its control

with a higher probability in the future.

3.2.2 Robustness Check

The qualitative features observed in Figures 3 and 4 may depend upon the numerical
values of the parameters. In order to test the robustness of these qualitative features, we
conduct a sensitivity analysis in this subsection. In particular, we are interested in the
sensitivity of the policy reaction function with regard to the central bank’s unobservable

parameters: the inflation target, 7*, and the preference parameter, .2

L70f course, when the zero lower bound constraint is binding, the optimal interest rate is trivially
equal to zero — i.e., ¢* = 0. It should be noted that, as discussed in Section 2, Proposition 2 is only

valid for a state where the nominal interest rate is non-binding — i.e., ¢* > 0.
18 Although this concavity feature of the optimal policy reaction function can be clearly seen from the

numerical demonstration, we were not able to provide the analytical proof of concavity in this paper.
197t should be noted that when there is no constraint on the nominal interest rate, the optimal policy

reaction function will be exactly the same for both deterministic and stochastic cases. This is known

as a certainty-equivalence property of the Taylor rule.
29Tt should be noted that since we regard eqns (2) and (3) as the true economy and the parameter

estimates in Section 3.1 as given, we did not conduct sensitivity analysis with regard to the economy’s

parameters p, §, and a.
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Figures 5 shows the results of the sensitivity analysis in a deterministic environment.
Figure 5 depicts the contours of the optimal policy reaction functions with and without
a zero bound. The solid line represents the level curve of the optimal policy reaction
function without a zero bound. The dashed line represents the level curve of the optimal
policy reaction function in the presence of a zero bound. In the sensitivity analysis,
inflation targets of 1% and 3% have been considered, while for the preference parameter,
the values of 0.5, 1 and 2 have been considered. As can be observed for each parameter
value for 7* and A, the optimal policy reaction function is more expansionary than the
Taylor rule, especially when the inflation rate is low and the output gap is high. The
difference is as much as 7%.

Figures 6 shows the results of a sensitivity analysis in a stochastic environment. The
standard deviation of the stochastic disturbance term has been set at 1.5. As can be
observed from Figure 6, for each parameter considered, the differences in implied nominal
interest rates are pervasive throughout the state space and especially apparent when the
nominal interest rate is near the zero bound. Thus, for any parameters considered, the
concavity of the policy reaction function seems to be unaltered. By observing Figure
6, one can again identify the clear non-linearity of the level curve, which supports the
concavity of the policy reaction function in the state variables.

Finally, a very careful comparison of Figures 5 and 6 reveals the non-certainty-
equivalence property of the optimal policy reaction function. While the level curves of
the policy reaction function in Figure 5 are more kinked, the level curves in Figure 6
are much smoother — an evidence of the violation of the certainty-equivalence. Thus,
in the reasonable range of those parameters, the basic qualitative features of the policy

reaction function seem to be preserved.

4 Empirical Analysis: Japanese Monetary Policy in the
1990s

4.1 Brief Review of the Japanese Economy in the 1990s

Thus far we have discussed the theoretical and numerical implications regarding optimal
monetary policy when the nominal interest rates are bounded at zero. In this section,
in order to verify those implications empirically, we take the case of Japanese monetary
policy in the 1990s — so-called the “lost decade.”?! Before we actually conduct the

empirical analysis, it is useful to briefly review the Japanese economy in the 1990s.

*LFor a thorough review regarding Japan’s ‘lost decade’ and the important lessons learned, see, for
instance, Posen (1998), Fujiki et al. (2001), Mori et al. (2001), Ahearne et al. (2002) and Callen and
Ostry (2003).
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Figure 7 shows the time series plot of the uncollateralized overnight call rate,?? the
inflation rate,”® and the output gap?* from 1983:Q2 to 2002:Q3. As can be seen from
the figure, Japanese economy plunged into a serious recession accompanied by a sharp
decline in both output and inflation after the so-called “bubble” boom in the late 1980s.
During the first half of the 1990s, the output gap decreased by 6-7 percentage points,
with inflation going down from approximately 4% per year to almost zero by the mid
1990’s. In the meantime, the Bank of Japan (BOJ) successively cut the call rate from
about 8% down to 0.5% in 1995 to stimulate the economy. Turning to the latter half of
the 1990s, the Japanese economy basically remained stagnant, except for the temporary
economic recovery during 1996-97. In the face of another deep recession in the late
1990s accompanied by mild deflation, the BOJ adopted an unprecedented zero interest
rate policy on February 12, 1999.2° Since then, with the exception of a short-lived
recovery period during the IT boom, which occurred from 2000 to 2001, the BOJ has

been committed to the zero interest rate policy.

4.2 Qualitative Analysis

The qualitative features of the optimal monetary policy reaction function implied in
Section 3 are that it is increasing and concave (provided that the zero bound constraint

is not binding) in 7 and y, especially when the nominal interest rate is near zero. In this

*?Data of the overnight call rate are from the Bank of Japan’s Financial and Economics Statistics
Monthly. We computed the quarterly average of the call rate to construct the data set for the nominal

interest rate.

»3The inflation rate is defined as the percent change of the Consumer Price Index (CPI; ex-fresh food,
seasonally adjusted, quarterly average) from the same quarter of the previous year. It should be noted
that the CPI during the period contains the effects of the introduction of the 3% consumption tax (a vari-
ant of a value-added tax) in April, 1989, and its successive 2 percentage point raise in April, 1997. We
have adjusted these effects following Kitagawa and Kawasaki (2001). Basically, the adjustment equalizes
the inflation rate at the month directly before (i.e., March) and directly after (i.e., April) the introduction
(or raiseing) of the consumption tax and adjusts the level of the CPI accordingly. For more details re-
garding the adjustment method, see Kitagawa and Kawasaki (2001). The time series data of CPI is avail-
able from the Statistics Bureau’s homepage; (http://www.stat.go.jp/english/data/cpi/index.htm).

24 The estimates of the output gap during the period are due to Hirose and Kamada (2002). Basically,
they estimate the potential GDP growth rate taking into account the innovation in technology, the growth
rate of the production factors, and the time-variant Non-Accelerating Inflation Rate of Unemployment
(NAIRU). For more details regarding their estimation methodology, see Hirose and Kamada (2002).
It should be noted that the output gap in Hirose and Kamada (2002) is defined as the deviation of
the current output from its maximum potential level. Thus, by construction, their estimates of the
output gap always take a negative number. In order to suit their data to our definition, we have simply
demeaned their estimates of the output gap. We would like to acknowledge Yasuo Hirose for graciously
providing the data to us. Their estimates of the output gap are available to the public upon request.

%5 As for the zero interest rate policy, the Bank of Japan (1999) officially states: “Since the launch of
the zero interest rate policy in February, the Bank has continued to provide the financial market with

ample funds to guide the overnight call rate as low as possible, currently at virtually zero percent - --.”
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subsection, using the time series data shown in Figure 7, we test these qualitative impli-
cations by estimating the monetary policy reaction function of the BOJ from 1983:Q2
to 2002:Q3.

Several issues need to be addressed in estimating the policy reaction function. If the
closed form expression of the policy reaction function is known, it is ideal to specify the
regression form accordingly. Unfortunately, however, since the closed form expression
of the policy reaction function does not exist, we adopt a polynomial regression to
capture the increasing and concave nature of the policy reaction function. The choice
of polynomial regression can be justified as an approximation of the policy reaction
function via Taylor series expansion. Further, since the goal of this subsection is to
detect the qualitative nature of the policy reaction function, polynomial regression is
deemed sufficient for our purpose. Under polynomial regression, we expect that the
coefficients on 72 and/or y? to be significantly different from zero, indeed negative, if
Japanese monetary policy conduct was consistent with our model’s implication.

The benchmark specification is in the spirit of the Taylor rule.

Benchmark Specification:
iy = Co+ 17y + oyt + e (19)

where e; is assumed to be independently and identically normally®® distributed with
variance o2.
For alternative specifications, we consider the following polynomial form.

Alternative Specification:
if = co+ 1Ty + Coyp + C3T] + Cay + 5Ty + € (20)

where e; is, again, assumed to be independently and identically normally distributed with
the variance 02. The alternative specification — which can be interpreted as a second
order Taylor series approximation of the policy reaction function —is capable of capturing
the concavity of the policy function with respect to m and y due to the presence of square-
terms. Some caution needs to be exerted in estimating the above specifications. Due
to some zero interest rate observations of the call rate,?” if we simply conduct least
squares estimation such as OLS, the coefficient estimates will likely be biased (see, for

instance, Cheung and Goldberger, 1984). In order to obtain unbiased estimates, we

26The assumption of normal distribution is purely auxiliary. However, this assumption is necessary
for the following Tobit analysis which calculates the exact probability of observing the positive nominal
interest rate.

27Tt should be noted that, in practice, perfect fine-tuning of the overnight call rate is not feasible
since the BOJ’s open market operation can only be implemented in a discrete manner. Indeed, the
quaterly-average of the call rate during the zero interest rate policy was slightly above zero (0.03% to
be specific). Nevertheless, taking into account the BOJ’s intention during the zero interest rate policy,

we assumed that the call rate was binding at zero during the period.
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therefore conduct Tobit analysis. Also, as can be seen from Figure 7, the inflation rate
and output gap move in a synchronous fashion. Thus, empirically speaking, there is
an issue of multicollinearity among the regressors 72, y?, and my. In order to check
the robustness of the alternative specification in the presence of multicollinearity, we
estimate and test four alternative specifications.

Following the standard procedure in Tobit analysis, we assume that “latent” interest
rate ¢* is observed only if it is greater than zero. Otherwise, it is left-censored at zero.

This is expressed mathematically as follows,

. 0 ifif <0
1t = .
‘ it if i >0

Thus, under this Tobit model, the probability of the observed nominal interest rate to
be zero is given as Pr(i; = 0) = 1 — ® (¢'x¢ /o) and the likelihood of an observed positive
nominal interest rate is given as f(i;) = ¢ ((it — ¢'x¢)/0) /o, where ¢ stands for the
vector of coefficients, x; is the vector of regressors, ® (-) is the standard normal c.d.f.
and ¢ (-) is the standard normal p.d.f. Therefore, the log-likelihood function of the

observed interest rates (i1, ...,i7) can be expressed as
. c'xy
+1(4=0In{1 -0 —
o

where 1(+) is an indicator function which takes the value of one, if the condition inside

T

lnL:Z{l(it>0)

t=1

(it — C/Xt)2

—In(27)/2 —Ino — =

the parenthesis is true, and zero otherwise. The result of the Maximum Likelihood
(ML) estimation is reported in Table 2.

The top portion of Table 2 reports the estimates of the coefficient vector ¢ and o
for the benchmark and four alternative specifications. The benchmark specification
is in the spirit of the Taylor rule. As can be seen, the coefficient estimates for all
the regressors were statistically significant at the 1% level. Further, the coefficient
estimates for the inflation rate (which was 1.585) and output gap (which was 0.570)
were remarkably similar to those estimates by Taylor (1993). Alternative 1 is the
most general specification including the square terms 72 and y? and the cross-products
my. Alternative 2 allows for the concavity both in 7 and y, but excludes the cross-
products 7my.  Alternative 3 allows for the concavity in m, but not in y. Finally,
Alternative 4 allows for the concavity in ¥y, but not in w. The coefficient estimates on
72 and y? were negative for all the specifications, but the results were not statistically
significant for Alternatives 1 and 2. Even for Alternatives 3 and 4, which are deemed
relatively free from the multicollinearity problem, the coefficient estimates for 72 and y?
were statistically significant at the 10% significance level, but marginally insignificant

at the 5% level. Although the evidence was not too strong, the results from the Tobit
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estimation are basically in line with the qualitative implication that the policy reaction
function is (locally) concave.?8

In addition, in order to test the overall performance of the benchmark specifications
against the alternative specification, we conducted a log-likelihood ratio test. The
null hypothesis is that, for all the second order terms in each alternative specification,
the coeflicients are jointly equal to zero. By restricting the coefficient of second order
terms as such, each alternative specification reduces to the benchmark specification.
Therefore, under the null hypothesis, the test can be motivated as a performance test of
the benchmark specification, which is a proxy for the Taylor rule, against the alternative
specification, which allows for the policy reaction function to be concave. The result of
the log-likelihood ratio test is reported at the bottom portion of Table 2. As can be
seen, the test rejects the null hypothesis for all the cases at the significance level of 10%,
which is evidence (albeit weak) against the benchmark specification. This test result
is additional evidence that supports the concavity of the policy reaction function when

the nominal interest rate is near zero.

4.3 Quantitative Analysis

In the previous subsection, we have empirically verified the qualitative implications from
Section 3, especially the concavity of the policy reaction function. However, qualitative
analysis is unindicative about the optimality of the level of the nominal interest rate.
In order to verify whether the level of the actual nominal interest rate was consistent
with the optimal monetary policy discussed in this paper, a quantitative analysis is
indispensable. In this subsection, we quantitatively analyze Japanese monetary policy
conduct during the 1990s by comparing the actual call rate path with the simulated
path implied by the optimal policy reaction function computed in Section 3.29

Figure 8 shows the actual call rate, the predicted path from the estimated Taylor
rule (i.e., the benchmark case in Table 2), and the simulated path implied by the optimal
policy reaction function in Section 3. Let us first turn to the estimated Taylor rule. As

can be seen from the figure, the estimated Taylor rule matches the actual movement of

2From August 2000 to March 2001, the BOJ adopted a controversial monetary policy. Despite
the weak movement in output with no sign of deflation abating, the BOJ raised the overnight call rate
during that period. Although not reported in the main section, we have also conducted a counterfactual
estimation assuming that the BOJ kept the zero interest rate policy during this period. Indeed,
under this counterfactual estimation, the coefficient estimates for all the alternative specifications were
significantly negative. Thus, one of the reasons that we were only able to find weak qualitative evidence
regarding the concavity of the policy reaction function stems from the controversial monetary policy
conduct during this period. Although we have no intention to pass any value judgment here, we can at
least say that the actual monetary policy conduct from August 2000 to March 2001 deviated from the

optimal monetary policy reaction function considered in this paper.
2 Parameter values used here are those of the benchmark case in Section 3.1.

20



the call rate fairly well until the mid 1990s, which is consistent with the findings reported
in McCallum (1999) and Muto and Kamada (2000). This can be considered evidence
that Japanese monetary policy was following the naive Taylor rule until the mid 1990s.
In contrast, turning to the period from 1995 to 1998, the estimated Taylor rule suggests
that the call rate should have been raised to as much as 4 percent in response to the
temporary expansion of the Japanese economy, while, in reality, the BOJ maintained an
almost zero interest rate during that period — an anomaly which remains unexplained
by the naive Taylor rule. Taking the implication of the estimated Taylor rule at face
value, this implies that the actual monetary policy conduct during this period was too
expansionary.

Now, let us turn to the simulated path implied by the optimal monetary policy
reaction function in Figure 8. By comparing®’ the simulated path and the actual path of
the call rate, two main observations can be made. The first observation concerns the first
half of the 1990s. In response to sharply declining output accompanied by disinflation,
the BOJ consecutively cut the call rate from 8 percent to 0.5 percent during the period
from 1991 to 1995. At first glance, especially in light of the estimated Taylor rule, this
monetary policy conduct by the BOJ does not seem to be too problematic. However,
turning to the simulated path implied by the optimal policy reaction function during
the period, we observe an aggressive decline in the simulated call rate reaching 0 percent
as early as 1993.3!  This implication from the optimal policy reaction function stands
in sharp contrast to the naive Taylor rule. Taking the implication from the simulated
path for granted, this implies that the actual conduct of Japanese monetary policy
was too contractionary and too slow in responding to the falling output and inflation
rate during the early 1990s. In particular, in comparison to the aggressive rate-cut
implied by the simulated path from 1992 to 1995, the gradual reduction of the call rate
during this period reveals the BOJ’s hesitation in breaking the psychological floor of 2%.
According to our model’s implications, this hesitation — which can be considered as a
“preserving the ammunition” policy — was clearly sub-optimal and possibly destructive

in the sense that the bank was applying contractionary pressure when the Japanese

30The simulated path has been calculated assuming a time-invariant inflation target of 2 percent.
Some caution needs to be exerted when comparing the simulated path and the actual path. First of
all, it may be possible that the BOJ’s implicit inflation targets were different in the early 1990s and
late 1990s. Indeed, during the early 1990s, the average Japanese inflation rate was essentially higher
than that in the late 1990s, which might imply that there was a break in the implicit inflation target.
Further, it may be possible that the BOJ might be pursuing more complex targets, not confined to the
inflation rate or output gap. When comparing the actual path and simulated path, these possibilities

must be kept in mind.
31 This aggressive decline in the nominal interest rate relative to the Taylor rule is consistent with

what Reifschneider and Williams (2000) called “forward-looking adjustment” strategy. They suggest
policymakers cut the nominal interest rate pre-emptively if they anticipate the zero lower bound to bind

in the near future.
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economy was already on the way to a liquidity trap. Finally, by the end of 1995, the
BOJ aggressively decreased the call rate from 2% to 0.5%, although, in retrospect, this
stimulus seems to have been “too-little, too-late” in preventing a liquidity trap. One
possible interpretation is that the BOJ may have underestimated the risk caused by the
zero lower bound and therefore did not dare to take aggressive action in cutting the call
rate in order to pre-empt a possibility of being caught by the liquidity trap in the future.

The second observation concerns the latter half of the 1990s. Despite the temporary
economic recovery from 1996 to 1997, the BOJ did not react to this boom, but main-
tained a low interest rate policy (the actual call rate was fixed at 0.5 percent during the
period). As we have seen, the predicted path from the estimated Taylor rule suggests
the raising of the call rate during this period, implying that actual monetary policy
was too expansionary. In contrast, turning to the simulated path during this period,
we observe that the simulated call rate was kept at zero percent, except for a marginal
rise in 1997.32  Taking the indication by the simulated path for granted, this suggests
that the policy conduct by the BOJ during this period was basically consistent with the
optimal monetary policy reaction considered in this paper. One possible interpretation
is that the policy stance of the BOJ was sufficiently “precautionary” that it kept the
nominal interest rate low during this period in order to reduce the risk of falling into
a deflationary spiral. Being precautionary to avoid a deflationary spiral gives enough
reason for the BOJ to conduct more expansionary monetary policy than the naive Taylor
rule. This interpretation is essentially consistent with the nonlinear reaction function
advocated by Blinder (2000), Reifschneider and Williams (2000), and Orphanides and
Wieland (2000).

In sum, Japanese monetary policy seemed to have closely followed the naive Taylor
rule during the early 1990s, showing no sign of aggressiveness in pre-empting the risk of
falling into a deflationary spiral. In contrast, the low interest policy during the late 1990s
turned out to be fairly consistent with the optimal monetary policy reaction considered
in this paper, showing some signs of precautionary®® monetary policy conduct. In this
sense, the BOJ’s monetary policy conduct during 1990s seems to have followed two
different types of policy regimes - i.e, the naive Taylor rule in the first half of the decade
and the “precautionary” monetary policy in the latter half of the decade. Then, the

32This belated rise of the nominal interest rate relative to the Taylor rule is consistent with what

Reifschneider and Williams (2000) called the “backward-looking adjustment” strategy. They suggest
policymakers hold down the nominal interest rate longer than the Taylor rule during the recovery
period from a liquidity trap. Thus, the optimal monetary policy reaction function considered in this
paper is successful in replicating the “forward-looking” and “backward-looking” strategies proposed by
Reifschneider and Williams (2000).

33 The terms “aggressive” and “precautionary” may sound confusing for some readers. In this paper,
both terms are essentially refering to the same concept proved in Proposition 2. However, since the
term “aggressive” sounds awkward to be used in the recovery phase of the economy, we instead use the

term “precautionary” in refering to the same concept.
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question is what prompted the BOJ to change its monetary policy stance before and
after the mid 1990s? One possible explanation comes from the balance sheet channel
advocated by Bernanke and Gertler (1989). After the bursting of the asset price bubble
in the beginning of the 1990s, corporate balance sheets have gradually, but severely
deteriorated, weakening the financial position (i.e., the net worth) of many borrowers
in Japan. From the viewpoint of the balance sheet channel, which assumes some kind
of a friction in the credit market, this reduction in net worth will in turn raise the
external finance premium, making it harder for a firm to borrow. As such, the bursting
of the asset bubble — which can be considered an exogenous shock to the Japanese
economy — could have possibly weakened the monetary policy transmission mechanism,
prompting the BOJ to take a precautionary stance after the mid 1990s.3*  Although
this explanation is convincing, since the focus of this paper is on the standard nominal
interest rate channel, we will exclude the balance sheet channel from the scope of this

paper and will not pursue it further.

5 Concluding Remarks

In this paper, we have studied the optimal policy reaction function where the zero lower
bound of nominal interest rates might interfere with the conduct of monetary policy.
The main contribution of this paper is that we have derived an analytical expression of
the optimal monetary policy reaction function in the presence of the zero lower bound
and proved the key properties that it is more expansionary and more aggressive than the
Taylor rule. Although preceding research has pointed out or simulated these properties,
to the best of our knowledge, none has derived an analytical expression of the optimal
policy reaction function in the presence of the zero lower bound or formally proved
the above properties. Further, in order to verify these analytical implications, we
have numerically approximated the optimal policy reaction function using the method
known as the collocation method. Conforming with the earlier numerical and simulation
results demonstrated in Reifschneider and Williams (2000) and Orphanides and Wieland
(2000), we have verified that, indeed, the reaction function is more expansionary and
aggressive than the Taylor rule and concave (provided that the nominal interest rate is
not binding at zero) in the inflation rate and the output gap. Based on this numerically
approximated optimal reaction function, we have empirically tested the qualitative and
quantitative implications taking the case of Japanese monetary policy conduct in the

1990s. According to our Tobit estimation results, we found some empirical evidence

3 Bernanke and Gertler (1999) conduct a simulation study using the Japanese data. According to
their result, on the contrary to our conjecture, they report the simulated path of the call rate to be
higher than the actual monetary policy conduct during 1996-97. However, it should be noted that their
dynamic general equilibrium model does not take into account the zero lower bound constraint on the

nominal interest rate.
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that BOJ’s monetary policy conduct in the 1990s was qualitatively consistent — i.e.,
concave in inflation rate and output gap — with the optimal policy reaction function
implied in the paper. Finally, in order to evaluate the BOJ’s monetary policy conduct
quantitatively, we have compared the actual path of the nominal interest rate with
the simulated path implied by the numerically approximated policy reaction function.
According to our quantitative analysis, we found the BOJ’s monetary policy conduct
in the first half of the 1990s to be too contractionary and too slow in responding to
disinflation and declining output, while, in the latter half of the 1990s, we found the
BOJ’s low interest rate policy to be fairly consistent with the optimal policy reaction
function implied in our model.

One important remark should be made. The economy assumed in this paper is the
simplest case, in the sense that state variables in the transition system are bivariate
VAR(1) of the inflation rate and the output gap. In general, it is likely that the
state variables in the “true” transition system of the economy are not limited to the
inflation rate and the output gap. Generally speaking, the transition system may
be multivariate VAR(P) and not limited to the state variables of the inflation rate
and the output gap. Yet, it is still notable that the optimal policy reaction function
derived based on the simple VAR(1) transition system was able to capture the qualitative
character of the BOJ’s monetary policy conduct in the 1990s fairly well, despite the
mixed evidence revealed by the quantitative analysis. It remains to be seen whether a
more general specification of the transition system can characterize both the qualitative
and quantitative features of Japanese monetary policy in the 1990s. Although this

extension is interesting and important, this will be left for future research.

24



A Appendix: Proof of Propositions

A.1 Proposition 1

First, let us note from Svensson (1997a) that

01 +60; -1 0 —1
iTaylW:m+<a+—p1+ ! >yt+< - )(m—w*).

66‘1 06691

Then by eqn (16) and by 6,61 > 0, suffice to show

m .
g 5B Wy <0,
i—0

where Uy = (pBs 00— (L+p+abd)yy; + 6711/115_“-) 61, Expanding the terms
and multiplying 6 on both sides will yield the following expression.

6 Z%Et\ljt—&-i = (5_11/% —(1+p+ aé)Eﬂ/’t-&-l + P@Etlbt-i-z)
i=0

+05 (B Bty — (14 p+ ad)Epyyn + pBE,, 3)
+9% (ﬁflEt@Z)H-z —(1+p+ 045)Et¢t+3 + PﬁEt¢t+4)
+ .« o

+0% (571Et7/’t+¢ — (1 +p+ad)Epby i+ pBEwiys)

.
1 1
= Bq/}t— {p-ﬁ-aéﬁ-l@

- [% (8= 02) (62 — pB) + o«%] B sy,
=0

(B— 92)] Ewby g

1 1
= B¢t - {P +ad+ (1 - 9_1)] Eupy iy

oo

- 0201 = ) )+ 8e| Y (22)

§=0

But since i* is strictly greater than zero and the constraint is not binding at the current
period t, it follows that ¢/, = 0. Otherwise the optimal interest rate ¢} is trivially
equal to zero. Since the rest of expected Lagrange multipliers, {Et¢t +i}21’ are all
non-negative, it suffices to show that the coefficients on the second term and third term
of eqn (22) inside the brackets are positive. Since #; > 1, the coefficient inside the
brackets of the second term is positive. Finally, since 1 > 65 > 0, the coeflicient inside

the brackets of the third term is assured to be positive under the regularity condition
such that 67! + ad/ (01 — 62) > p.
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A.2 Proposition 2

Since technically it is equivalent to choose i; and Fyy;11, the Bellman equation (eqn
(6)) can be rewritten as an alternative expression which represents a one-state (i.e.,
st = m + aye) and one-control (i.e., Eyyy1) variable problem as follows,

. _ 1 .

Ve (s¢) = min F [— {y,52+1 + A (41 — 7r*)2} + BVC (St+1):| ,

Etyty1<ct 2

where ¢; = (p+ ab) y; + 6m;. Note that the newly defined value function VC (s;) cor-
responds to our previous notation V (y:,7¢) in eqn (6). As a result, the first order

condition is also rewritten in the following equation,®

Etyt+1 + Oé,BEtf/:C/ (St—H) =0.

Combining this first order condition with the IS equation, we can obtain another closed
form expression of the optimal reaction function (i.e., eqn (16)),

i = (a + g) Y + T+ 5_1045Et‘70, (8¢41), (23)

where st11 = 1ty = (e + aye + €41)+a ((p + ad) yp + 6w — 8if + vey1). Thus
this eqn (23) is a closed form expression of the optimal reaction function whose argu-
ments are only current state variables. On the other hand, let the value function of the
unconstrained problem be XN/U(Q). When there is no zero lower bound, the third term
of eqn (23) is replaced by § LaBE; VY (s141) for i} “Y'" Now consider that i} — i} “¥'"

can be rewritten in the following expression,
% Tayl - > o
it — i, VT =6 aBE (VY (sp401) = VY (s141)] -
Recall that ¢, inside each value function V (e) and VU (e) is also a function of each i;.

Hence, we can apply the implicit function theorem to this so that,

‘N/C”(Stﬂ) _ ‘N/U”(Stﬂ)
1+ a2ﬁ‘7c’/(5t+1) 1+ a2ﬁ‘7U”(st+1)

81* 8Z-Tayl0'r 81* 8Z-Tayl0'r a2[3
it Oy —a t Y% — E

0yy 0yy omy ory s ¢

Hence, it suffices to show that,
‘N/C// > ‘7U//.

The rest of the proof is mainly based on Chmielewski and Manousiouthakis (1996).
Let us state the lemma provided in Chmielewski and Manousiouthakis (1996) in a mod-

ified form so that we can apply it to our problem.

3 One can verify that this first order condition is equivalent to the one that we derived in Section 2.

See Svensson (1997a) for this short-cut notation.
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Lemma 1 (Chmielewski&Manousiouthakis (1996)) Define a twice differentiable
continuous function, h:-R — R, h(s;) = VC(s;) — VU(s;), where s; is a state variable.

Then h(st) is a convex function, i.e., h” > 0.

Proof. It can be easily verified that the above constrained and unconstrained dy-

namic programming can be rewritten as

VY(s0) = min {Eoiﬁt(ks% +x?)}

zy<cy o

st. sgp1 = Sptax+ &y

o
VY(so) = min {Eo > B (st + x?)} :
o t=0
st sgy1 = sptax+&y

where s; = 7 + ayr, ¥ = Eyii1, {01 = Se41 + QU1 (For notational simplicity, we
rewrite the initial period as zero, instead of ¢.) Let {Z{}22,, {z¢1%2,, {#V}22, and
{2V}22, be the optimal path of the control variable for a constrained and unconstrained
problem, respectively, given initial states 5y and s9. Let {8}, {3712, {3V},
and {3 }2°, be the controlled optimal path of the state variable for the constrained
and unconstrained problem respectively, given initial states 5y and sg. Now define
St =as;+ (1 —a)s; and Tr = aZy + (1 — a)z; where 0 < a < 1. Then, from Chmielewski
and Manousiouthakis (1996), it can be shown that the pair of sequences {Z{ }?°, and
{z¢ 1220 under the constrained problem is feasible, but not necessarily equal to the
optimal path given the initial state 55. Also, it can be shown that the pair of sequences
{22, and {3V}2°, under the unconstrained problem is feasible and optimal given

the initial state 5. Therefore, the following inequality holds.

h(s0) = V9 (50) — VY (50) < Eg iﬁt [)\ (39)° + (55)2} — Ey iﬁt [)\ (V) + (f,?ﬂ
t=0 t=0

Then, it suffices to show that
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which is equivalent to showing that

EOth< AGE = 30) 1 (2 — 30) ) Ezgt( VY (2 zy))]go.

a—l

Now, define 5; = 5; —5;. Then, again, it can be shown that the sequence {?f }22 under
the constrained problem is feasible, but not necessary optimal given the initial state 5.
Similarly, it can be shown that the sequence {?? 122, under the unconstrained problem

is feasible and optimal given the initial state 50. Therefore, the following is true.
- e N2 N2
VOE) < E ) # {A (Ef) + (ff) }
t=0
~ = > . _U\ 2 U\ 2
V() = Eo) B A(Et) + (ft) .
t=0

But since the cost of the constrained problem is higher or equal to the unconstrained

problem for any initial state, it then follows that V(50) > VU (5p), which in turn implies

that
O NCHRCINEES S NCORICINE

This proves the lemma. ®

B Appendix: Collocation Method

In this appendix, we explain the numerical algorithm in approximating the value func-
tion and optimal policy reaction function in the presence of the zero bound constraint.
Specifically, we employ the numerical method known as the collocation method?® in
solving the functional fixed-point problem posed by the Bellman equation.

For convenience, let us restate the Bellman equation (eqn (6)) suppressing the time

subscripts as follows,
V(m,y) = min{ f(m,y) + BEV(g(m,y, 2,v,€)}, (24)

where f(7,y) stands for the period-by-period loss function and g(m,y, x, v, €) stands for
the state transition function. Note that the nominal interest rate, denoted by x in this
appendix, is constrained by the zero lower bound. The state transition function is linear

in the state variables and the coefficient matrix is time-invariant, i.e.,

EaiBRE N

36For complete elucidation regarding the collocation method, see Judd (1998, Ch.11 and 12) and
Miranda and Fackler (2002, Ch.8 and 9).

g(7T7y7x7U76): x+
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Given the above specification of the Bellman equation and the state transition function,
our goal is to interpolate the value function V(7,y) in the interval of —10 < 7 < 10 and
—10 <y < 10.

The collocation method proceeds in the following steps. First, we discretize the state
space by the set of interpolation nodes such that Node = {(mn,,¥n,)| nr = 1,2,--- , Ny
and ny, =1,2,--- ,Ny}.37 Thus, we discretize the state space into the total of N x N,
interpolation nodes. Then we interpolate the value function V'(-) using a cubic spline
function®® over these interpolation nodes as follows.

N Ny

V(TrpYn,) = Z Zcijy?(ﬂnw)ﬁ(yny) for each (7, ,Yyn,) € Node (25)
i=1 j=1

The basis functions 77 () and 7% (yn, ) take the form of cubic spline functions and are

defined as
301-622(1 — g0)) ifgr = Pegm <1

Vi (Tn,) = 3(1—qq)? if 1 <gr <2
0 otherwise
31— 6g3(1 —qy)) ifg, =Tl <1
Vi (yn,) = 11— g,)? if1<gq, <2 ,
0 otherwise

where m; = 7w + wi, where w is an equal step from the lower bound of state 7 (which is
-10 in this paper) to the upper bound (which is 10 in this paper). The definition of y;
is similar. Interpolation equations (25) could be expressed compactly using the tensor

product notation as follows,
v=[l &l c, (26)

where v stands for Nz N, x 1 vector of the values of V (7, ,¥n,) for each interpolation
node, I'; stands for Ny x N matrix of the basis functions 77 (7, ) (i.e., each matrix
element is defined as I'z[i,ng] = 77 (mp,.)), I'y stands for N, x N, matrix of the basis

functions 7? (Yn, ), and c stands for NN, x 1 vector of the basis coefficients c;;.

3TThere are several ways to discretize the state space. One example is Chebychev nodes. However,
in order to preserve the exact solution of the value function and optimal policy reaction function at the

equally distributed states, equally distributed interpolation nodes have been chosen in this paper.
38 There are several other options for the basis function. One of the most frequently used basis

functions is the Chebychev polynomial, which is known to possess superior properties when the curvature
of the function to be interpolated is “nice and smooth.” In contrast, the cubic spline function is known
to possess superior properties when the function contains some “kinks.” Since the value function and
the optimal policy reaction function are kinked due to the presence of the zero lower bound in this
paper, the cubic spline function will be our choice as a basis function. For more details regarding the
cubic spline interpolation, see Judd (1998, Ch.6), Cheney and Kincaid (1999), and Miranda and Fackler
(2002, Ch.6).
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Next, we turn to the right-hand side of the Bellman equation (24). In approximat-
ing the expected value function, i.e., E[V(g(m,y,x,v,e)], we assume the distribution
of the error terms (v,e) to be 4.i.d. multivariate normal. Under the assumption of
normal distribution, the expected value function can be approximated by the Gaussian-
Hermite quadrature method” — a member of the Gaussian quadrature methods which is
specifically used when the error terms are normally distributed. The Gaussian-Hermite
quadrature method discretizes the random space with the set of quadrature nodes such
that QNode = {(vn,,en.)|ho = 1,2,--- , M, and h. = 1,2,--- | M.} with correspond-
ing quadrature weights wp, p.. Thus, we discretize the random space into a total of
M, x M. quadrature nodes. Then by substituting the interpolation equation (25) for
the value function V(g(7,y,x,v,e), the right-hand side of the Bellman equation can be

approximated as

Mv ME N‘rr Ny

RHSpn,(c) =min q f(Tn,,yn,) + 0 Z Z Z thuhscij%j(g(wnra?/ny,x,vhmghs))

x>0
- hy=1 he=1 i=1 j=1
(27)

for each (7, ,¥yn,) € Node where v,;; stands for the cross products of the basis func-
tion. The minimization of the above problem with respect to x can be attained using
a standard Quasi-Newton optimization method. It should be noted that when imple-
menting this minimization problem, one should pay attention to the corner solution of
the minimization problem due to the zero lower bound constraint on the control variable
x.

Finally, by equating eqn (25) and eqn (27) for each interpolation node, we obtain

the following approximation of the Bellman equation (24);

Nx Ny

Z Z ¢ijVi (Tne )V (Yn,) = RH Spon, (c) for each (., yn,) € Node. (28)
i=1 j=1

Using the tensor product notation, the above equation can be compactly expressed as
I ®I'ylc = RHS(c), (29)

where RHS(c) stands for Ny N, x 1 vector of the values of RHS,, n,(c). Now the
task is to find the unknown basis coefficient vector c¢ from the above nonlinear equation
system (29). The nonlinear equation system can be solved using an iterative nonlinear

root-finding technique such as the Functional Iteration method, Newton’s method or a

% For more details regarding the Gaussian Quadrature method, see Judd (1998, Ch.7) and Miranda
and Fackler (2002, Ch. 5).
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Quasi-Newton method.*’ For computational ease, we adopt the Functional Iteration

method as the solution algorithm.

Algorithm 1 (Functional Iteration method)

Step 1:  Choose the degree of approximation Ny, Ny, M,, and M.. Then set the
appropriate interpolation nodes and quadrature nodes for the state space and random
space, respectively. Guess the initial basis coefficients vector cy.

Step 2: Update the basis coefficient vector by the following functional iteration;

i1 — (I @0, - RHS(cy).

Step 3:  Check for convergence. If |cijpt1 — Ciji| < T for any i and j, where T is a

convergence tolerance parameter, then stop. Otherwise, repeat step 2.

Once convergence has been reached, the interpolation of the value function V(m,y)
is now attained. Of course, as a by-product of interpolating the value function, the
approximation of the optimal policy function z*(m,y) will also be attained at the same
time. It should be noted that one can attain the desired level of approximation by con-
trolling the degree of interpolation nodes, quadrature nodes and convergence tolerance

parameter 7 with a trade-off of convergence speed.*!

Y0For more details regarding the nonlinear root-finding technique, see Judd (1998, Ch.5) and Miranda
and Fackler (2002, Ch.3).

"'In our paper, we have set the parameter values as follows; N = 20, N, = 20, M, = 3, M. = 3
and 7 = 1078, With these parameter values, the maximum absolute approximation error of the value
function was smaller than 1073,  Using the Pentium III computing environment, convergence was

attained within 10 minutes in most cases.
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Table 1: OLS Estimation Results for Eqn (2) and (3)
Yep1 = const + pys + ORINT; + a1 SRD Rt + vy

Regressor Coeft. S.E. t-stat
const. -0.035 0.076 -0.459
Yt 0.754 0.073 10.206**
RINT; -0.445 0.134 -3.331%*
SRDR 1.050 0.411 2.552%
Ti41 = const + Ny + Yy + €¢41
Specification Test Hy:n=1
Wald Statistics 2.842
Regressor Coeff. S.E. t-stat.
const. -0.115 0.078 -1.473
e 1 - - - -

Yt 0.086 0.050 1.708

Note: The data source for the price level is Statistics Bureau & Statistics Center’s Consumer Price Index Japan
Monthly, the output gap is from Watanabe (1997) and the real interest rate, RINT, is from the Bank of Japan
(1996). The inflation rate, 7, was constructed as the percent change in the consumer price index from the
same month of the previous year and has been converted into quarterly data by taking a quarterly average.
Finally, ¥ was constructed by estimating the aggregate production function. For the detailed methodology, see
Watanabe (1997). SRDS is the real exchange rate from Kamada and Muto (2000). This real exchange rate
data is normalized so that its average equals zero. Rejection of the null hypothesis at the significance level of

5% and 1% is indicated by (*) and (**) respectively.
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Table 2: Tobit Estimation Results and Log-Likelihood Ratio Test

Benchmark Alternative 1 Alternative 2 Alternative 3 Alternative 4
Regressor Coeft. z-stat. Coeff. z-stat. Coeff. z-stat. Coeft. z-stat Coeft. z-stat.
cst. 1.668 7.329% %% 1.676 5.545%* 1.776 6.139%** 1.567 6.749%x* 1.918 7.440%*x*
(0.228) [0.000] (0.302) [0.000] (0.289) [0.000] (0.232) [0.000] (0.258) [0.000]
T 1.585 8.156%** 2.615 3.559%x* 1.988 4.522%%* 2.236 5. 77 3%x* 1.579 8.145%**
(0.194) [0.000] (0.735) [0.000] (0.440) [0.000] (0.387) [0.000] (0.194) [0.000]
Yy 0.570 5.27THxx* 0.382 1.503 0.619 5.048*** 0.557 5.172%xx* 0.650 5.369%**
(0.108) [0.000] (0.254) [0.133] (0.123) [0.000] (0.108) [0.000] (0.121) [0.000]
2 -- - - -0.492 -1.422 -0.166 -1.035 -0.266 -1.936* -- --
(0.346) [0.155] (0.161) [0.301] (0.137) [0.053]
y2 -- - - -0.126 -1.534 -0.054 -1.192 - - -- -0.077 -1.948+*
(0.082) [0.125] (0.045) [0.233] (0.040) [0.051]
Y - .- 0.282 1.061 .- .- - .- - .-
(0.266) [0.289]
(& 1.176 - - 1.152 - - 1.161 - - 1.158 - - 1.171 - -
(0.102) (0.100) (0.101) (0.1001) (0.102)
Log-Likelihood Ratio Test
Hp: c3=cq=c5=0 Hp: c3=cq=0 Hy: ¢3=0 Hp: cq4=0
log-LR statistic 6.422% 5.304%* 3.805%* 4.243%*
[0.093] [0.070] [0.051] [0.039]

Note: The number inside the parentheses denotes the standard error.

the p-value.

Berndt, Hall, Hall, and Hausman (1974).

5% and 1% is indicated by (*), (**), and (***), respectively.

zero, z-statistic is asymptotically distributed as the standard normal.

The number inside the brackets denotes
In estimating the asymptotic variance of the ML estimator, we used the algorithm proposed by
Rejection of the null hypothesis at the significance levels of 10%,
Note that under the null of coefficient equal to

Also note that the log-LR statistic under

the null is asymptotically X2 distributed with a degree of freedom corresponding to the number of restrictions

imposed.
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Figure 1: Optimal Monetary Policy Reaction Function with Zero Bound
(Inflation Target = 2%, | =1, s =1.5)
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Figure 2: Value Function with Zero Bound
(Inflation Target = 2%, | =1,s =1.5)
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Figure 3: Cross Sectional View of the Optimal Policy Reaction Function

(Inflation rate held constant at —1.77%)
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Figure 4: Cross Sectional View of the Optimal Policy Reaction Function
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Figure 5: Sensitivity Analysis of the Policy Reaction Function

(Deterministic Environment)
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Figure 6: Sensitivity Analysis of the Policy Reaction Function

(Stochastic Environment)
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Figure 7: Inflation Rate, Output Gap, and Call Rate: 1983:Q2 - 2002:Q3
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Sources: Bank of Japan, Financial and Economic Statistics Monthly; Ministry of Public Management,

Home Affairs, Posts and Telecommunications, Consumer Price Index; Hirose and Kamada (2002).

Figure 8: Simulated Path, Estimated Taylor Rule, and Actual Call Rate
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