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In the dynamic factor model, a single unobserved factor common to some 
macroeconomic variables is defined as a composite index to measure business cycles. 
This model has recently been developed by combining with the regime-switching 
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dynamic Markov switching factor model is that estimating the model by a Bayesian 
method produces the posterior probabilities that the economy is in the recession 
regime, which can be used to date the business cycle turning points. This article 
estimates the dynamic Markov switching factor model using some macroeconomic 
variables in Japan. The model comparison using Bayes factor does not provide strong 
evidence that the mean growth of the index shifts, but the dynamic Markov switching 
factor model is found to produce the estimates of turning points close to the reference 
dates by the Economic and Social Research Institute in Cabinet Office unless only 
weakly correlated variables are used. 
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1 Introduction

How should we measure business cycles? This problem has long attracted the attention

of many macroeconomists and econometricians, and several methods have been proposed.

A well-known method is the one based on dynamic factor models proposed by Stock and

Watson (1989,1991). They define the composite index of coincident economic indicators

to measure the state of overall economic activity as a single unobserved factor common to

several macroeconomic variables using a dynamic factor model. Because their model can be

estimated by the maximum likelihood method via the Kalman filter, their composite index

can be estimated by running the Kalman filter or smoother given the maximum likelihood

estimates of the parameters.

Kim and Nelson (1998) extend the dynamic factor model of Stock and Watson (1989,1991)

so that the mean growth rate of the composite index may vary depending on whether the

economy is in the recession regime or in the boom regime. They specify the mean growth

rate of the index using the regime-switching model of Hamilton (1989). One advantage of

their model is that it produces not only the composite index but also the probabilities that

the economy is in the recession regime, which can be utilized to date the business cycle

turning points. It is, however, difficult to evaluate the likelihood in their model, so that they

apply a Bayesian method via the Gibbs sampler. Specifically, the model parameters, the

latent factor, and the regime are sampled from their posterior distribution using the Gibbs

sampler, and simulated draws are used for Bayesian posterior analysis.

This article applies the Kim and Nelson (1998) model to macroeconomic data in Japan.

While several researchers such as Ohkusa (1992), Mori, Satake, and Ohkusa (1993), Kanoh

and Saito (1994), and Fukuda and Onodera (2001) have already applied the Stock and Watson

(1989,1991) model to the analysis of business cycles in Japan, there are few who have applied

the Kim and Nelson (1998) model. The only exception is Kaufman (2000), who applies

the Kim and Nelson (1998) model to eight countries including Japan.1 While she uses the

1 Kasuya and Shinki (2001) have applied the Kim and Nelson (1998) model to forecasting the turning points
of consumer price index in Japan.
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quarterly data for real GDP, consumption, and investment, we use the monthly data selected

from ten macroeconomic variables (see Table 1(A)) used by the Economic Planning Agency

(EPA), which was reorganized as Economic and Social Research Institute (ESRI) in Cabinet

Office after January 2001, to construct its composite index.

Following Kim and Nelson (1998), we estimate the composite index and the probabilities

that the economy is in the recession as well as the model parameters using a Bayesian method

via the Gibbs sampler. We also analyze whether the regime-shift occurs in the mean growth

rate of the composite index by comparing the Kim and Nelson (1998) model with the Stock

and Watson (1989,1991) model. Classical test statistics such as the likelihood ratio statistics

are not directly applicable to this analysis (see Hansen (1992) and Garcia (1998)). In a

Bayesian framework, model comparisons are conducted based on the posterior odds, that is

the ratio of the marginal likelihood, which does not cause any problem in analyzing whether

the regime-shit occurs or not. We adopt this method and calculate the marginal likelihood

following the method proposed by Chib (1995). A diagnostic checking is also conducted.

The model comparison using Bayes factor does not provide strong evidence that the

Kim and Nelson (1998) model is favored over the Stock and Watson (1989,1991) model. In

addition, no major differences between the composite indices produced by the two models

are found. On the other hand, the Kim and Nelson (1998) model produces the estimates of

turning points close to the reference dates by the Economic and Social Research Institute in

Cabinet Office unless only weakly correlated variables are used.

The rest of this article is organized as follows. Section 2 explains the Kim and Nelson

(1998) model and a Bayesian method for analyzing this model. Section 3 fits the model to

macroeconomic data in Japan and summarizes the results. Conclusions are given in Section

4.
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2 Econometric Methodology

2.1 Dynamic Factor Models

Since our analysis is based on the dynamic factor models proposed by Stock and Watson

(1988,1991) and developed by Kim and Nelson (1998), we start with a brief review of these

models.

Suppose that we have data on n macroeconomic variables from period 0 to T . Let ∆Yit

(i = 1, . . . , n; t = 1, . . . , T ) denote the growth rate of the ith macroeconomic variable defined

as the first difference of the log of the ith variable at time t. In the simplest version of the

dynamic factor models, ∆Yit is specified as follows.

∆Yit = Di + λi∆Ct + eit,

where Di and λi are constants, ∆Ct is the component common to all variables, which is

interpreted as the first difference of the composite index of coincident economic indicators

Ct, and eit is the idiosyncratic component of the ith variable.

∆Yit may depend on not only the current value of ∆Ct but also the past values. To allow

for this possibility, we use the following specification.

∆Yit = Di + λi0∆Ct + λi1∆Ct−1 + · · ·λiri∆Ct−ri + eit. (1)

The idiosyncratic component eit is assumed to follow an autoregressive (AR) processes with

mean zero, i.e.,

eit = ψ1ei,t−1 + · · · + ψqiei,t−qi + εit, εit ∼ i.i.d.N(0, σ2
i ), (2)

where error term εit is assumed to follow a serially independent normal distribution.

The difference between the Stock and Watson (1989, 1991) and the Kim and Nelson

(1998) models is the specification of the common factor ∆Ct. While Stock and Watson

(1989, 1991) specify ∆Ct as a simple AR process, Kim and Nelson (1989) extend it so that

the mean growth of the composite index may shift depending on whether the economy is in
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a recession or in a boom as follows.

∆Ct = δ+µst+φ1(∆Ct−1−δ−µst−1)+· · ·+φp(∆Ct−p−δ−µst−p)+νt, νt ∼ i.i.d.N(0, 1), (3)

where δ is the long-run growth of the composite index, which is constant, and µst is the

deviation from that long-run growth, which may shift depending on whether the economy is

in a recession or in a boom. Error term νt is assumed to follow a serially independent normal

distribution. The variance of νt is normalized to unity for identification of the model. Error

terms νt and εis are assumed to be mutually independent for all i, t, s.

Using the variable St that takes zero when the economy is in the recession regime and

one when the economy is in the boom regime, Kim and Nelson (1998) specify µst as follows.

µst = µ0 + µ1St, µ0 < 0, µ1 > 0. (4)

The reason to assume that µ1 > 0 is that the mean growth of the composite index will be

greater in a boom regime (St = 1) than that in a recession regime (St = 0). Although Kim

and Nelson (1998) do not assume that µ0 < 0, we assume it because, otherwise, the average

of µst , which is the deviation from the long-run growth, would be positive. They assume

that St follows a Markov process with transition probabilities

P (St = 1|St−1 = 1) = π11, P (St = 0|St−1 = 1) = 1 − π11,

P (St = 0|St−1 = 0) = π00, P (St = 1|St−1 = 0) = 1 − π00. (5)

Equations (1)–(5) constitute the Kim and Nelson (1998) model, which collapses to the

Stock and Watson (1989, 1991) model if µst = 0 in equation (3). If ∆Ct is an observed

macroeconomic variable instead of the growth of the composite index, equations (3)–(5)

constitutes the regime switching model proposed by Hamilton (1989). Therefore, the Kim and

Nelson (1998) model is a synthesis of the Stock and Watson (1989, 1991) and the Hamilton

(1989) models. The Stock and Watson (1989, 1991) model produces the estimates of the

composite index Ct but does not produce the probabilities of a recession (St = 0). The

regime switching model of Hamilton (1989) produces the probability of a recession, which
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can be used to date the business cycle turning points, but does not produce the estimates of

the composite index. An advantage of the Kim and Nelson (1998) model is that it produces

the both estimates of the composite index and probabilities of a recession.

Di in equation (1) and δ in equation (3) are usually removed because they are not iden-

tified. To do so, define

∆ct = ∆Ct − E(∆Ct) = ∆Ct − δ,

∆yit = ∆Yit − E(∆Yit) = ∆Yit −Di − (λi0 + · · · λiri)δ.

Then, equations (1) and (3) can be written as

∆yit = λi0∆ct + λi1∆ct−1 + · · · λiri∆ct−ri + eit, (1’)

∆ct = µst + φ1(∆ct−1 − µst−1) + · · · + φp(∆ct−p − µst−p) + νt, νt ∼ i.i.d.N(0, 1). (3’)

The demeaned growth rate ∆Yit −∆Yi, where ∆Yi is the sample average of ∆Yi1,. . . ,∆YiT ,

is used for ∆yit. In what follows, we consider the model that consists of equations (1’), (2),

(3’), (4), and (5) as the Kim and Nelson (1998) model.

2.2 Bayesian Estimation via the Gibbs Sampler

The Stock and Watson (1989, 1991) model can be represented by a linear Gaussian state

space model. The likelihood of the linear Gaussian state space model can be evaluated

by executing the Kalman filter. The likelihood of the Hamilton (1989) model can also be

evaluated by executing the filter proposed by Hamilton (1989). Hence, the parameters in

these models can be estimated using the conventional maximum likelihood method. The

likelihood of the Kim and Nelson (1998) model cannot, however, be evaluated analytically,

so that the parameters cannot be estimated using the maximum likelihood method. The

estimation of the Kim and Nelson (1998) model requires other estimation methods. Kim and

Nelson (1998) apply a Bayesian method via the Gibbs sampler.

Let θ denote the set of the unknown parameters. The conventional Bayesian method

proceeds as follows.
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1. Set the prior distribution f(θ), which is the distribution the researcher have in mind

before observing the data.

2. Convert the prior distribution to the posterior distribution f(θ|data), which is the

distribution conditional on the data, using the Bayes theorem

f(θ|data) =
f(data|θ)f(θ)∫
f(data|θ)f(θ)dθ

. (6)

3. Estimate the parameters θ using the posterior distribution.

Notice that f(data|θ) in the right-hand-side of the Bayes theorem (6) is the likelihood.

Therefore, the conventional Bayesian method cannot be applied to the models such as the

Kim and Nelson (1998) model whose likelihood cannot be obtained analytically. In such

models, the above 2 and 3 are replaced by

2’ Sample θ from the posterior distribution f(θ|data).

3’ Estimate the parameters θ using the draws sampled in 2’.

Some readers may think it impossible to sample from the posterior distribution that cannot

be obtained analytically. It is the Gibbs sampler that makes it possible.

The Gibbs sampler is a Monte Carlo method for sampling from a joint distribution using

conditional distributions. Suppose that it is impossible to obtain the joint posterior distri-

bution f(θ|data) analytically using the Bayes theorem, but θ can be divided into k parti-

tions (θ1, . . . , θk), where θi may be a scalar or a vector, such that, for all i = 1, 2, · · · , k,
it is possible to obtain conditional distribution f(θi|{θj}j �=i,data) analytically and sam-

ple θi from it by some methods. The Gibbs sampler is used in such cases and works as

follows. Starting from an arbitrary set of initial value (θ(0)
2 , . . . , θ

(0)
k ), we draw θ

(1)
1 from

f(θ1|θ(0)
2 , θ

(0)
3 , . . . , θ

(0)
k ,data), θ(1)

2 from f(θ2|θ(1)
1 , θ

(0)
3 , . . . , θ

(0)
k ,data), and so on up to θ

(1)
k

from f(θk|θ(1)
1 , θ

(1)
2 , . . . , θ

(1)
k−1,data). Let us call this procedure one iteration. After l such it-

erations, we obtain (θ(l)
1 , θ

(l)
2 , . . . , θ

(l)
k ). Under mild conditions, it converges in distribution to

be a set of random variables from f(θ1, θ2, . . . , θk|data) as l → ∞. Therefore, for a sufficiently
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large M, (θ(l)
1 , θ

(l)
2 , . . . , θ

(l)
k ) (l = M + 1,M + 2, · · · ,M + N) can approximately be regarded

as a sample from the joint posterior distribution f(θ1, θ2, . . . , θk|data). Hence, the first M

draws, which is called “burn-in,” are discarded and the last N draws are used for parameter

estimation. For instance, the expectation of a function of the parameters, g(θ1, θ2, . . . , θk),

is estimated by the sample average

E[g(θ1, θ2, . . . , θk)] ≈ 1
N

M+N∑
l=M+1

g(θ(l)
1 , θ

(l)
2 , . . . , θ

(l)
k ). (7)

The unknown parameters in the Kim and Nelson (1998) model that consists of equations

(1′),(2),(3′),(4), and (5) are: λi = [λi0, . . . , λiri ] (i = 1, . . . , n), ψi = [ψi1, . . . , ψiqi ] (i =

1, . . . , n), σ2
i (i = 1, . . . , n), φ = [φ1, . . . , φp], µ = (µ0, µ1)′, π = (π00, π11)′. As well as these

parameters, latent variables ∆cT = [∆c1, . . . ,∆cT ] and ST = [S1, . . . , ST ] are also treated

as if they were unknown parameters. Then, all we have to do to sample from the joint

posterior distribution using the Gibbs sampler is to sample from the following conditional

distributions.

f(λi|θ/λi
,∆cT ,ST ,∆yT ), i = 1, . . . , n (8)

f(ψi|θ/ψi
,∆cT ,ST ,∆yT ), i = 1, . . . , n (9)

f(σ2
i |θ/σ2

i
,∆cT ,ST ,∆yT ), i = 1, . . . , n (10)

f(φ|θ/φ,∆cT ,ST ,∆yT ) (11)

f(µ|θ/µ,∆cT ,ST ,∆yT ) (12)

f(π|θ/π ,∆cT ,ST ,∆yT ) (13)

f(ST |θ,∆cT ,∆yT ) (14)

f(∆cT |θ,ST ,∆yT ) (15)

where θ/ω represents the set of all parameters except ω, which does not include latent vari-

ables, ∆yiT = [∆yi1, . . . ,∆yiT ], and ∆yT = [∆y1T , . . . ,∆ynT ].

As for the prior distributions of the unknown parameters, we may use any distributions
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but it is convenient to assume the following distributions.

λ′
1 ∼ N

(
M

(0)
λ1
,Σ(0)

λ1

)
I[λ10 > 0] (16)

λ′
i ∼ N

(
M

(0)
λi
,Σ(0)

λi

)
, i = 2, . . . , n (17)

ψ′
i ∼ N

(
M

(0)
ψi
,Σ(0)

ψi

)
IS(ψi)

, i = 1, . . . , n (18)

φ′ ∼ N
(
M

(0)
φ ,Σ(0)

φ

)
IS(φ) (19)

µ′ ∼ N
(
M (0)
µ ,Σ(0)

µ

)
I[µ0 < 0, µ1 > 0] (20)

σ2
i ∼ IG

(
ν(0)/2, δ(0)/2

)
, i = 1, . . . , n (21)

π11 ∼ beta(u(0)
11 , u

(0)
10 ), π00 ∼ beta(u(0)

00 , u
(0)
01 ) (22)

where I[·] is the indicator function that takes one if the condition in the bracket is satisfied

and zero otherwise, and IS(ψi)
(or IS(φ)) is the indicator function that takes one if the roots

of the polynomial 1−ψi1L− · · · −ψiqiLqi = 0 (or 1−φ1L− · · · φpLp = 0) lie outside the unit

circle and zero otherwise. At least, one parameter among λij (i = 1, . . . , n; j = 1, . . . , n) is

assumed to be positive for identification of the model. Here, we assume that λ10 > 0. Hence,

the prior of λ′
1 is set to be the truncated normal whose density is zero unless λ10 > 0, and

that of λ′
i (i = 2, . . . , n) is set to be the normal. Under the assumption that equations (2)

and (3) are stationary, the priors of ψ′
i, φ

′ are set to be the truncated normal whose density

is zero outside the stationary region. The prior of µ′ is the truncated normal whose density

is zero unless µ0 < 0 and µ1 > 0. The prior of σ2
i is set to be the inverted gamma, which

means that 1/σ2
i follows the gamma distribution. The priors of π11 and π00 are set to be

beta distributions.

Under these priors, it is straightforward to obtain the conditional distributions (8)–(13),

which have the same forms as the priors (16)–(22), and sample from those distributions (see

Appendix A).

The condition of (14) includes ∆cT . Given ∆cT , equations (3’), (4), and (5) constitute

the regime switching model proposed by Hamilton (1989). Thus, sampling ST from (14) can

be conducted using the Hamilton (1989) filter. Applying the Hamilton (1989) filter to the
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model that consists of equations (3’), (4), and (5) produces p(St|∆ct) and p(St|∆ct−1) for

t = 1, . . . , T . Then, starting with ST sampled from p(ST |∆cT ), we can proceed backwards

in time. Specifically, given St+1, St is generated using the probability

p(St|∆ct, St+1) =
p(St+1|St)p(St|∆ct)

p(St+1|∆ct)

where p(St+1|St) is the transition probability given by (5), and p(St|∆ct) and p(St+1|∆ct)
are obtained from the Hamilton (1989) filter.

The condition of (15) includes ST . Once ST are given, the Kim and Nelson (1998)

model can be represented by a linear Gaussian state space model. Suppose that n = 5,

p = 3, and ri = qi = 1 (i = 1, . . . , n). Let ∆y∗it = ∆yit − ψi1∆yi,t−1 (i = 1, . . . , n) and

∆y∗t = [∆y∗1t, · · · ,∆y∗nt]′. Then, the Kim and Nelson (1998) model may be represented as

∆yt = Λzt + εt, εt ∼ i.i.d.N(0,Σε), (23)

zt = Mst + Φzt−1 + ut, vt ∼ i.i.d.N(0,Σv). (24)

Then, zt, Λ, Mst , Φ, Σε, and Σv are given by

zt = [∆ct,∆ct−1,∆ct−2]′

Λ =




λ10 −λ10ψ11 + λ11 −λ11ψ11

λ20 −λ20ψ21 + λ21 −λ21ψ21

λ30 −λ30ψ31 + λ31 −λ31ψ31

λ40 −λ40ψ41 + λ41 −λ41ψ41

λ50 −λ50ψ51 + λ51 −λ51ψ51




Φ =



φ1 φ2 φ3

1 0 0
0 1 0




Mst = [φ(L)µSt , 0, 0]′

vt = [νt, 0, 0]′

9



Σε =




σ2
1 0 0 0 0
0 σ2

2 0 0 0
0 0 σ2

3 0 0
0 0 0 σ2

4 0
0 0 0 0 σ2

5




Σv =




1 0 0
0 0 0
0 0 0




where φ(L)µst = µSt − φ1µSt−1 − φ2µSt−2 − φ3µSt−3 .

Since equations (23) and (24) constitute the linear Gaussian state space model, it is

straightforward to sample ∆cT from (15) using the Kalman filter and smoother. Once ∆cT

are obtained, they can be transformed into the composite index CT = [C1, . . . , CT ] as

Ct = ∆ct + Ct−1 + δ

where δ is the long-run growth of the composite index, which can be estimated using the

steady-state Kalman gain (see Kim and Nelson (1988,1999)).

2.3 Model Comparison

2.3.1 Marginal Likelihood

It is important to examine whether the mean growth of the composite index shifts depending

on whether the economy is in the boom regime or the recession regime by comparing the Kim

and Nelson (1998) model with the Stock and Watson (1989,1991) model. Kaufman (2000)

proposes a method for comparing these two models. As is a usual practice in Bayesian model

comparison, his method is based on the posterior odds ratio. Posterior odds ratio between

model i, Mi, and model j, Mj , is given by

POR =
f(Mi|∆yT )
f(Mj|∆yT )

=
f(∆yT |Mi)
f(∆yT |Mj)

f(Mi)
f(Mj)

where f(∆yT |Mi)
f(∆yT |Mj)

and f(Mi)
f(Mj)

are called Bayes factor and prior odds ratio respectively. If POR

is greater than one, Mi is favored over Mj .
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The prior odds ratio is usually set to be one, so that the posterior odds ratio is equal to the

Bayes factor. To evaluate the Bayes factor, we must calculate f(∆yT |Mi) and f(∆yT |Mj)

called marginal likelihoods. The log of the marginal likelihood of model Mi can be written

as

ln f(∆yT |Mi) = ln f(∆yT |Mi,θi) + ln f(θi|Mi) − ln f(θi|Mi,∆yT ), (25)

where θi is the set of unknown parameters for model Mi, f(∆yT |Mi,θi) is the likelihood,

f(θi|Mi) is the prior density, and f(θi|Mi,∆yT ) is the posterior density. The above identity

holds for any value of θi, but Chib (1995) proposes to set θi equal to its posterior mean θ̂i

calculated using the Gibbs draws. In what follows, subscript i and Mi are omitted.

The Kim and Nelson (1998) model is more general than the Stock and Watson (1989,

1991) model in the sense that setting must = 0 in the Kim and Nelson (1998) model leads

to the Stock and Watson (1989, 1991) model. Hence, the likelihood of the Kim and Nelson

(1998) model cannot be smaller than that of the Stock and Watson (1989, 1991) model.

Notice, however, that the marginal likelihood of the Kim and Nelson (1998) model may be

smaller than that of the Stock and Watson (1989, 1991) model.

2.3.2 Prior Density

If prior distributions are given by (16)–(22) where λi (i = 1, . . . , n), ψi (i = 1, . . . , n), σ2
i

(i = 1, . . . , n), φ, µ, π are mutually independent, we have

f(θ̂) = f(λ̂1)×· · ·×f(λ̂n)×f(ψ̂1)×· · ·×f(ψ̂n)×f(σ̂2
1)×· · ·×f(σ̂2

n)×f(φ̂)×f (µ̂)×f(π̂). (26)

It is straightforward to evaluate f(λ̂i) (i = 2, . . . , n), f(µ̂), and f(π̂). It may possibly be

difficult to evaluate the other terms in (26) analytically because truncation may make it

difficult to calculate the normalizing constant. Even in such cases, there are some numerical

methods available to evaluate the normalizing constant (see Chen et. al.(2000)).
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2.3.3 Posterior Density

Kaufman (2000) uses the method proposed by Chib (1995) to evaluate the posterior density.

The posterior density is written as

f(θ̂|∆yT ) = f(π̂|∆yT ) × f(λ̂1, . . . , λ̂n|π̂,∆yT ) × · · · × f(µ̂|θ̂/µ,∆yT ), (27)

and evaluates each term separately using the Gibbs sampler.

The first term can be written as

f(π̂|∆yT ) =
∫
f(π̂|ST ,∆yT )f(ST |∆yT )dST . (28)

The Gibbs sampler explained above produces draws from f(ST |∆yT ). All we have to

do is to sample from the conditional distributions (8)–(15) sequentially. Given M draws

(S(1)
T , . . . ,S

(M)
T ) from f(ST |∆yT ), equation (28) can be estimated by

f(π̂|∆yT ) ≈ 1
M

M∑
m=1

f(π̂|S(m)
T ,∆yT ). (29)

This is not true for the other terms because some parameters included in the conditions

are fixed at their posterior means. For example, the second term can be written as

f(λ̂1, . . . , λ̂n|π̂,∆yT )

=
∫
f(λ̂1, . . . , λ̂n|π̂, σ2

1 , . . . , σ
2
n,∆cT ,∆yT )

×f (σ2
1, . . . , σ

2
n,∆cT |π̂,∆yT )dσ2

1 · · · dσ2
nd∆cT . (30)

To sample from f(σ2
1, . . . , σ

2
n,∆cT |π̂,∆yT ) using the Gibbs sampler, we must sample from

the following conditional distributions.

f(λi|π̂,θ/(λi,π),∆cT ,ST ,∆yT ), i = 1, . . . , n

f(ψi|π̂,θ/(ψi,π),∆cT ,ST ,∆yT ), i = 1, . . . , n

f(σ2
i |π̂,θ/σ2

i ,π),∆cT ,ST ,∆yT ), i = 1, . . . , n

f(φ|π̂,θ/(φ,π),∆cT ,ST ,∆yT )

f(µ|π̂,θ/(µ,π),∆cT ,ST ,∆yT )
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f(ST |π̂,θ/π ,∆c̃T ,∆ỹT )

f(∆cT |π̂,θ/π ,ST ,∆yT ).

Given M draws from f(σ2
1, . . . , σ

2
n,∆cT |π̂,∆yT ), equation (30) can be estimated by

f(λ̂1, . . . , λ̂n|π̂,∆yT )

≈ 1
M

M∑
m=1

f(λ̂1, . . . , λ̂n|π̂, σ2(m)
1 , . . . , σ2(m)

n ,∆c(m)
T ,∆yT ).

The other terms in (27) can be evaluated similarly.

2.3.4 Likelihood

Kaufman (2000) uses a particle filter to evaluate the likelihood. A particle filter is the

algorithm to sample from the filtering density f(zt, St|∆yT ,θ) sequentially starting from

t = 0 (see Pitt and Shephard (1999)) where zt is the state variable that appears in equations

(23) and (24).

Suppose that we have M draws
{
z
(m)
t−1 , S

(m)
t−1

}
(m = 1, . . . ,M) sampled from the density

f(zt−1, St−1|∆yt−1,θ). Then, we can sample
{
z
(m)
t , S

(m)
t

}
from the density f(zt, St|∆yt,θ)

as follows (see Appendix B for details).

Step 1. Select a (St,m) from 2 ×M combinations (St = 0, 1; m = 1, . . . ,M) with probability

proportional to

ηSt,m = |Σε|−1/2 exp
(
−1

2
e′tΣ

−1
ε et

)
p(St|S(m)

t−1 ).

Step 2. Using the (St,m) selected in Step 1, sample from N(µ(m)
t|t ,Σ

(m)
t|t ), where

et = ∆yt − Λ(Mst + Φz(m)
t−1),

µ
(m)
t|t = Mst + Φz(m)

t−1 + ΣvΛ′Σ−1
ε et,

Σ(m)
t|t = Σv − ΣvΛ′Σ−1

ε ΛΣv.

The likelihood can be expressed as

L =
T∏
t=1

f(∆yt+1|∆yt,θ),

13



where

f(∆yt+1|∆yt,θ)

=
∫
f(∆yt+1|zt+1,θ)f(zt+1|zt, St+1,θ)

×p(St+1|St,θ)f(zt, St|∆yt,θ)dStdztdSt+1dzt+1. (31)

Given M draws
{
z
(m)
t , S

(m)
t

}
(m = 1, . . . ,M) from the density f(zt, St|∆yt,θ) using the

above particle filter, we can evaluate f(∆yt+1|∆yt,θ) as follows.

Step 3. Sample S(m)
t+1 using the transition probability p(S(m)

t+1 |St).

Step 4. Using S(m)
t+1 sampled in Step 3, sample z(m)

t+1 from

z
(m)
t+1 |z(m)

t , S
(m)
t+1 ∼ N(Mst + Φz(m)

t ,Σv)

Based on M draws on St+1 and zt+1 sampled in Step 3 and 4, f(∆yt+1|∆yt,θ) can be

estimated by

f(∆yt+1|∆yt,θ) ≈
1
M

M∑
m=1

f(∆yt+1|z(m)
t+1 , S

(m)
t+1 ,θ)

2.4 Diagnostics

Draws on St+1 and zt+1 sampled in Step 3 and 4 can be used also for a diagnostic test. The

probability that ∆yi,t+1 will be less than the observed value yoi,t+1 conditional on ∆yt and θ

can be written as

P (∆yi,t+1 ≤ ∆yoi,t+1|∆yt,θ)

=
∫
P (∆yi,t+1 ≤ ∆yoi,t+1|zt+1, St+1,∆yt,θ)f(zt+1, St+1|∆yt,θ)dzt+1St+1

≈ 1
M

M∑
m=1

P (∆yi,t+1 ≤ ∆yoi,t+1|z(m)
t+1 , S

(m)
t+1 ,θ)

Let uMi,t+1 = 1
M

∑M
m=1 P (∆yi,t+1 ≤ ∆yoi,t+1|z(m)

t+1 , S
(m)
t+1 ,θ). Under the null of a correctly speci-

fied model, uMi,t converges in distribution to independently and identically distributed uniform

random variables as M → ∞ (Rosenblatt (1952)). This provides a valid basis for diagnostic
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checking. These variables can be mapped into the normal distribution, by using the inverse of

the normal distribution function nMi,t = F−1(uMi,t) to give a standard sequence of independent

and identically distributed normal variables.

3 Application to Macroeconomic Data in Japan

3.1 Data Description

Economic and Social Research Institute (ESRI) uses eleven macroeconomic variables to con-

struct its Coincident Index (see Table 1(A) for definitions of these eleven variables). Among

them, “Business Profit” (ZBOAS) is quarterly data and the other ten variables are monthly

data. We obtained the raw data for these ten variables from Jan. 1975 to Dec. 2000 and

transformed them into seasonally adjusted ones by the Census-X11 method. The use of all

ten variables to estimate the Stock and Watson (1989,1991) and the Kim and Nelson (1998)

model is, however, computationally costly. Hence, our analysis is based on the following two

datasets, both of which consist of five variables selected by Fukuda and Onodera (2001).

Dataset 1: (1) IIP95P (2) SCI95 (3) ESRAO (4) HWINMF (5) CELL9

Dataset 2: (1) IIP95P (2) SMSALE (3) HWINMF (4) IIP95O (5) IIP95M

The both datasets were selected based on the principle to use variables related not only

to production but also to trade sales and labor market. On one hand, dataset 1 includes

“Index of Wholesale Sales” (SCI95) as a trade sales variable and “Ratio of Job Offers to

Applicants” (ESRAO) and “Index of Non-Scheduled Hours Worked” (HWINMF) as labor

market variables. On the other hand, dataset 2 includes “Sales of Small and Medium Size

Companies” (SMSALE) as a trade sales variable and HWINMF as a labor market variable.

These two datasets, however, differ in the sense that dataset 1 includes variables that are

less correlated with each other while all variables except HWINMF in dataset 2 are highly

correlated with each other. Table 1 (B) reports the contemporaneous correlation of the
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growth rate of the ten variables, showing that “Index of Industrial Production” (IIP95P),

“Index of Raw Materials Consumption” (IIP95M), “Index of Operating Rate” (IIP95O), and

“Sales of Small and Medium Size Companies” (SMSALE) have large positive correlations

with each other. Dataset 2 includes all these variables. The correlations between variables in

dataset 1 are less than 0.5 except the ones between IIP95P and “Electric Power Consumption

of Large Users” (CELL9) and between IIP95P and SCI95. In addition, Table 2 (C) shows

the serial correlation of the growth rate of the ten variables, indicating that two labor market

variables HWINMF and ESRAO have positive serial correlations and the other variables have

negative serial correlations. Dataset 1 includes the both of these two variables while dataset

2 includes only HWINMF.

The sifts of the mean growth of the composite index create a correlation between macroe-

conomic variables. Hence, we can expect that such shifts may be observed only in dataset 2

in which variables are highly correlated with each other.

3.2 Estimation Details

Following Fukuda and Onodera (2001), we set p = 3 and qi = 1 (i = 1, . . . , 5) for the both

datasets. While Fukuda and Onodera (2001) assume ri = 0, we set it equal to one.

For parameter estimation, we conduct the Gibbs sampler with 12,000 iterations for each

model. The first 2,000 draws are discarded and then the next 10,000 are recorded. Using

these 10,000 draws for each of the parameters, we calculate the posterior means, the standard

errors of the posterior means, the 95 percent intervals, and the convergence diagnostic (CD)

statistics proposed by Geweke (1992). The posterior means are computed by averaging the

simulated draws. The standard errors of the posterior means are computed using a Parzen

window with a bandwidth of 1,000. The 95 percent intervals are calculated using the 2.5th

and 97.5th percentiles of the simulated draws. The convergence of the Gibbs sampler can be

assessed using the method proposed by Geweke (1992). He suggests to compare values early

in the sequence with those late in the sequence. Let θ(i) be the ith draw of a parameter in

the recorded 10,000 draws, and let θ̄A = 1
nA

∑nA
i=1 θ

(i) and θ̄B = 1
nB

∑10,000
i=10,001−nB

θ(i). Using
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these values, Geweke (1992) proposes the following statistic called convergence diagnostics

(CD).

CD =
θ̄A − θ̄B√

σ̂2
A/nA + σ̂2

B/nB
, (32)

where
√
σ̂2
A/nA and

√
σ̂2
B/nB are standard errors of θ̄A and θ̄B. If the sequence of θ(i) is

stationary, it converges in distribution to the standard normal. We set nA = 1, 000 and

nB = 5, 000 and compute σ̂2
A and σ̂2

B using Parzen windows with bandwidths of 100 and 500

respectively.

In calculating the marginal likelihood, we set the number of iterations to evaluate the

both posterior densities and the likelihood equal to 2, 000.

3.3 Estimation Results

Table 2 shows the estimation results for dataset 1. Table 2 (A) and (B) are the results for

the Kim and Nelson (1998) model and the Stock and Watson (1989,1991) model respectively.

According to the CD values, the null hypothesis that the sequence of 10,000 draws is station-

ary is accepted at the 5 percent significance level for all parameters in the both models. The

log marginal likelihood of the Kim and Nelson (1998) model of -2714.16 is smaller than that

of the Stock and Watson (1989,1991) model of -2713.31, indicating that the latter model is

favorable over the former model although the difference of log marginal likelihoods is small.

Table 2 (C) shows the results of diagnostic checking based on variables nMi,t explained in

Section 2. The Table shows the mean, the standard deviation, the skewness, the kurtosis,

and the Ljung-Box statistics to test the null hypothesis of no serial correlation up to the

sixth lag, where the numbers in brackets show the standard errors. If the model is correctly

specified, the asymptotic distribution of nMi,t is the standard normal. For SCI95, ESRAO,

and HWINM, the null hypothesis of no serial correlation is rejected at the 1 percent level.

For all variables, the kurtosis is significantly larger than three.

Figures 1 (A) depicts the composite indices (CIs) estimated by the Kim and Nelson

(1998) model and the Stock and Watson (1989,1991) model jointly with that by the ESRI.
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The shaded areas represent the periods of Economic and Social Research Institute (ESRI)

recessions (from peak to through). There is no major difference between the CIs estimated

by the both models, which is consistent with the result that the difference of log marginal

likelihoods is small. Figure 1 (B) depicts the posterior probabilities that the economy is in

the recession state in each month as inferred from the Kim and Nelson (1998) model. These

probabilities can be calculated simply by averaging 10,000 draws of the state St sampled

from its posterior distribution.

Table 3 shows the results for dataset 2. According to the CD values, the null hypothesis

that the sequence of 10,000 draws is stationary is accepted at any standard level for all

parameters in the both models. The log marginal likelihood of the Kim and Nelson (1998)

model of -2202.10 is slightly larger than that of the Stock and Watson (1989,1991) model of

-2203.91, providing evidence, although weak, that the mean growth rate shifts depending on

whether the economy is in a recession or in a boom.

Table 3 (C) shows the results of diagnostic checking. Except for HWINMF, the null

hypothesis of no serial correlation is rejected at the 1 percent level. The kurtosis is still

significantly larger than three for all variables.

Figure 2 (A) depicts the CIs estimated by the Kim and Nelson (1998) model and the

Stock and Watson (1989,1991) model jointly with that by the ESRI. No major difference

between the CIs estimated by the both models is found again. Figure 2 (B) depicts the

posterior probabilities that the economy is in the recession state in each month as inferred

from the Kim and Nelson (1998) model. In contrast to the probabilities based on dataset 1,

they move in a wider range between 0 percent and 100 percent, compared to Figure 1 (B).

We further estimate the Kim and Nelson (1998) model by using the following dataset.

Dataset 3: (1) IIP95P (2) SCI95 (3) ESRAO (4) HWINMF

This dataset is the one in which CELL9 is excluded from dataset 1. These four variables are

used to construct the Nikkei Business Index. This index is the CI constructed by the Nihon
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Keizai Shimbun, Inc. using the Stock and Watson (1989, 1991) model. These four variables

correspond to the four variables used by the Department of Commerce (DOC) to construct its

CI: “industrial production,” “total personal income less transfer payments in 1987 dollars,”

“employees on nonagricultural payrolls,” and “total manufacturing and trade sales in 1987

dollars”. We only report the posterior probabilities of a recession, which is depicted in Figure

3. Unlike datasets 1 and 2, the posterior probabilities move in a very narrow range around

50 percent, so that they cannot be used to date the business cycle turning points. This may

be attributed to the fact that the four variables in dataset 3 are weakly correlated with each

other.

In dataset 2, the null hypothesis of no serial correlation in the diagnostic statistic is

rejected for HWINMF. This may be attributed to the facts that HWINMF has positive

serial correlation while all other variables in dataset 2 have negative serial correlation and

that HWINMF is weakly correlated with other variables. Hence, we also analyze dataset 2

without HWINMF, that is,

Dataset 4: (1) IIP95P (2) SMSALE (3) IIP95O (4) IIP95M

The posterior probabilities of a recession calculated by fitting the Kim and Nelson (1998)

model to dataset 4 are depicted in Figure 4. Figure 2(C) and Figure 4 look alike, demon-

strating that HWINMF does not play an important role in dataset 2.

Following Kaufman (2000), we date the turning points by defining period t as a peak if

the posterior probability P (St = 1|∆ỹT ) > 0.5 and P (St+1 = 1|∆ỹT ) < 0.5 and a trough if

P (St = 1|∆ỹT ) < 0.5 and P (St+1 = 1|∆ỹT ) > 0.5. As mentioned, the posterior probabilities

estimated using dataset 3 move in a very narrow range around 50 percent, so that they

cannot be used to date the business cycle turning points. Therefore, we estimate the turning

points using datasets 1, 2, and 4. The estimated turning points are shown in Table 4 jointly

with the reference date by the ESRI. The difference of the turning points among the three

datasets is at most one month except the peak and through in 1981, which are detected only
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by dataset 1 and 4, and the peak in 2000, which are detected only by dataset 2 and 4. The

difference of the turning points estimated by the Kim and Nelson (1998) model from the

reference date by the ESRI is larger, but at most three months except the trough in 1997,

the peak and through in 1981, and the peak in 2000.

Thus far, β(18,2) is used as a prior distribution for the transition probabilities π00 and π11.

It is tight because the mean and standard deviation of β(18,2) are 0.9 and 0.065 respectively.

To examine how the results are sensitive to the prior distribution of π00 and π11, we estimate

the Kim and Nelson (1989) model using dataset 1, 2, and 4 under the diffuse prior β(1, 1),

which corresponds to a uniform distribution in [−1, 1]. The estimated posterior probabilities

of a recession are depicted in Figures 5 (dataset 1), 6 (dataset 2), and 7 (dataset 4). Figure 5

shows that the posterior probabilities estimated using dataset 1 move in a very narrow range

around 50 percent, indicating that dataset 1, in which five variables are weakly correlated

with each other, requires a tight prior for the transition probabilities π00 and π11 to date the

business cycle turning points. Figures 6 and 7 show that this is not true for datasets 2 and

4, in which the correlations of variables are not so weak. The turning points estimated using

dataset 2 and 4 with the diffuse prior for π00 and π11 are shown in Table 5. The effects of

a prior for π00 and π11 on the estimated turning points are small especially for dataset 4.

When dataset 4 is used, the turning points estimated with the diffuse prior are the same as

those with the tight prior except the through in 2000, which is not detected when the tight

prior is used, and the through in 1985, whose difference is only one month. The conclusion

must be that the estimation results of the Kim and Nelson (1989) model are insensitive to the

prior distribution when highly correlated variables are used, but it is not true when weakly

correlated variables are used.

The ESRI announces the date of a turning point one year and a few months after the

date of the turning point and may revise the date few months after the first announcement.

For example, the ESRI announced the peak in 1997 as Mar. 1997 in Jun. 1998, and revised

it as May 1997 in Dec. 2001. The trough in 1999 was first announced as Apr. 1994 in Jun.

2000 and revised as Apr. 1999 in Dec. 2001. The peak in 2000 was announced as Oct. 2001
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in Dec. 2001 and may possibly be revised in the future. We examine how quickly the Kim

and Nelson (1989) model can detect the date of turning point. Specifically, we examine when

the peaks in 1997 and 2000 and the trough in 1999 are first detected by estimating the Kim

and Nelson (1989) model using the dataset 4 up to one to three months after those turning

points. Surprisingly enough, all three turning points are detected only two months after the

dates of turning points, and the detected dates are the same as those estimated using the

data up to the three months after the turning points and those using the full sample.

We find that the Kim and Nelson (1989) model performs well when dataset 4 (or 2) are

used. All variables except SMSALE in dataset 4 are production-related variables. Hence,

the Kim and Nelson (1989) using only IIP95P, which is representative of production-related

variables, may also perform well. To examine whether this is true or not, we estimate

the Kim and Nelson (1989) using only IIP95P. The estimated posterior probabilities of a

recession move in a narrow range around 50 percent. This result indicates that the Kim and

Nelson (1989) does not perform well when only IIP95P and requires other production-related

variables.

4 Conclusions

This article fits the Markov switching dynamic factor model proposed by Kim and Nelson

(1998) to some macroeconomic variables in Japan. We do not find strong evidence that the

Kim and Nelson (1998) model is favored over the Stock and Watson (1989,1991) model nor

major differences between the composite indices estimated by the two models. The Kim and

Nelson (1998) model, however, produces the estimates of turning points close to the reference

dates by the Economic and Social Research Institute in Cabinet Office unless only weakly

correlated variables are used.

In this article, we focus on the in-sample fit of the models. Needless to say, it is worthwhile

examining the out-of-sample forecasting ability.

APPENDIX A: Sampling from Conditional Distributions (8)–(13)
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Conditional distributions (8)–(12) can be derived based on the following theorem, which

is well known in Bayesian econometrics.

Theorem. Consider the linear regression model

Y = Xβ + u, u ∼ N
(
0, σ2IT

)
, (A.1)

where Y is the T × 1 vector of dependent variable, X is the T × k matrix of independent

variables, β is the k × 1 vector of regression coefficients, u is the T × 1 vector of error term

which follows the independent normal distribution with variance σ2, and IT is the T × T

identity matrix.

Under the prior distributions

β ∼ N(M (0),Σ(0)), σ2 ∼ IG(ν(0)/2, δ(0)/2),

the conditional distributions f(β|σ2,X,Y ) and f(σ2|β,X ,Y ) are given by

β|σ2,Y ∼ N(M (1),Σ(1)), (A.2)

where

M (1) =
(
Σ(0)−1 + σ−2X ′X

)−1 (
Σ(0)−1M (0) + σ−2X ′Y

)
,

Σ(1) =
(
Σ(0)−1 + σ−2X ′X

)−1
,

and

σ2|β,Y ∼ IG(ν(1)/2, δ(1)/2), (A.3)

where

ν1 = ν0 + T,

δ1 = δ0 + (Y −Xβ)′(Y −Xβ).
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Proof.

f(β|σ2,Y )

∝ f(Y |β, σ2)f(β)

∝ exp
[
− 1

2σ2
(Y −Xβ)′(Y −Xβ)

]
exp

[
−1

2
(β −M (0))′Σ−1

0 (β −M (0))
]

∝ exp
[
−1

2
(β −M (1))′Σ(1)−1(β −M (1))

]
.

f

(
1
σ2

|β,Y
)

∝ f
(
Y |β, σ2

)
f

(
1
σ2

)

∝
(

1
σ2

)(T/2)

exp
[
− 1

2σ2
(Y −Xβ)′(Y −Xβ)

] (
1
σ2

)ν0/2−1

exp
[
− δ0

2σ2

]

∝
(

1
σ2

)ν1/2−1

exp
[
− δ1

2σ2

]
.

Conditional Distribution (8)

The condition of (8) includes ψi, ∆yT , and ∆cT . Given them, we can calculate

∆y∗it = ∆yit − ψi1∆yi,t−1 − · · · − ψiqi∆yi,t−qi

∆c∗t = ∆ct − ψi1∆ct−1 − · · · − ψiqi∆ct−qi .

Using them, define

Y =
[
∆y∗i,qi+ri , . . . ,∆y

∗
iT

]′

X =




∆c∗qi+ri · · · ∆c∗qi+1
...

. . .
...

∆c∗T · · · ∆c∗T−ri+1




β = λ′
i

u = [εi,qi+ri , . . . , εi,T ]′

σ2 = σ2
i .
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Then, equation (1’) will be the linear regression model (A.1) in the above theorem, so that

the conditional distribution (8) is given by equation (A.2). Specifically,

λ1|· ∼ N(M (1)
λ1
,Σ(1)

λ1
)I[λ10 > 0], (A.4)

λi|· ∼ N(M (1)
λi
,Σ(1)

λi
), i = 2, . . . , n, (A.5)

where

M
(1)
λi

= (Σ(0)−1
λi

+ σ−2
i X

′X)−1(Σ(0)−1
λi

M
(0)
λi

+ σ−2
i X

′Y )

Σ(1)
λi

= (Σ(0)−1
λi

+ σ−2
i X

′X)−1.

It is straightforward to sample from the normal distribution (A.5). We can sample from the

truncated normal distribution (A.4) by sampling from the normal distribution N(M (1)
λ1
,Σ(1)

λ1
)

and accepting it only if it is positive.

Conditional Distributions (9) and (10)

The conditions of (9) and (10) include λi, ∆yT , and ∆cT . Given them, we can calculate

eit = ∆yit − λi0∆ct − λi1∆ct−1 − · · ·λiri∆ct−ri , t = ri + 1, . . . , T.

Define

Y = [ei,ri+qi+2, . . . , ei,T ]′

X =



ei,ri+qi+1 · · · εi,ri+1

...
. . .

...
ei,T−1 · · · ei,T−qi−1




β = ψ′
i

u = [εi,ri+qi+2, . . . , εi,T ]′

σ2 = σ2
i .

Then, equation (2) will be the linear regression model (A.1), so that the conditional distri-

butions (9) and (10) are given by equations (A.2) and (A.3). Specifically,

ψi|· ∼ N(M (1)
ψi
,Σ(1)

ψi
)IS(ψi)

, i = 2, . . . , n, (A.6)
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σ2
i |· ∼ IG(ν(1)/2, δ(1)/2), i = 2, . . . , n, (A.7)

where

M
(1)
ψi

= (Σ(0)−1
ψi

+ σ−2
i X

′X)−1(Σ(0)−1
ψi

M
(0)
ψi

+ σ−2
i X

′Y )

Σ(1)
ψi

= (Σ(0)−1
ψi

+ σ−2
i X

′X)−1.

We can sample from the truncated normal distribution (A.6) by sampling from the normal

distribution N(M (1)
ψi
,Σ(1)

ψi
) and accepting it only if it is in the stationary region. It is straight-

forward to sample from the gamma distribution (see Ripley (1987)). Thus, we can sample σ2
i

from the inverted gamma distribution (A.7) by sampling 1/σ2
i from the gamma distribution

and taking its reciprocal.

Conditional Distribution (11)

The condition of (11) includes ∆cT and ST . Given them, we can calculate

Y =
[
(∆cp+1 − µsp+1), . . . , (∆cT − µsT

)
]′
,

X =




(∆cp − µsp) · · · (∆c1 − µs1)
...

. . .
...

(∆cT−1 − µsT−1
) · · · (∆cT−p − µsT−p

)


 ,

If we further define

β = φ′, u = [νp+1, . . . , νT ]′, σ2 = 1,

equation (3’) will be the linear regression model (A.1). Hence, conditional distribution (11)

is given by

φ|· ∼ N(M (1)
φ ,Σ(1)

φ )IS(φ),

where

M
(1)
φ = (Σ(0)−1

φ +X ′X)−1(Σ(0)−1
φ M

(0)
φ +X ′Y ),

Σ(1)
φ = (Σ(0)−1

φ +X ′X)−1.
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Conditional Distribution (12)

The condition of (12) includes φ, ∆cT , and ST . Given them, we can calculate

Y =




∆cp+1 − φ1∆cp − · · · − φp∆c1
...

∆cT − φ1∆cT−1 − · · · − φp∆cT−1


 ,

X =




1 − φ1 − · · · − φp Sp+1 − φ1Sp − · · · − φpS1
...

...
1 − φ1 − · · · − φp ST − φ1ST−1 − · · · − φpST−1


 .

If we further define

β = µ′, u = [νp+1, . . . , νT ]′, σ2 = 1,

equation (3’) will be the linear regression model (A.1). Hence, the conditional distribution

(12) is given by

µ′|· ∼ N(M (1)
φ ,Σ(1)

φ )IS(φ)I[µ0 < 0, µ1 > 0],

where

M (1)
µ = (Σ(0)−1

µ +X ′X)−1(Σ(0)−1
µ M (0)

µ +X ′Y ),

Σ(1)
µ = (Σ(0)−1

µ +X ′X)−1.

Conditional Distribution (13)

Conditional distribution (13) can be written as

f(π00, π11|·) ∝ f(ST |π00, π11)f(π00, π11),

where

f(π00, π11) ∝ πu00
00 (1 − π00)u01πu11

11 (1 − π11)u10 .

Once ST are given, we can obtain the number of transitions from St−1 = i to St = j, which

is denoted by nij. Then,

f(ST |π00, π11) ∝ πn00
00 (1 − π00)n01πn11

11 (1 − π11)n10 .
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Hence,

π00|· ∼ beta(u00 + n00, u01 + n01),

π11|· ∼ beta(u11 + n11, u10 + n10).

We can sample from beta(α1, α2) as the ratio x1/(x1+x2) where x1 and x2 are draws sampled

from gamma(α1, 1) and gamma(α2, 1) respectively.

APPENDIX B: Particle Filter

The filter density f(zt, St|∆yt−1), where θ in the condition is omitted, can be written as

f(zt, St|∆yt−1)

∝ f(∆yt|zt)f(zt, St|∆yt−1)

= f(∆yt|zt)
∫
f(zt, St|zt−1, St−1)f(zt−1, St−1|∆yt−1)dzt−1dSt−1. (B.1)

Suppose that we have M draws
{
z
(m)
t−1 , S

(m)
t−1

}
(m = 1, . . . ,M) sampled from the density

f(zt−1,St−1|∆yt−1). Using these draws, the integral in (B.1) can be estimated as follows.

∫
f(zt, St|zt−1, St−1)f(zt−1, St−1|∆yt−1)dzt−1dSt−1 ≈ 1

M

M∑
l=1

f(zt, St|z(m)
t−1 , S

(m)
t−1). (B.2)

Substituting (B.2) into (B.1) yields

f(zt, St|∆yt) ≈
1
M

M∑
l=1

f(∆yt|zt)f(zt, St|z(m)
t−1 , S

(m)
t−1 ), (B.3)

where f(∆yt|zt)f(zt, St|z(m)
t−1 , S

(m)
t−1) in the right-hand-side can be written as

f(zt, St|∆ỹt) ∝ f(∆yt|zt)f(zt, St|z(m)
t−1 , S

(m)
t−1 )

∝ f(∆yt|zt)f(zt|St, z(m)
t−1)p(St|S(m)

t−1)

= f(∆yt, zt|St, z(m)
t−1)p(St|S(m)

t−1 )

= f(zt|St, z(m)
t−1 ,∆yt)f(∆yt|z(m)

t−1)p(St|S(m)
t−1)

= ηst,mf(zt|St, z(m)
t−1 ,∆yt), (B.4)
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where

ηst,m = f(∆yt|z(m)
t−1)p(St|S(m)

t−1 )

∝ |Σε|−1/2 exp
(
−1

2
e′tΣ

−1
ε et

)
p(St|S(m)

t−1 ).

Substituting (B.4) into (B.3) yields

f(zt, St|∆yt) ≈
1
M

L∑
m=1

ηst,lf(zt|St, z(l)
t−1,∆yt). (B.5)

We can sample from this mixture distribution by first selecting the indices (St,m) with

probability proportional to ηSt,m and then sampling from f(zt|St, z(m)
t−1 ,∆yt), which is the

normal whose mean and variance are given by

µ
(m)
t|t = Mst + Φz(m)

t−1 + ΣvΛ′Σ−1
ε et

Σ(m)
t|t = Σv − ΣvΛ′Σ−1

ε ΛΣv

where et = ∆yt − Λ(Mst + Φz(m)
t−1).
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Table 1. Eleven Variables used to construct by the Economics and Social Research Institute
to Construct its Composite Index

(A) Definition of Variables

1 IIP95M Index of Raw Materials Consumption, Mfg.
2 IIP95O Index of Operating Rate, Mfg.
3 HWINMF Index of Non-scheduled Hours Worked, Mfg
4 ESRAO Ratio of Job Offers to Applicants
5 SDS Sales of Department Stores
6 CELL9 Electric Power Consumption of Large Users
7 IIP95S Index of Producers’ Shipments, Investment Goods
8 SCI95 Index of Wholesale Sales
9 SMSALE Sales of Small and Medium Size Companies
10 IIP95P Index of Industrial Production, Mining and Mfg.
11 ZBOAS Business Profit, All Industries
Note: ZBOAS is quarterly data and the others are monthly data.

(B) Contemporaneous Correlations of the Growth Rate of the Ten Variables

IIP95M IIP95O HWINMF ESRAO SDS CELL9 IIP95S SCI95 SMSALE IIP95P
IIP95M 1.0000
IIP95O 0.8820 1.0000
HWINMF 0.3321 0.3152 1.0000
ESRAO 0.2401 0.2429 0.4157 1.0000
SDS -0.0671 -0.0943 -0.0656 -0.0054 1.0000
CELL9 0.6507 0.6196 0.2549 0.2059 -0.0467 1.0000
IIP95S 0.5250 0.5810 0.2088 0.1738 0.0298 0.4408 1.0000
SCI95 0.5038 0.5059 0.1158 0.0974 0.3845 0.4562 0.4444 1.0000
SMSALE 0.6843 0.6632 0.2728 0.2288 0.0348 0.5221 0.6334 0.6070 1.0000
IIP95P 0.8673 0.8872 0.2524 0.2364 -0.0727 0.6822 0.6624 0.6096 0.7756 1.0000

(C) Serial Correlations of the Growth Rate of Ten Variables

Variabels IIP95M IIP95O HWINMF ESRAO SDS CELL9 IIP95S SCI95 SMSALE IIP95P
correlation -0.3492 -0.4002 0.4176 0.5574 -0.5628 -0.2286 -0.4604 -0.3561 -0.3550 -0.4227
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TABLE 2. Estimation Results for Dataset 1

(A) Kim and Nelson Model

Marginal Likelihood = -2714.16

Parameter Mean Standard Error 95% Interval CD
∆Ct

π00 0.9045 0.0023 [0.7578,0.9807] 0.64
π11 0.9108 0.0038 [0.7648,0.9815] -0.89
φ1 -0.0489 0.0164 [-0.3711,0.2305] 1.05
φ2 0.1034 0.0080 [-0.1170,0.2604] 0.87
φ3 0.3572 0.0056 [0.1795,0.4989] 1.60
µ0 -0.3460 0.0246 [-0.9584,-0.0144] 1.55
µ1 0.5424 0.0405 [0.0156,1.4138] -1.59
y1t

λ10 1.0739 0.0026 [0.9301,1.2141] 1.50
λ11 -0.4708 0.0059 [-0.6210,-0.3100] -0.77
ψ1 -0.3803 0.0030 [-0.5192,-0.2328] -0.89
σ2

1 0.5208 0.0066 [0.3256,0.7779] -0.36
y2t

λ20 0.9507 0.0028 [0.7782,1.1313] 1.11
λ21 -0.4521 0.0055 [-0.6406,-0.2628] -1.24
ψ2 -0.3075 0.0010 [-0.4232,-0.1922] -0.98
σ2

2 2.0372 0.0031 [1.6911,2.4346] -0.98
y3t

λ30 0.4653 0.0031 [0.2540,0.6779] 1.11
λ31 0.3589 0.0013 [0.1601,0.5556] 0.69
ψ3 0.4102 0.0013 [0.2863,0.5319] -0.82
σ2

3 3.1206 0.0054 [2.6375,3.6731] -1.20
y4t

λ40 0.5369 0.0022 [0.3850,0.6914] 1.22
λ41 0.4272 0.0025 [0.2679,0.5886] 0.92
ψ4 0.1370 0.0025 [-0.0049,0.2846] -1.02
σ2

4 1.6903 0.0051 [1.4014,2.0190] -0.66
y5t

λ50 0.7666 0.0014 [0.6472,0.8872] 0.86
λ51 -0.2366 0.0060 [-0.3932,-0.0800] -1.06
ψ5 -0.2060 0.0013 [-0.3359,-0.0773] -0.15
σ2

5 0.7474 0.0042 [0.6030,0.9132] 0.85
Note: y1t, y2t, y3t, y4t, y5trepresent IIP95P, SCI95, ESRAO, HWINMF,
and CELL9 respectively. The first 2,000 draws are discarded and then
the next 10,000 are used for calculating the posterior means, the standard
errors of the posterior means, 95 percent interval, and the convergence
diagnostic (CD) statistics proposed by Geweke (1992). The posterior means
are computed by averaging the simulated draws. The standard errors of the
posterior means are computed using a Parzen window with a bandwidth of
1,000. The 95 percent intervals are calculated using the 2.5th and 97.5th
percentiles of the simulated draws. The CD is computed using equation
(32), where we set nA = 1, 000 and nB = 5, 000 and compute σ̂2

A and σ̂2
B

using a Parzen window with bandwidths of 100 and 500 respectively.
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(B) Stock and Watson Model

Marginal Likelihood = -2713.31

Parameter Mean Standard Error 95% Interval CD
∆Ct

φ1 0.0164 0.0044 [-0.1725,0.2087] -0.93
φ2 0.1526 0.0008 [0.0362,0.2683] -0.28
φ3 0.3904 0.0006 [0.2716,0.5026] 0.46
y1t

λ10 1.304 0.0035 [0.9832,1.2702] 1.65
λ11 -0.5063 0.0026 [-0.6642,-0.3023] 0.93
ψ1 -0.3893 0.0019 [-0.5293,-0.2335] 0.80
σ2

1 0.4775 0.0057 [0.2632,0.7090] -1.28
y2t

λ20 0.9936 0.0013 [0.8220,1.1708] 0.90
λ21 -0.4840 0.0028 [0.4776,0.9502] 0.75
ψ2 -0.3025 0.0007 [-0.4179,-0.1868] 1.05
σ2

2 2.0207 0.0025 [1.6806,2.4113] -0.73
y3t

λ30 0.4735 0.0015 [0.2629,0.6904] -0.23
λ31 0.3372 0.0010 [0.1386,0.5358] 0.85
ψ3 0.4481 0.0013 [0.3224,0.5679] 0.81
σ2

3 3.0486 0.0030 [2.5843,3.5953] 1.43
y4t

λ40 0.5615 0.0014 [0.4061,0.7167] 1.21
λ41 0.4258 0.0023 [0.2692,0.5835] 1.10
ψ4 0.1391 0.0009 [0.0027,0.2802] -0.12
σ2

4 1.6958 0.0030 [1.4137,2.0224] 1.43
y5t

λ50 0.8001 0.0015 [0.6848,0.9222] 0.47
λ51 -0.2616 0.0030 [-0.4082,-0.1138] 1.03
ψ5 -0.1975 0.0010 [-0.3266,-0.0666] 1.19
σ2

5 0.7397 0.0028 [0.5969,0.9018] 1.55
Note: y1t, y2t, y3t, y4t, y5trepresent IIP95P, SCI95, ESRAO, HWINMF,
and CELL9 respectively. The first 2,000 draws are discarded and then
the next 10,000 are used for calculating the posterior means, the standard
errors of the posterior means, 95 percent interval, and the convergence
diagnostic (CD) statistics proposed by Geweke (1992). The posterior means
are computed by averaging the simulated draws. The standard errors of the
posterior means are computed using a Parzen window with a bandwidth of
1,000. The 95 percent intervals are calculated using the 2.5th and 97.5th
percentiles of the simulated draws. The CD is computed using equation
(32), where we set nA = 1, 000 and nB = 5, 000 and compute σ̂2

A and σ̂2
B

using a Parzen window with bandwidths of 100 and 500 respectively.
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(C) Diagnostic Check for the Kim and Nelson Model

IIP95P SCI95 ESRAO HWINMF CELL9
Mean 0.0304 0.0178 0.0230 0.0356 0.0287

(0.0581) (0.0565) (0.0570) (0.0558) (0.0584)
St. dev. 1.0223 0.9950 1.0027 0.9829 1.0274
Skewness -0.2690 -0.1454 -0.1355 0.3565 0.1320

(0.1391) (0.1391) (0.1391) (0.1391) (0.1391)
Kurtosis 4.0703 7.9968 5.7695 5.0004 4.8018

(0.2782) (0.2782) (0.2782) (0.2782) (0.2782)
LB(6) 8.31 18.17 44.17 61.14 13.43
Note: Numbers in bracket are standard errors. LB(6) is the Ljung-Box
statistic including six lags. The critical values for LB(6) are: 10.64 (10%),
12.59 (5%), 16.81 (1%).
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TABLE 3. Estimation Results for Dataset 2.

(A) Kim and Nelson Model

Marginal Likelihood = -2202.10

Parameter Mean Standard Error 95% Interval CD
∆Ct

π00 0.9178 0.0010 [0.8334,0.9698] -0.42
π11 0.9368 0.0018 [0.8401,0.9779] 0.96
φ1 -0.2761 0.0057 [-0.4595,-0.0597] -0.00
φ2 0.0008 0.0049 [-0.1641,0.2059] -0.31
φ3 0.2657 0.0033 [0.1236,0.4273] -0.29
µ0 -0.6341 0.0149 [-0.9535,-0.0767] -0.80
µ1 1.0687 0.0242 [0.1435,1.5009] 0.97
y1t

λ10 1.0930 0.0041 [0.9875,1.2135] -0.79
λ11 -0.4251 0.0042 [-0.5467,-0.2959] -1.33
ψ1 -0.4006 0.0010 [-0.5269,-0.2681] 0.34
σ2

1 0.2649 0.0010 [0.1997,0.3434] -1.32
y2t

λ20 0.8629 0.0035 [0.7463,0.9936] -0.76
λ21 -0.2101 0.0031 [-0.3285,-0.0920] -1.39
ψ2 -0.3417 0.0006 [-0.4509,-0.2308] -0.44
σ2

2 0.9226 0.0009 [0.7738,1.0903] -0.78
y3t

λ30 0.5736 0.0021 [0.4377,0.7180] -1.05
λ31 0.4670 0.0022 [0.3356,0.6070] -0.89
ψ3 0.0848 0.0017 [-0.0478,0.2173] -0.38
σ2

3 1.6668 0.0032 [1.4080,1.9668] -1.01
y4t

λ40 1.1547 0.0045 [1.0146,1.2890] -0.85
λ41 -0.4274 0.0045 [-0.5554,-0.2921] -1.28
ψ4 -0.4088 0.0014 [-0.5588,-0.2520] -0.86
σ2

4 0.3516 0.0008 [0.2717,0.4494] -0.41
y5t

λ50 1.1268 0.0043 [1.0180,1.2518] -1.21
λ51 -0.3209 0.0044 [-0.4478,-0.1810] -1.39
ψ5 -0.2604 0.0013 [-0.3971,-0.1215] -1.09
σ2

5 0.3233 0.0008 [0.2504,0.4097] 1.26
Note: y1t, y2t, y3t, y4t, y5t represent IIP95P, SMSALE, HWINMF, IIP95O,
and IIP95P. The first 2,000 draws are discarded and then the next 10,000
are used for calculating the posterior means, the standard errors of the
posterior means, 95 percent interval, and the convergence diagnostic (CD)
statistics proposed by Geweke (1992). The posterior means are computed
by averaging the simulated draws. The standard errors of the posterior
means are computed using a Parzen window with a bandwidth of 1,000.
The 95 percent intervals are calculated using the 2.5th and 97.5th per-
centiles of the simulated draws. The CD is computed using equation (32),
where we set nA = 1, 000 and nB = 5, 000 and compute σ̂2

A and σ̂2
B using

a Parzen window with bandwidths of 100 and 500 respectively.
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(B) Stock and Watson Model

Marginal Likelihood = -2203.91

Parameter Mean Standard Error 95% Interval CD
∆Ct

φ1 -0.0869 0.0028 [-0.2229 , 0.0499] 1.23
φ2 0.1715 0.0012 [0.0627 , 0.2783] 0.71
φ3 0.3785 0.0007 [0.2728 , 0.4830] -0.91
y1t

λ10 1.2304 0.0028 [1.1229 , 1.3471] 0.01
λ11 -0.4982 0.0031 [-0.6302 , -0.3704] -1.24
ψ1 -0.3874 0.0009 [-0.5164 , -0.2544] -0.16
σ2

1 0.2329 0.0007 [0.1743 , 0.3009] 0.00
y2t

λ20 0.9695 0.0021 [0.8475 , 1.0997] -0.08
λ21 -0.2596 0.0025 [-0.3910 , -0.1335] -1.21
ψ2 -0.3395 0.0007 [-0.4512 , -0.2278] -1.05
σ2

2 0.9042 0.0009 [0.7572 , 1.0738] -1.40
y3t

λ30 0.6409 0.0014 [0.4902 , 0.7936] -0.37
λ31 0.5017 0.0018 [0.3556 , 0.6511] -0.49
ψ3 0.0814 0.0013 [-0.0476 , 0.2171] -1.01
σ2

3 1.6608 0.0026 [1.4044 , 1.9578] -1.00
y4t

λ40 1.3007 0.0030 [1.1849 , 1.4245] -0.06
λ41 -0.5049 0.0033 [-0.6453 , -0.3658] -1.16
ψ4 -0.3640 0.0008 [-0.4894 , -0.2363] -0.78
σ2

4 0.3063 0.0007 [0.2389 , 0.3831] 0.07
y5t

λ50 1.2589 0.0030 [1.1434 , 1.3777] -0.01
λ51 -0.3726 0.0010 [-0.5166 , -0.2282] -1.24
ψ5 -0.2816 0.0013 [-0.4095 , -0.1515] -1.42
σ2

5 0.3159 0.0009 [0.2479 , 0.3945] 0.58
Note: y1t, y2t, y3t, y4t, y5t represent IIP95P, SMSALE, HWINMF, IIP95O,
and IIP95P. The first 2,000 draws are discarded and then the next 10,000
are used for calculating the posterior means, the standard errors of the
posterior means, 95 percent interval, and the convergence diagnostic (CD)
statistics proposed by Geweke (1992). The posterior means are computed
by averaging the simulated draws. The standard errors of the posterior
means are computed using a Parzen window with a bandwidth of 1,000.
The 95 percent intervals are calculated using the 2.5th and 97.5th per-
centiles of the simulated draws. The CD is computed using equation (32),
where we set nA = 1, 000 and nB = 5, 000 and compute σ̂2

A and σ̂2
B using

a Parzen window with bandwidths of 100 and 500 respectively.
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(C) Diagnostic Check for the Kim and Nelson (1997) Model

IIP95P SMSALE HWINMF IIP95O IIP95P
Mean 0.0129 0.0107 0.0263 0.0210 0.0160

(0.0590) (0.0571) (0.0559) (0.0591) (0.0586)
St. dev. 1.0384 1.0051 0.9843 1.0406 1.0318
Skewness -0.3275 0.0174 0.3323 -0.2062 -0.2058

(0.1391) (0.1391) (0.1391) (0.1391) (0.1391)
Kurtosis 4.2933 4.4246 4.7422 3.5241 3.6938

(0.2782) (0.2782) (0.2782) (0.2787) (0.2787)
LB(6) 4.93 11.92 69.36 10.82 4.94
Note: Numbers in bracket are standard errors. LB(6) is the Ljung-Box
statistic including six lags. The critical values for LB(6) are: 10.64 (10%),
12.59 (5%), 16.81 (1%).
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Table 4. Estimates of Business Cycle Turning Points Based on the Kim and Nelson Model

KNESRI
Dataset1 Dataset2 Dataset4

P Jan. 1977 Mar. 1977 Jan. 1977 Jan. 1977
T Oct. 1977 Apr. 1977 Mar. 1977 Mar. 1977
P Feb. 1980 Feb. 1980 Feb. 1980 Feb. 1980
T Mar. 1981 Jun. 1981
P Oct. 1981 Oct. 1981
T Feb. 1983 Dec. 1982 Dec. 1982 Dec. 1982
P Jun. 1985 May 1985 May 1985 May 1985
T Nov. 1986 Nov. 1986 Nov. 1986 Nov. 1986
P Feb. 1991 Dec, 1990 Dec. 1990 Jan. 1991
T Oct. 1993 Jan. 1994 Jan. 1994 Jan. 1994
P Mar. 1995 Apr. 1995 Apr. 1995
T Sep. 1995 Sep. 1995 Sep. 1995
P Mar. 1997 Mar. 1997 May 1997 May 1997
T Apr. 1999 Feb. 1999 Jan. 1999 Jan. 1999
P Aug. 2000 Aug. 2000
Note: “P”(peak) indicates the date when the posterior prob-
ability P (St = 1|yT ) > 0.5 and P (St+1 = 1|yT ) < 0.5.
“T”(trough) indicates the date when the posterior probability
P (St = 1|yT ) < 0.5 and P (St+1 = 1|yT ) > 0.5. The column
“KN” is the estimates of turning point based on the Kim and
Neslson (1998) model. “ESRI” is the reference date by the
Economic and Social Research Institute in Cabinet office.
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Table 5. Estimates of Business Cycle Turning Points Based on the Kim and Nelson Model (Diffuse
Prior for Transition Probabilities π00 and π11)

KN
Dataset2 Dataset4

P Jan. 1977
T Mar. 1977
P Feb. 1980 Feb. 1980
T Mar. 1981 May 1981
P Nov. 1981 Oct. 1981
T Nov. 1982 Dec. 1982
P May. 1985 May 1985
T Nov. 1986 Nov. 1986
P Jan. 1991 Jan. 1991
T Dec. 1993 Jan. 1994
P Apr. 1995 Apr. 1995
T Jul. 1995 Sep. 1995
P May 1997 May 1997
T Dec. 1998 Jan. 1999
P Aug. 2000 Aug. 2000
T Oct. 2000 Nov. 2000
Note: “P”(peak) indicates the date when the
posterior probability P (St = 1|yT ) > 0.5 and
P (St+1 = 1|yT ) < 0.5. “T”(trough) indi-
cates the date when the posterior probability
P (St = 1|yT ) < 0.5 and P (St+1 = 1|yT ) >
0.5.
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Figure 1(A). Composite Indexes: Dataset 1

 

* The shaded areas represent the the periods of Economic and Social Research Institute(ESRI) recessions(from peak to through).
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Figure 1(B). Posterior probability of a recession: Dataset 1

 



0

20

40

60

80

100

120

140
M

ay
-7

5

M
ay

-7
6

M
ay

-7
7

M
ay

-7
8

M
ay

-7
9

M
ay

-8
0

M
ay

-8
1

M
ay

-8
2

M
ay

-8
3

M
ay

-8
4

M
ay

-8
5

M
ay

-8
6

M
ay

-8
7

M
ay

-8
8

M
ay

-8
9

M
ay

-9
0

M
ay

-9
1

M
ay

-9
2

M
ay

-9
3

M
ay

-9
4

M
ay

-9
5

M
ay

-9
6

M
ay

-9
7

M
ay

-9
8

M
ay

-9
9

M
ay

-0
0

KN SW ESRI

Figure 2(A). Composite Indexes: Dataset 2
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Figure 2(B). Posterior probability of a recession: Dataset 2
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Figure 3. Posterior probability of a recession: Dataset 3
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Figure 4. Posterior probability of a recession: Dataset 4
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Figure 5. Posterior probability of a recession (diffuse prior for the transition probabilities): Dataset 1
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Figure 6. Posterior probability of a recession (diffuse prior for the transition probabilities): Dataset 2
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Figure 7. Posterior probability of a recession (diffuse prior for the transition probabilities): Dataset 4
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