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estimation errors, decomposition into risk factors, and optimization.
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I.I.I.I. IntroductionIntroductionIntroductionIntroduction

Artzner et al. [1997] proposed the use of expected shortfall to alleviate the

problems inherent in Value-at-Risk (VaR).  Expected shortfall considers loss

beyond the VaR level and is shown to be sub-additive while VaR disregards

loss beyond the percentile and is not sub-additive1.

In this paper, we compare expected shortfall with VaR in three

aspects: their estimation errors, their decomposition into risk factors, and

their optimization.  These comparative analyses can help risk managers

consider the usefulness of expected shortfall as a risk management tool.

The rest of the paper is organized as follows.  Chapter II gives our

definitions and concepts of VaR and expected shortfall.  Chapter III examines

the estimation error of expected shortfall using Monte Carlo simulations.

Chapter IV provides an example of estimating expected shortfall with sample

portfolios.  Chapter V describes a method of decomposing VaR and expected

shortfall developed by Hallerbach [2000] and Tasche [1999].  Chapter VI

describes a method of optimizing portfolios based on expected shortfall

developed by Rockafeller and Uryasev [2000].  Chapter VII concludes the

paper.

II.II.II.II. Definitions and Concepts of Expected ShortfallDefinitions and Concepts of Expected ShortfallDefinitions and Concepts of Expected ShortfallDefinitions and Concepts of Expected Shortfall

Artzner et al. [1997] have proposed the use of expected shortfall (also called

“conditional VaR,” “mean excess loss,” “beyond VaR,” or “tail VaR”) to alleviate

the problems inherent in VaR.  The expected shortfall is defined as follows.

                                                
1  A risk measure ρ  is sub-additive when the risk of the total position is less than or equal to the sum of the

risk of individual portfolios.  Intuitively, sub-additivity requires that “risk measures should consider risk
reduction by portfolio diversification effects.”
  Sub-additivity is defined as follows.  Let X and Y be random variables denoting the losses of two
individual positions.  A risk measure ρ  is sub-additive if the following equation holds.

)()()( YXYX ρρρ +≤+
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Definition of expected shortfall
Suppose X  is a random variable denoting the loss of a given portfolio and

)(XVaRα  is the VaR at the )%1(100 α−  confidence level2.  )(XESα  is defined
by the following equation3.
        ].)([)( XVaRXXEXES αα ≥= (1)

Expected shortfall measures how much one can lose on average in states

beyond the VaR level.  When the loss distribution is not normal, VaR

disregards the loss beyond the VaR level and fails to be sub-additive.  Expected

shortfall considers the loss beyond the VaR level and is shown to be sub-

additive.

III.III.III.III. Estimation Error of Expected ShortfallEstimation Error of Expected ShortfallEstimation Error of Expected ShortfallEstimation Error of Expected Shortfall

A.A.A.A. Concepts of Estimation ErrorConcepts of Estimation ErrorConcepts of Estimation ErrorConcepts of Estimation Error

Estimates of VaR and expected shortfall are affected by estimation error, the

natural sampling variability due to limited sample size.  For example,

consider a situation where we estimate the VaR of a given portfolio by Monte

Carlo simulations.  The VaR estimates vary according to the realizations of

random numbers.  To reduce estimation error, risk managers have to increase

the sample size of the simulations.

This chapter compares the estimation errors of expected shortfall and

VaR, and considers whether more calculation time is needed when estimating

expected shortfall than when estimating VaR.

B.B.B.B. Estimation Error under Stable DistributionEstimation Error under Stable DistributionEstimation Error under Stable DistributionEstimation Error under Stable Distribution

In this chapter, we compare the estimation errors of VaR and expected

                                                
2  In this paper, VaR is defined as the upper 100α  percentile of the loss distribution.
3  ]|[ BxE  is the conditional expectation of the random variable x  given event B .  Since X  is defined as

the loss, X  is positive in loss and negative in profit.
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shortfall by simulating random variables with stable distributions.

When a random variable X  obeys the stable distribution4, there exist

constants α  and nγ  such that

        n

d

n XnS γα += 1 , (2)

where nS  is the sum of independently and identically distributed n  copies of

X 5.  α  is the index of stability.  The smaller α  is, the heavier the tail of the

distribution is.  If 2=α , the stable distribution reduces to the normal, and it

reduces to Cauchy6 if 1=α （see Figure 1）.  The stable distribution is a

generalization of the normal in that a sum of stable random variables is also a

stable random variable.

We evaluate the estimation errors of VaR and expected shortfall as

follows.  First, we run 10,000 sets of Monte Carlo simulations with a sample

size of 1,000, assuming that the underlying loss distributions are stable with

=α 2.0, 1.9,…,1.2, 1.17,8.  Second, we obtain 10,000 estimates9 of VaR and

                                                
4  For details of the stable distribution, see Feller [1969] and Shiryaev [1999].

5  
d
=  denotes equality in distribution.

6  The first moment of Cauchy distribution ( 1=α ) is infinite.  Therefore, when the loss obeys Cauchy
distribution, one cannot define expected shortfall since it is the conditional expectation of loss given that the
loss is in the right tail of the loss distribution.

7  Stable random variables are commonly described by the following characteristic functions:

�
�

�
�

�
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 where α is the index of stability, β is the skewness parameter, σ is the scale parameter, and μ is the
location parameter.

  In this chapter, we set β =0, µ =0, and 21=σ .  We set 21=σ  so that the loss distribution
reduces to the standard normal when 2=α .

8  We obtained uniform random numbers with Mersenne Twister, and transformed them into stable random
numbers with the algorithm developed by Chambers, Mallows, and Stuck [1976].
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expected shortfall from those sets of simulations, and calculate the average,

the standard deviation, and the 95% confidence level of those estimates10.  The

estimation errors of VaR and expected shortfall are compared by the relative

standard deviation (the standard deviation divided by the average).  Tables

1-2 and Figures 2-5 show the results.

The estimation error of expected shortfall is larger than that of VaR

when the underlying loss distribution is fat-tailed.  As α  gets closer to one (i.e.

as the underlying loss distribution becomes fat-tailed), the relative standard

deviation of the expected shortfall estimate becomes much larger than that of

the VaR estimate.  On the other hand, when α  is close to two (i.e. when the

underlying loss distribution is approximately normal), the relative standard

deviation of VaR and expected shortfall estimates are almost equal.

This result can be explained as follows.  When the underlying

distribution is fat-tailed, the probability of infrequent and large loss is high.

The expected shortfall estimates are affected by whether large and infrequent

loss is realized in the obtained sample since expected shortfall considers the

right tail of the loss distribution.  On the other hand, the VaR estimates are

less affected by large and infrequent loss than the expected shortfall estimates

since the VaR method disregards loss beyond the VaR level.  Therefore, when

the underlying loss distribution becomes more fat-tailed, the expected

shortfall estimates become more varied due to infrequent and large loss, and

                                                                                                                                                
9  The estimator of VaR at the 100(1-α)% confidence interval is the upper 100α% quantile of the empirical

loss distribution.  We take the VaR estimator as the (nα+1)th largest sample of loss, where n is the sample
size.  That is, we take )1( +αnX  as the VaR estimator where the sequence

)1()()1()1()( ,,,,,, XXXXX nnnn �� αα +−  is the loss sample rearranged in increasing order.  We take the

following as the expected shortfall estimator.

1
)1()2()1(

+
+++

= +

α
α

α n
XXX

ES n�

10  The asymptotic standard deviation of the VaR estimate can be obtained in closed form.  Furthermore, there
is a closed-form formula that approximates the standard deviation of the expected shortfall estimate (see
Appendix A for details).  When the underlying loss distribution is relatively thin-tailed (such as the normal
and t), those closed-form formulas give almost equal numbers to those calculated by Monte Carlo
simulation.  On the other hand, when the underlying distribution is fat-tailed (such as in a Pareto
distribution), they give substantially different numbers.
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their estimation error becomes larger than the estimation error of VaR.

Furthermore, we investigate whether the increase in sample size

reduces the estimation error of expected shortfall.  We run 10,000 sets of

Monte Carlo simulations with sample sizes of 1,000, 10,000, and 100,000 each,

assuming that the underlying loss distributions are stable with =α 2.0, 1.5,

1.1.  We calculate the average, the standard deviation, and the 95% confidence

interval of those 10,000 estimates.  Tables 3-4 and Figure 6 show the result.

The increase in sample size from 1,000 to 100,000 reduces the relative

standard deviations (the standard deviation divided by the average) of the

expected shortfall estimates11.  Therefore, we are able to reduce the estimation

error of expected shortfall by increasing sample size12.

IV.IV.IV.IV. Examples of Estimating Expected ShortfallExamples of Estimating Expected ShortfallExamples of Estimating Expected ShortfallExamples of Estimating Expected Shortfall

This chapter gives examples of estimating expected shortfall, and compares

the estimation error of expected shortfall with that of VaR.  We consider two

cases: an option portfolio and a credit portfolio.

A.A.A.A. Equity Option PortfolioEquity Option PortfolioEquity Option PortfolioEquity Option Portfolio

This section treats a sample portfolio consisting of three issues of U. S. stocks

(General Electric, McDonald’s, and Intel) and short positions on options whose

underlying securities are those U. S. stocks (see Table 5).

We estimate the VaR and expected shortfall of this sample portfolio.

We assume that the log returns of the stocks obey the multivariate normal

                                                
11  Table 3 shows that, when the underlying loss distribution is stable with α =1.5, we must have a sample

size of somewhere between several hundred thousand and one million in order to ensure the same level of
relative standard deviation as occurs when we estimate VaR with a sample size of 1,000（0.08）.

12  This result is consistent with Proposition 3.1 of Acerbi and Tasche [2001], which says that the expected
shortfall estimate converges with probability one as sample size tends to infinity.
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distribution, and estimate the variance-covariance matrix of those log returns

from historical data.  We set the holding period to be one day, and assume that

implied volatility is constant throughout this period (see Appendix B for

details).  Figure 7 shows the profit and loss distribution of the sample portfolio.

The distribution is skewed to the left because of the substantial short positions

on call options.

We evaluated the estimation errors of VaR and expected shortfall as

follows.  We run 10,000 sets of Monte Carlo simulations with a sample size of

1,000, and calculated the average, the standard deviation, and the 95%

confidence interval of the VaR and expected shortfall estimates.  Tables 6-7

show the result.

The estimation errors of VaR and expected shortfall are almost equal.

This result is similar to the result in chapter III in which the underlying

distribution is found to be normal.  The right tail of the loss distribution of this

sample option portfolio is similar to the normal since the strike prices of

options are close to at-the-money.

Next, we consider a sample portfolio with far-out-of-the-money options

(see Table 8).  The only difference between this portfolio and the sample

portfolio in Table 5 is that the strike prices of options are far-out-of-the-

money13 in this portfolio.  Figure 8 shows the profit and loss distribution of the

portfolio.  The distribution is more skewed to the left than the profit and loss

distribution in Figure 7 because it includes large positions in far-out-of-money

options.

We estimate the VaR and expected shortfall of this sample portfolio by

following the same steps that we used when we estimated the VaR and

expected shortfall of the sample portfolio in Table 5.  Tables 9～10 show the

result.

The estimation error of expected shortfall is larger than that of VaR

when the strike prices of the options are far-out-of-the-money.  This is because

                                                
13  As we assume that the log returns of the stocks obey the multivariate normal distribution and that the

volatility is constant, the probability that the stock prices rise beyond the strike prices of options during the
holding period is less than 0.01%.
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the underlying loss distribution becomes fat-tailed when the strike prices of

the options are made far-out-of-the-money.

B.B.B.B. Loan PortfolioLoan PortfolioLoan PortfolioLoan Portfolio

This section deals with a sample loan portfolio.  The sample portfolio (see

Table 11) consists of 1,000 loans with homogeneous default rates of 1% or 0.1%.

The individual loan amounts obey the exponential distribution with an

average of 100 million yen (see Figure 9 for the distribution of the loan

amount).  The correlation coefficients between default events are

homogeneous at 0.00, 0.03, or 0.05.  We adopt “default mode” as a loss

definition, that is, we recognize loss only if the borrower defaults during the

risk evaluation period.  We estimate VaR and expected shortfall by following

the algorithm developed by Ieda, Marumo, and Yoshiba [2000] (see Appendix

C for details).

We run 1,000 sets of Monte Carlo simulations with a sample size of

1,000, and calculate the average, the standard deviation, and the 95%

confidence interval of the VaR and expected shortfall estimates.  We evaluate

the estimation errors of VaR and expected shortfall by using the relative

standard deviation.  Tables 12-15 show the result.

The estimation error of expected shortfall is larger than that of VaR

when the default rate is low and the default correlation is high.  Table 12

shows that, when the default rate is 1%, the estimation errors of VaR and

expected shortfall at the 95% confidence level are almost equal.  On the other

hand, Table 13 shows that, at the 99% confidence level, the estimation error of

expected shortfall is larger than that of VaR when the default correlation is

high.  Table 14 shows that, when the default rate is 0.1% and the default

correlation is high, the estimation error of expected shortfall is larger than

that of VaR at both the 95% and 99% confidence levels.

The estimates of expected shortfall vary more than those of VaR with

low default rates because of the low frequency of portfolio loss and limited

sample size.  When the loss frequency gets lower, the estimation of expected
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shortfall requires a larger sample to ensure the same level of accuracy since

expected shortfall considers the loss in the tail as a conditional expectation.

Thus, expected shortfall varies more than VaR at low default rates if we

estimate it with the same sample size.

The estimation error of expected shortfall is large when the default

correlation is high because of the fat tail of the underlying loss distribution.

Ieda, Marumo, and Yoshiba [2000] show that the underlying loss distribution

is fat-tailed when the default correlation is high.  Furthermore, Section III.B

shows that the estimation error of expected shortfall is larger than that of VaR

when the underlying loss distribution is fat-tailed.

V.V.V.V. Decomposition of VaR and Expected ShortfallDecomposition of VaR and Expected ShortfallDecomposition of VaR and Expected ShortfallDecomposition of VaR and Expected Shortfall

This chapter describes a method of decomposing portfolio risk into risk

factors14.  The decomposition of risk is a useful tool for managing portfolio risk.

For example, risk decomposition enables risk managers to select assets that

provide the best risk-return trade-off, or to allocate “economic capital” to

individual risk factors.

We describe the method of decomposing VaR and expected shortfall

developed by Hallerbach [1999] and Tasche [2000].  We also give an example of

decomposing VaR and expected shortfall with the sample option portfolio in

Section A.

We show that it is more straightforward to decompose expected

shortfall than to decompose VaR.

A.A.A.A. Decomposing VaRDecomposing VaRDecomposing VaRDecomposing VaR

Hallerbach [1999] and Tasche [2000] developed a method of decomposing

simulation-based VaR and expected shortfall into individual risk factors.  This

                                                
14  The concept of VaR decomposition was proposed by Garman [1997].  We followed the terminology of

Garman [1997] in using “marginal VaR” and “component VaR.”
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chapter describes this method following Tasche [2000].

We assume that the portfolio loss X  is a linear combination of the

losses of individual risk factors iX  ( i  denotes risk factors):

.
1
�
=

=
n

i
iiXX ω (3)

X ：portfolio loss

iX ：loss of individual risk factor i 15

iω ：sensitivity to individual risk factor i

Since the portfolio VaR is a linearly homogeneous function of sensitivity to

individual risk factors, the following equality holds.

.)()(
1
�
=

⋅
∂

∂=
n

i
i

i

XVaRXVaR ω
ω
α

α (4)

Therefore, the portfolio VaR is decomposed16 into iVaR ω∂∂  multiplied by the

risk factor iω .

Tasche [2000] proved the following under certain conditions17.

Marginal VaR
The partial derivative of VaR at the )%1(100 α−  confidence level with
respect to iω  (we call this “marginal VaR,” which is denoted by M - iVaR ) is
represented as a conditional expectation as follows（Remark 5.4, Tasche
[2000]）:

        [ ].)(
)(

XVaRXXE
XVaR

VaR-M i
i

i α
α

ω
==

∂
∂

= (5)

Thus, Equation (6) provides a method to decompose VaR.

                                                
15  For example, consider the situation where you have 1,000 shares of a stock whose current market price is

US$1,200/share and whose original cost is US$1,500/share.  The loss of the stock iX  (considered here as

one of a number of individual factors) is US$300/share, and sensitivity to this stock iω  is 1,000 shares.

Furthermore, if the market price of this stock is US$2,000/share, iX  is equal to –US$500/share.

16  When X  is a nonlinear function of iX , Equation (4) does not hold.  To deal with options, we consider

option premiums additional risk factors.
17  The condition includes the continuity of the distributions and the integrability of expectations.
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[ ] .)(
)(

)(
11
��
==

⋅==⋅
∂

∂
=

n

i
ii

n

i
i

i

XVaRXXE
XVaR

XVaR ωω
ω α
α

α (6)

Considering iiXVaR ωωα ⋅∂∂ ))((  the contribution of risk factor i  to the

portfolio VaR18, we define component VaR as follows.

Component VaR
The contribution of risk factor i  to the portfolio VaR (we call this “component VaR,”
which is denoted by iVaRC − ) is defined as follows:

        [ ] .)(
)(

iii
i

i XVaRXXE
XVaR

VaR-C ωω
ω α
α ⋅==⋅

∂
∂

= (7)

It is not straightforward to estimate the right hand side of Equations 

(5) and (7) when we calculate VaR by simulations.  It is difficult to

estimate a conditional expectation conditioned by the equality )(XVaRX α=

when the distribution is discrete.

Hallerbach [1999] proposed and evaluated several methods of

estimating this conditional expectation approximately.  He concluded that the

“conditional mean model” provides the best result.  This method chooses a

data window whose portfolio losses are close to the level of VaR, and takes the

mean loss of this window to obtain an estimation of the conditional

expectation.

B.B.B.B. An Example of Decomposing VaRAn Example of Decomposing VaRAn Example of Decomposing VaRAn Example of Decomposing VaR

This section gives an example of decomposing the VaR of the sample option

portfolio in Section IV.A.  We adopt the “conditional mean model” proposed by

Hallerbach [1999] in estimating marginal VaR.

                                                
18  Component VaR approximates how the portfolio VaR would change if the corresponding risk factor were

deleted from the portfolio.  This approximation works well when the risk factor makes a relatively small
contribution to the portfolio VaR.  However, we should note that component VaR is defined using marginal
VaR, which is the “marginal” change in VaR with respect to iω .  This means that this approximation does

not work well when the contribution of the risk factor is large.
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We estimate marginal VaR as follows.  Suppose we obtain N  samples

from a simulation.  We choose a data window whose portfolio losses are close to

the portfolio VaR level.  This window is chosen as:

])(,)([ ud XVaRXVaRX εε αα +−∈ , (8)

for some small positive dε  and uε .  Suppose jX ( Nj ≤≤1 ) denotes the portfolio

loss of the j -th sample, j
iX （ 61 ≤≤ i , Nj ≤≤1 ）denotes the loss of the i -th risk

factor of j -th sample, and T  denotes the number of samples in the chosen

data window.  The marginal VaR of individual risk factor i  is estimated by:

[ ] .1)()(
�≅==

∂
∂=

j

j
ii

i
i X

T
XVaRXXEXVaRaRV-M α

α

ω
(9)

where we take the sum only for the data included in the chosen window.

We calculate VaR at the 95% confidence level of the sample option

portfolio in Section IV.A by using a Monte Carlo simulation with sample size of

10,000, and decompose VaR into risk factors19.  Table 16 shows the result.

We evaluate the estimation error of this method by comparing

marginal VaR estimated by Equation (9) with “recalculated marginal VaR”

obtained by re-estimating portfolio VaR for a slightly changed portfolio (we use

0.1%, 0.5%, and 1% changes).  Table 17 shows the result20.

The marginal VaR estimated by Equation (9) is different from

recalculated marginal VaR.  This difference is especially apparent in Intel

stock and in the call option on Intel stock, where the signs of those numbers

are opposite.  Therefore, Equation (9) is not necessarily an accurate estimator

of marginal VaR.

C.C.C.C. Decomposing Expected ShortfallDecomposing Expected ShortfallDecomposing Expected ShortfallDecomposing Expected Shortfall

This section describes a method of decomposing expected shortfall developed

by Tasche [2000].

                                                
19  We choose the data window as 51 observations centered around the portfolio VaR level.
20  The difference between marginal VaR and recalculated marginal VaR is the estimation error, since we use

the same sample for calculations.
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Suppose Equation (3) holds.  The following equation holds since

)(XESα  is a linearly homogeneous function of iω .

�
=

⋅
∂

∂=
n

i
i

i

XESXES
1

)()( ω
ω
α

α (10)

Tasche [2000] proved the following under certain conditions21.

Marginal Expected Shortfall
The partial derivative of expected shortfall at the )%1(100 α−  confidence
level with respect to iω  (we call this “marginal expected shortfall,” which is
denoted by M - iVaR ) is represented as a conditional expectation as follows

（Remark 5.4, Tasche[2000]）:

        [ ].)(
)(

XVaRXXE
XES

ES-M i
i

i α
α

ω
≥=

∂
∂

= (11)

Thus, Equation (12) provides a method of decomposing expected shortfall22.

[ ] .)()()(
11
��
==

⋅≥=
∂

∂=
n

i
ii

n

i
i

i

XVaRXXEXESXES ωω
ω α
α

α (12)

Based on this observation, we define component expected shortfall as

follows.

Component Expected Shortfall
The contribution of risk factor i  to the portfolio expected shortfall (we call this
“component expected shortfall,” which is denoted by iESC − ) is defined as follows:

       [ ] .)()(
iii

i
i XVaRXXEXESES-C ωω

ω α
α ⋅≥=
∂

∂= (13)

It is relatively straightforward to estimate the right hand side of Equation (11).

The conditioning event is the inequality )(XVaRX α≥  and we can take more

than one sample as this event

                                                
21  The conditions are the same as in Footnote 17.
22  We should note that component expected shortfall is defined using marginal expected shortfall, which is

the “marginal” change in expected shortfall with respect to iω (see Footnote 18).
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D.D.D.D. An Example of Decomposing Expected ShortfallAn Example of Decomposing Expected ShortfallAn Example of Decomposing Expected ShortfallAn Example of Decomposing Expected Shortfall

This section gives an example of decomposing expected shortfall of the sample

option portfolio in Section IV.A.

Suppose we obtain N  samples from a simulation.  Let jX ( Nj ≤≤1 )

denote the portfolio loss of the j -th sample, and j
iX （ 61 ≤≤ i , Nj ≤≤1 ）denote

the loss of the i -th risk factor of the j -th sample.  We choose a data window

whose portfolio losses are more than or equal to the portfolio VaR level.  We let

T  denote the number of samples in the chosen data window.  The marginal

VaR of individual risk factor i  is estimated by:

[ ] ,1)( �=≥=
j

j
iii X

T
XVaRXXEESM α- (14)

where we take the sum only for the data included in the chosen window.

We calculate the expected shortfall at the 95% confidence level of the

sample option portfolio in Section IV.A by a Monte Carlo simulation with a

sample size of 10,000, and decompose the expected shortfall into risk factors.

Table 18 shows the result.

We also evaluate the estimation error by comparing the marginal

expected shortfall estimated by Equation (14) with the “recalculated marginal

expected shortfall” obtained by re-estimating the portfolio expected shortfall

for a slightly changed portfolio (we take 0.1%, 0.5%, and 1% change).  Table 19

shows the result23.

The marginal expected shortfall estimated by Equation (14) is almost

equal to the recalculated marginal expected shortfall.  Therefore, we conclude

that Equation (14) provides an accurate estimate of the marginal expected

shortfall.

                                                
23  The difference between marginal expected shortfall and recalculated marginal expected shortfall is the

estimation error, since we use the same sample for calculations, as was explained in Footnote 20.
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VI.VI.VI.VI. Portfolio Optimization Based on Expected ShortfallPortfolio Optimization Based on Expected ShortfallPortfolio Optimization Based on Expected ShortfallPortfolio Optimization Based on Expected Shortfall

This chapter provides an overview of methods that can be used to optimize

portfolios based on VaR and expected shortfall.  We focus in particular on the

situation in which the underlying loss distribution is not normal and VaR and

expected shortfall are calculated by simulations.

A.A.A.A. Portfolio Optimization based on VaR by the Variance-Covariance MethodPortfolio Optimization based on VaR by the Variance-Covariance MethodPortfolio Optimization based on VaR by the Variance-Covariance MethodPortfolio Optimization based on VaR by the Variance-Covariance Method

Portfolio optimization based on VaR is straightforward when VaR is calculated

by the variance-covariance method24.  The traditional mean-variance analysis

(see Markowitz [1952]) is directly applied to VaR-based portfolio optimization

since VaR is a scalar multiple of the standard deviation of loss when the

underlying distribution is normal25. Mean variance analysis selects the

portfolio with the best mean-variance profile by minimizing variance subject

to the constraint of expected portfolio return.  This optimization problem is

formulated as follows:

,
2
1min

}{
ωω

ω
Σ′ (15)

subject to Xµµω =′

1=′eω
where µ ：vector of expected returns of risk factors

Xµ ：fixed expected return on portfolio

Σ ：variance-covariance matrix of risk factors

e ：vector of ones

ω ：vector of exposures to risk factors

ω′ ：transpose of ω

The solution to this problem is given as ω  for each Xµ , from which we

                                                
24  The variance-covariance method assumes that portfolios are linear combinations of normally distributed

risk factors, and calculates VaR with the variance-covariance matrix of risk factors.  This method is also
called the “delta-normal” method.

25  To put it more precisely, when the underlying distribution is elliptical (a generalization of the normal),
with finite variance, VaR is a scalar multiple of the standard deviation.  However, our explanation here
assumes normality for the sake of simple illustration.
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obtain an optimized Xσ  for each Xµ 26.  This relationship between Xσ  and Xµ
gives us the efficient frontier in the Xµ - Xσ  space.  From this efficient frontier,

we choose the best portfolio that fits our risk tolerance and return appetite.

Since VaR is a scalar multiple of the standard deviation, we can obtain

the efficient frontier in the Xµ -VaR space as shown in Figure 10.  We select the

best portfolio using this efficient frontier in the Xµ -VaR space.

B.B.B.B. Portfolio Optimization Based on VaR by Portfolio Optimization Based on VaR by Portfolio Optimization Based on VaR by Portfolio Optimization Based on VaR by SimulationSimulationSimulationSimulation-Based Methods-Based Methods-Based Methods-Based Methods

When VaR is calculated by simulations, it is no longer an efficient tool for

optimizing a portfolio since VaR is no longer a scalar multiple of the standard

deviation and is not optimized using Equation (15).

Mausser and Rosen [1998] show that it is difficult to optimize

simulation-based VaR since VaR is not generally a convex function of risk

factors27.

C.C.C.C. Portfolio Optimization Based on Expected Shortfall by Simulation-BasedPortfolio Optimization Based on Expected Shortfall by Simulation-BasedPortfolio Optimization Based on Expected Shortfall by Simulation-BasedPortfolio Optimization Based on Expected Shortfall by Simulation-Based

MethodMethodMethodMethod

Rockafeller and Uryasev [2000] provide a simple algorithm for optimizing

portfolios based on a simulation-based expected shortfall.  This section

describes the algorithm developed by Rockafeller and Uryasev [2000], and

                                                
26  The solution is given as follows:

µγλω 11* −− Σ+Σ= e

D
BC Xµλ −= ,

D
BAX −= µγ , eeA 1−Σ′= , µ1−Σ′= eB , µµ 1−Σ′=C , 2BACD −= .

  From this, the efficient frontier is derived as:

D
CBA XX

X
+−= µµσ 22

2

.
27  When an objective of an optimization problem is not convex, the problem is difficult to solve, since

multiple local solutions may exist.
  See Mausser and Rosen [1998] for the difficulty of optimizing simulation-based VaR.
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gives an example of optimizing the sample option portfolio in Section IV.A.

We assume that the portfolio loss X  is a linear combination of the

losses of individual risk factors iX  ( i  denotes risk factors):

,
1
�
=

=
n

i
iiXX ω (16)

X ：portfolio loss

iX ：loss of individual risk factor i 28

iω ：sensitivity to individual risk factor i

We also assume that the loss of risk factors ),,( 1 nXX �  has a probability

density function ),,( 1 nXXp � .

Suppose ),( βωΨ  denotes the probability that the portfolio loss X  does

not exceed some threshold value β .

.),,(),( 11

1

nn

X

dXdXXXp
n

i
ii

���
≤�

=

=Ψ
βω

βω (17)

VaR at the 100α % confidence level is ),( αωβ  defined by:

}.),(|min{),( αβωβαωβ ≥Ψ∈= R (18)

We then define the following function denoted by )(ωΦ .

,),,()()( 11

),(
1

1

nn

X

n

i
ii dXdXXXpX

n

i
ii

��� �
≥�

=
=

⋅=Φ
αωβω

ωω (19)

The expected shortfall is )1()( αω −Φ  since it is the conditional expectation

given that the portfolio loss �
=

n

i
iiX

1
ω  is more than ),( αωβ .

It is difficult to optimize )(ωΦ  because ),( αωβ  is involved in its

definition.  Rockafeller and Uryasev [2000] show that optimizing )(ωΦ  is

equivalent to optimizing ),( βωF  (see Appendix D for proof).

.),,()()1(),( 11
1

� � +

=

−+−=
ω

βωβαβω nn

n

i
ii dXdXXXpXF �� (20)

                                                
28  See Footnote 15.
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Furthermore, the expected shortfall is given as minimized )1(),( αβω −F  with

respect to β , and VaR is given as corresponding β .

We use this result to minimize the simulation-based expected shortfall.

Suppose we sample nXX ,,1 �  J  times (those samples are denoted by

JjniX ji ,,1,,...1, �== ) from the probability density function ),,( 1 nXXp � .  The

integral in Equation (20) is calculated approximately as follows:

.)(),,()(
1 1

1
11

1
� � ��

=

+

=

−+

=

−≈−
ω

βωβω
J

j

n

i
iijnn

n

i
ii XJdXdXXXpX �� (21)

We reduce minimization of ),( βωF  to the following linear programming

problem.

,)1(min
1

1

,,
�
=

−

∈∈∈
+−

J

j
jzJ

Jn
βα

βω RRzR
(22)

subject to

JjzXz j

n

i
iijj ,,1,0,

1
�=≥−≥�

=

βω . (23)

The constraint on the portfolio expected return is formulated as follows.

.
1 1

1
��
= =

− −=
J

j

n

i
iij RXJ ω (24)

Furthermore, the constraint on the portfolio investment amount is formulated

as follows.

.0
1

WP
n

i
ii =�

=

ω (25)

iP ：initial value of risk factor i

0W ：initial investment amount in the portfolio

By solving this constrained minimization problem, we can optimize

portfolios based on the expected shortfall.
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D.D.D.D. An Example of Portfolio Optimization Based on Expected ShortfallAn Example of Portfolio Optimization Based on Expected ShortfallAn Example of Portfolio Optimization Based on Expected ShortfallAn Example of Portfolio Optimization Based on Expected Shortfall

This section gives an example of optimizing the sample option portfolio in

Section IV.A.

We minimize the expected shortfall of this portfolio at the 95%

confidence level by solving the optimization problem of Equation (22) with the

constraints of Equations (23)-(25).  The sample size is 1,000.  The portfolio

expected return is constrained to be a constant ranging from US$0 to

US$10,000 in US$250 increments.  To ensure the convergence of the solution,

we add the constraint that neither short sales of stocks nor long positions on

the call options are allowed.

Figure 11 shows the efficient frontier of the portfolio in the return-

expected shortfall space.  It is seen that this frontier is convex, and is similar

to the one obtained in the return-VaR space when VaR is calculated by the

variance-covariance method.  Table 20 shows the composition of this efficient

frontier when the portfolio expected return is US$5,000.

VII.VII.VII.VII. Concluding RemarksConcluding RemarksConcluding RemarksConcluding Remarks

We compared expected shortfall with VaR in three aspects: their estimation

errors, their decomposition into risk factors, and their optimization.

We showed that expected shortfall is easily decomposed and optimized

while VaR is not.

We also show that expected shortfall needs a larger size of sample than

VaR for the same level of accuracy.
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Figure 1  Comparison of Normal and Cauchy Density Functions
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Table 1 Estimates of VaR and Expected Shortfall with Stable Distribution
(confidence level: 95%)

α Risk Measures
Average

(a)

Standard
Deviation

(b)

Relative
Standard
Deviation
(c) = (b)/(a)

Confidence
Interval

(95%)

VaR 1.64 0.07 0.04 [ 1.51   1.77]2.0
(normal)

Expected Shortfall 2.05 0.08 0.04 [ 1.90   2.21]

VaR 1.70 0.08 0.04 [ 1.55   1.85]
1.9

Expected Shortfall 2.42 0.80 0.33 [ 2.06   3.14]

VaR 1.77 0.09 0.05 [ 1.60   1.95]
1.8

Expected Shortfall 2.90 1.81 0.63 [ 2.28   4.20]

VaR 1.86 0.11 0.06 [ 1.67   2.08]
1.7

Expected Shortfall 3.53 3.84 1.09 [ 2.58   5.60]

VaR 1.98 0.13 0.07 [ 1.75   2.26]
1.6

Expected Shortfall 4.39 8.34 1.90 [ 2.96   7.62]

VaR 2.15 0.16 0.08 [ 1.86   2.50]
1.5

Expected Shortfall 5.67 19.31 3.41 [ 3.48  10.71]

VaR 2.38 0.21 0.09 [ 2.02   2.82]
1.4

Expected Shortfall 7.71 48.95 6.35 [ 4.16  15.76]

VaR 2.68 0.26 0.10 [ 2.22   3.25]
1.3

Expected Shortfall 11.46 139.60 12.19 [ 5.10  25.13]

VaR 3.08 0.34 0.11 [ 2.49   3.85]
1.2

Expected Shortfall 19.79 463.10 23.40 [ 6.48  42.45]

VaR 3.65 0.46 0.13 [ 2.86   4.67]
1.1

Expected Shortfall 44.41 1,866.40 42.03 [ 8.59  81.44]
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Table 2 Estimates of VaR and Expected Shortfall with Stable Distribution
(confidence level: 99%)

α Risk Measures
Average

(a)

Standard
Deviation

(b)

Relative
Standard
Deviation
(c) = (b)/(a)

Confidence
Interval

(95%)

VaR 2.30 0.12 0.05 [ 2.09    2.54]2.0
(normal)

Expected Shortfall 2.62 0.14 0.05 [ 2.36    2.90]

VaR 2.57 0.20 0.08 [ 2.25    3.03]
1.9

Expected Shortfall 3.94 3.68 0.93 [ 2.70    7.02]

VaR 3.00 0.35 0.12 [ 2.47    3.86]
1.8

Expected Shortfall 5.58 8.36 1.50 [ 3.27   11.25]

VaR 3.61 0.55 0.15 [ 2.78    4.94]
1.7

Expected Shortfall 7.70 17.74 2.30 [ 4.05   16.84]

VaR 4.40 0.78 0.18 [ 3.23    6.29]
1.6

Expected Shortfall 10.66 38.62 3.62 [ 5.01   25.03]

VaR 5.41 1.08 0.20 [ 3.81    8.00]
1.5

Expected Shortfall 15.16 89.50 5.91 [ 6.31   37.93]

VaR 6.76 1.49 0.22 [ 4.56   10.37]
1.4

Expected Shortfall 22.76 226.92 9.97 [ 8.02   60.08]

VaR 8.63 2.10 0.24 [ 5.58   13.64]
1.3

Expected Shortfall 37.59 647.21 17.22 [10.39  100.13]

VaR 11.34 3.04 0.27 [ 7.00   18.77]
1.2

Expected Shortfall 72.74 2,147.04 29.52 [13.90  176.21]

VaR 15.53 4.63 0.30 [ 9.09   26.85]
1.1

Expected Shortfall 181.77 8,653.26 47.61 [19.63  351.63]
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Figure 2  Relative Standard Deviation of Estimates
(confidence level: 95%)

（solid line: expected shortfall, dotted line: VaR）
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Figure 3  Relative Standard Deviation of Estimates
(confidence level: 95%, enlarged 1.9≦α≦2)

（solid line: Expected Shortfall, dotted line: VaR）
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Figure 4  Relative Standard Deviation of Estimates
(confidence level: 99%)

（solid line: Expected Shortfall, dotted line: VaR）
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Figure 5  Relative Standard Deviation of Estimates
(confidence level: 99%, enlarged 1.9≦α≦2)

（solid line: Expected Shortfall, dotted line: VaR）
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Table 3 Convergence of Expected Shortfall Estimates under Stable
Distributions (confidence level: 95%)

α＝2.0 α＝1.5 α＝1.1

Sample Size Relative
Standard
Deviation

Confidence
Interval
（95%）

Relative
Standard
Deviation

Confidence
Interval
（95%）

Relative
Standard
Deviation

Confidence
Interval
（95%）

1,000 0.04 [1.90  2.21] 3.41 [3.48  10.71] 42.03 [ 8.59  81.44]

10,000 0.01 [2.01  2.11] 0.47 [4.51   8.01] 8.29 [14.02  75.20]

100,000 0.00 [2.05  2.08] 0.15 [5.09   6.91] 2.07 [18.80  76.69]

1,000,000 0.00 [2.06  2.07] 0.05 [5.41   6.28] 0.64 [22.64  71.65]

Table 4 Convergence of Expected Shortfall Estimates under Stable
Distributions (confidence level: 99%)

α＝2.0 α＝1.5 α＝1.1

Sample Size Relative
Standard
Deviation

Confidence
Interval
（95%）

Relative
Standard
Deviation

Confidence
Interval
（95%）

Relative
Standard
Deviation

Confidence
Interval
（95%）

1,000 0.05 [2.36  2.90] 5.91 [ 6.31  37.93] 47.61 [19.63  351.63]

10,000 0.02 [2.57  2.75] 0.84 [10.40  27.33] 9.91 [43.86  346.70]

100,000 0.01 [2.64  2.69] 0.26 [13.07  22.08] 2.50 [66.87  356.04]

1,000,000 0.00 [2.67  2.67] 0.10 [14.58  18.96] 0.78 [85.99  330.92]

Figure 6  Convergence of Expected Shortfall Estimates

(solid line: confidence level 95%, dotted line: confidence level 99%)
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Table 5  Sample Option Portfolio

Days to
Maturity

Strike Price
（US$）

Price
(Premium)

(US$)

Dollar Amount
(US$1,000)

Position
(1,000 units)

General Electric stock ―― ―― 49-13/16 1,000 20.1

McDonald’s stock ―― ―― 31-1/4 1,000 32.0

Intel stock ―― ―― 42-1/32 1,000 23.8

Call option on GE stock 18 50.00 2 -100 -50.0

Call option on McDonald’s stock 18 30.00 1-3/4 -100 -57.1

Call option on Intel stock 18 40.00 3-1/2 -100 -28.6

＊ The data were obtained from Bloomberg L.P. as of November 28, 2000.

Figure 7  Pr d Loss Distribution of Sample Option Portfolio (sample
si 000)
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＊ The profit (loss) is shown as positive (negative) number in this graph.

imates of VaR and Expected Shortfall of Sample Portfolio
idence level: 95%)

isk Measures
Average

(a)

Standard
Deviation

(b)

Relative
Standard
Deviation
(c) = (b)/(a)

Confidence Interval
(95%)

VaR 68.33 3.34 0.0489 [61.72   75.03]

ected Shortfall 91.20 4.63 0.0508 [82.44  100.30]

VaR 68.18 1.05 0.0154 [66.10   70.22]

ected Shortfall 91.56 1.38 0.0151 [88.97   94.26]

VaR 68.15 0.33 0.0049 [67.51   68.81]

ected Shortfall 91.57 0.46 0.0050 [90.73   92.50]

US$1,000
profit and loss
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Table 7  Estimates of VaR and Expected Shortfall of Sample Portfolio
(confidence level: 99%)

Sample Size Risk Measures
Average

(a)

Standard
Deviation

(b)

Relative
Standard
Deviation
(c) = (b)/(a)

Confidence Interval
(95%)

VaR 107.00 7.50 0.0701 [ 93.16  123.31]
1,000

Expected Shortfall 127.10 9.47 0.0745 [109.94  146.46]

VaR 106.23 2.28 0.0215 [101.82  110.81]
10,000

Expected Shortfall 128.35 3.10 0.0242 [122.46  134.68]

VaR 105.97 0.71 0.0067 [104.53  107.37]
100,000

Expected Shortfall 128.28 0.99 0.0078 [126.30  130.31]

Table 8  Sample Portfolio with Far-out-of-the-money Options

Days to
Maturity

Strike Price
（US$）

Price
(Premium)

(US$)

Dollar Amount
(US$1,000)

Position
(1,000 units)

General Electric stock ―― ―― 49-13/16 1,000 20.1

McDonald’s stock ―― ―― 31-1/4 1,000 32.0

Intel stock ―― ―― 42-1/32 1,000 23.8

Call option on GE stock 18 58-3/8 3/16 -100 -533.3

Call option on McDonald’s stock 18 40 1/16 -100 -1,600.0

Call option on Intel stock 18 55 1/16 -100 -1,600.0

＊ The data were obtained from Bloomberg L.P. as of November 28, 2000.

Figure 8  Profit oss Distribution of Sample Portfolio with Far-out-of-
the-m ptions (sample size: 10,000)

＊ The profit (the loss) is shown as positive (negative) number in th
graph.
 and L
oney O

Frequency
US$1,000

profit and loss

is
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Table 9  Estimates of VaR and Expected Shortfall of Sample Portfolio with
Far-out-of-the-money Options (confidence level: 95%)

Sample Size Risk Measures
Average

(a)

Standard
Deviation

(b)

Relative
Standard
Deviation
(c) = (b)/(a)

Confidence Interval
(95%)

VaR 334.62 22.01 0.0658 [293.70  380.86]
1,000

Expected Shortfall 500.46 35.00 0.0699 [433.38  571.32]

VaR 332.56 7.06 0.0212 [318.53  346.88]
10,000

Expected Shortfall 502.01 11.17 0.0222 [481.57  524.05]

VaR 332.26 2.15 0.0065 [328.14  336.70]
100,000

Expected Shortfall 502.19 3.45 0.0069 [495.53  509.05]

Table 10  Estimates of VaR and Expected Shortfall of Sample Portfolio with
Far-out-of-the-money Options (confidence level: 99%)

Sample Size Risk Measures
Average

(a)

Standard
Deviation

(b)

Relative
Standard
Deviation
(c) = (b)/(a)

Confidence Interval
(95%)

VaR 612.56 58.08 0.0948 [506.46  739.03]
1,000

Expected Shortfall 781.31 85.48 0.1094 [625.85  964.29]

VaR 602.79 18.42 0.0306 [566.84  639.76]
10,000

Expected Shortfall 790.73 27.46 0.0347 [738.77  849.00]

VaR 602.25 5.57 0.0093 [591.23  613.17]
100,000

Expected Shortfall 792.14 9.13 0.0115 [774.75  810.97]

Table 11  Sample Loan Portfolio

Amount of exposures 100 billion yen

Number of exposures 1,000

Amount of individual
exposure Obeys exponential distribution with average of 100 million yen

Definition of loss Default mode (recognize loss only if the borrower defaults during the risk
evaluation period)

Recovery rate Zero

Correlation of default
events

The correlation coefficients between default events are assumed to be
homogeneous at 0.00, 0.03, and 0.05.
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tes of VaR and Expected Shortfall of
ence level: 95%, default rate: 1%, sam

Risk Measures Average
(a)

Standard
Deviation (b)

VaR 18.28 0.43

xpected Shortfall 20.99 0.52

VaR 41.03 3.13

xpected Shortfall 69.09 5.98

VaR 45.79 4.37

xpected Shortfall 86.16 8.79

tes of VaR and Expected Shortfall of
nce level: 99%, default rate: 1%, samp

Risk Measures Average
(a)

Standard
Deviation (b)

VaR 22.65 0.79

xpected Shortfall 24.90 1.02

VaR 85.03 9.79

xpected Shortfall 117.55 15.90

VaR 108.34 14.31

xpected Shortfall 158.03 23.53

0 1 2 3 4 5 6 7
 8 9 100 million yen

amount of individual exposures
 Sample Loan Portfolio
ple size: 1,000)

Relative
Standard
Deviation
(c) = (b)/(a)

Confidence Interval
(95%)

0.0233 [17.39  19.10]

0.0248 [20.03  22.02]

0.0763 [35.05  47.45]

0.0865 [57.71  81.80]

0.0955 [37.95  54.62]

0.1021 [71.37  104.95]

 Sample Loan Portfolio
le size: 1,000)

Relative
Standard
Deviation
(c) = (b)/(a)

Confidence Interval
(95%)

0.0350 [21.21  24.33]

0.0408 [22.99  26.99]

0.1151 [67.39  106.34]

0.1353 [89.42  151.08]

0.1321 [83.53  141.34]

0.1489 [118.87  208.67]
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Table 14  Estimates of VaR and Expected Shortfall of Sample Loan Portfolio
(confidence level: 95%, default rate: 0.1%, sample size: 1,000)

Correlation Coefficients

of Default Events

Risk Measures Average
(a)

Standard
Deviation (b)

Relative
Standard
Deviation
(c) = (b)/(a)

Confidence Interval
(95%)

VaR 3.99 0.20 0.0508 [3.62  4.38]
0.00

Expected Shortfall 5.45 0.28 0.0522 [4.93  6.04]

VaR 4.72 0.71 0.1500 [3.50  6.37]
0.03

Expected Shortfall 15.54 3.15 0.2029 [10.26  22.52]

VaR 3.92 0.72 0.1826 [2.74  5.53]
0.05

Expected Shortfall 17.32 4.23 0.2444 [10.74  27.30]

Table 15  Estimates of VaR and Expected Shortfall of Sample Loan Portfolio
(confidence level: 99%, default rate: 0.1%, sample size: 1,000)

Correlation Coefficients

of Default Events

Risk Measures Average
(a)

Standard
Deviation (b)

Relative
Standard
Deviation
(c) = (b)/(a)

Confidence Interval
(95%)

VaR 6.37 0.48 0.0757 [5.53  7.37]
0.00

Expected Shortfall 7.70 0.59 0.0769 [6.59  8.89]

VaR 19.40 4.25 0.2189 [12.74  29.76]
0.03

Expected Shortfall 39.62 11.45 0.2891 [22.20  66.87]

VaR 21.11 5.43 0.2574 [12.83  33.21]
0.05

Expected Shortfall 49.32 16.06 0.3257 [25.82  88.95]

Table 16  VaR Decomposition of Sample Option Portfolio (confidence level: 95%)

Marginal VaR
（US$/unit）

(a)

Investment
amount
（US$1,000）

Position
（1,000 unit）

(b)

Component VaR
（US$1,000）

(c)=(a)×(b)

General Electric stock -2.30 1,000 20.1 -46.12

McDonald’s stock -1.67 1,000 32.0 -53.58

Intel stock 0.60 1,000 23.8 14.17

Call option on GE stock -1.55 -100 -50.0 77.50

Call option on McDonald’s stock -1.53 -100 -57.1 87.43

Call option on Intel stock 0.37 -100 -28.6 -10.71

Total ―― 2,700 ―― 68.70
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Table 17  Comparison of Marginal VaR (confidence level: 95%)

Recalculated Marginal VaR
（US$/unit）Marginal VaR

(US$/unit)
Change in position：0.1% Change in position：0.5% Change in position：1%

General Electric stock -2.30 -1.20 -0.44 -1.60

McDonald’s stock -1.67 -2.75 -2.55 -1.86

Intel stock 0.60 -0.37 0.33 0.46

Call option on GE stock -1.55 -1.05 -0.82 -1.20

Call option on McDonald’s stock -1.53 -2.20 -1.46 -1.64

Call option on Intel stock 0.37 -0.14 0.12 0.50

Table 18  Expected Shortfall Decomposition of Sample Option Portfolio
(confidence level: 95%)

Marginal ES
（US$/unit）

(a)

Investment
Amount
（US$1,000）

Position
（1,000 unit）

(b)

Component ES
（US$1,000）

(c)=(a)×(b)

General Electric stock -3.33 1,000 20.1 -66.92

McDonald’s stock -2.10 1,000 32.0 -67.1

Intel stock 0.15 1,000 23.8 3.57

Call option on GE stock -2.30 -100 -50.0 115.23

Call option on McDonald’s stock -1.91 -100 -57.1 108.93

Call option on Intel stock 0.08 -100 -28.6 -2.28

Total ―― 2,700 ―― 91.43

Table 19  Comparison of Marginal Expected Shortfall (confidence level: 95%)

Recalculated Marginal ES
（US$/unit）Marginal ES

(US$/unit)
Change in position：0.1% Change in position：0.5% Change in position：1%

General Electric stock -3.33 -3.34 -3.34 -3.34

McDonald’s stock -2.10 -2.10 -2.10 -2.10

Intel stock 0.15 0.15 0.15 0.15

Call option on GE stock -2.30 -2.31 -2.31 -2.31

Call option on McDonald’s stock -1.91 -1.91 -1.90 -1.91

Call option on Intel stock 0.08 0.08 0.08 0.08
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Figure 10  Efficient Frontier of Expected Profit and VaR

Figure 11  Efficient Frontier of Expected Shortfall

0

1

2

3

4

5

6

7

8

9

10

0 50 100 150 200 250 300 350 400 450 500

expected profit (US$1,000/1 day)

risk (US$1,000/1 day)

minimum expected shortfall
(efficient frontier of expected shortfall)

VaR （corresponding to minimum expected shortfall）

sample size: 1,000

Table 20  Portfolio Composition of Minimum Expected Shortfall

(expected profit: US$5,000, expected shortfall: US$154,400)

Investment Amount
(US$1,000)

General Electric stock 0

McDonald’s stock 1,714.45

Intel stock 1,113.05

Call option on GE stock 0

Call option on McDonald’s stock 0

Call option on Intel stock -127.50

μ X

V aRα (X )
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Appendix AAppendix AAppendix AAppendix A Closed-Form Formulas of Estimation ErrorsClosed-Form Formulas of Estimation ErrorsClosed-Form Formulas of Estimation ErrorsClosed-Form Formulas of Estimation Errors

1.1.1.1. Closed-Form FormulasClosed-Form FormulasClosed-Form FormulasClosed-Form Formulas

The estimator of VaR is a quantile of the empirical loss distribution.  We take

the estimator of VaR at the 100 )1( α− % confidence level to be )1( +αnX , where

)1()()1()1()( ,,,,,, XXXXX nnnn �� αα +−  are loss samples arranged in increasing order.

Stuart and Ord [1994] show that the quantiles of distributions

asymptotically obey the normal distribution and their asymptotic standard

deviation is given in a closed-form formula (see pp.356-358 of Stuart and Ord

[1994]).  From this result, we obtain the following closed-form formula for the

asymptotic standard deviation of VaR estimates:

　
nxfXVaR

)1(
)(

1
)(

αασ
α

α

−= , (A-1)

where )( αxf  is the probability density function of loss evaluated at the

100 )1( α− % quantile, and n  is the sample number.

We take the estimator of the expected shortfall to be:
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When the sample size n  is large, the standard deviation of the expected

shortfall estimates is approximated by:
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for some β  such as αβ << , where α−1x  and β−1x  are ( α−1 ) and ( β−1 ) quintiles

of the underlying loss distribution29.

                                                
29  =−α1x  )1(1 α−−F )1(, 1

1 ββ −= −
− Fx , where )(1 xF −  is the inverse of the distribution function of

loss )(xF .
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2.2.2.2. Comparison between Closed-Form Comparison between Closed-Form Comparison between Closed-Form Comparison between Closed-Form ApproximationApproximationApproximationApproximation and Simulation and Simulation and Simulation and Simulation
EstimateEstimateEstimateEstimate

We compare the results obtained by the closed-form formulas ((A-2) and (A-3))

and the results obtained by Monte Carlo simulation.  We simulate random

numbers from the standard normal, t (degrees of freedom: 2) 30 , and Pareto（β

=2）31 as the loss samples32, and compare the standard deviation estimates

obtained by those methods.  The table below shows the results.  When the

underlying loss distribution is normal or t, those numbers are almost equal.

However, when the underlying distribution is Pareto, they are different.

▽ Standard Deviation of VaR and Expected Shortfall Estimates
（Comparison between closed-form and simulation methods）

・95% confidence interval
VaR Expected Shortfall

Closed-From Simulation Closed-Form Simulation

Normal 0.0668 0.0664 0.0780 0.0773

T 0.1080 0.1074 0.1885 0.1872

Pareto 0.3082 0.3090 1.6124 2.0818

・99% confidence interval
VaR Expected Shortfall

Closed-From Simulation Closed-Form Simulation

Normal 0.1181 0.1153 0.1449 0.1386

T 0.2884 0.2839 0.5346 0.5068

Pareto 1.5732 1.5721 7.0509 8.9681
＊ sets of simulation : 100,000, sample size: 1,000, βin Equation (A-3): 10-5.

                                                
30  The probability density function of the t-distribution with degrees of freedom of m  is:
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   where ( )Γ  is the Gamma function.

31  The probability density function of the Pareto distribution is:

1)( += β
β

x
xf    1≥x .

32  We used normal, t-, and Pareto distributions since they have closed-form representation of probability
density functions, and are convenient methods of evaluating the standard deviation using Equation (A-3).
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3.3.3.3. DerDerDerDerivation of Closed-Form Formulaivation of Closed-Form Formulaivation of Closed-Form Formulaivation of Closed-Form Formula

Equation (A-3) is derived using the result of robust statistics33.  We utilize the

fact that the estimator of expected shortfall is the L-estimate in robust

statistics literature.  Under certain conditions, the L-estimate asymptotically

obeys the normal distribution, and its asymptotic variance is given in closed-

form formula.

Suppose )1()()()1()( ,,,,,,, XXXXX nnnn ��� βα−  are losses of n  samples

from simulation, rearranged in increasing order.  Take some constant β  such

that αβ << .  Consider the following estimator.
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This estimator approximates to the estimator of expected shortfall

（Equation (A-2)）when n  is large and β  is efficiently small.  We define a

weighting function h  as follows:
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Using this function, Equation (A-4) becomes:
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Let )(xF  denote the distribution function of the loss, )(xf  denote its

probability density function, and )()( 1 xFxT −=  denote the inverse of the

distribution function.  With Equation (3.12) in Huber [1981], the influence

function34 of this estimator is given as follows:
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33  See Huber [1981] for the details of robust statistics.
34  See Huber [1981] for definitions and concepts of the influence function.



35

Theorem 3.2 of Huber [1981] says that, under certain conditions35, L-

estimates asymptotically obey the normal distribution with asymptotic

variance of dxxfTFxICn �
∞

∞−
)(),,()1( 2 .  We apply this theorem to βα ,ES  and

obtain the following result.
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This proves Equation (A-3).

                                                
35  (i) the support of h  is contained in ]1,[ αα −  for some 0>α , (ii)no discontinuity of h  coincides with

a discontinuity of the inverse of the distribution function, etc.  All of those conditions are satisfied here.
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Appendix BAppendix BAppendix BAppendix B Method of Simulating Loss for Option PortfolioMethod of Simulating Loss for Option PortfolioMethod of Simulating Loss for Option PortfolioMethod of Simulating Loss for Option Portfolio

This appendix describes the method of simulating loss for the sample option

portfolio in section IV.A.

1.1.1.1. Stock priceStock priceStock priceStock price

The log returns on stocks are assumed to obey the multivariate normal

distribution.  The variance-covariance matrix of the log returns is estimated

using historical stock price data for the past three years.  Independently and

identically distributed standard normal random variables are transformed

into correlated normal random numbers with the Cholesky factors of the

historical variance-covariance matrix.  The average of historical log returns is

added to obtain the simulated log returns of stock prices.

2.2.2.2. Option PremiumOption PremiumOption PremiumOption Premium

Option premiums are simulated using Black Scholes formula assuming that

the implied volatility is constant.  The implied volatilities of the options are

calibrated from the data in Table 5.

Even though those options are American, they are priced using the

Black Scholes formula, since the dividend payments on the underlying stocks

are not expected until the option maturity.  Prices of American call options are

shown to be equal to those of European call options in such circumstances36.

                                                
36  See pp.175-176 of Hull [2000].
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Appendix CAppendix CAppendix CAppendix C Method of Simulating Loss for Loan PortfolioMethod of Simulating Loss for Loan PortfolioMethod of Simulating Loss for Loan PortfolioMethod of Simulating Loss for Loan Portfolio

This appendix describes the method of simulating loss of the sample loan

portfolio in Section IV.B.  The method is developed by Ieda, Marumo, and

Yoshiba [2000], and the description here is totally dependent on them.

We consider the random variable ),,2,1( niDi �=  which has a Bernoulli

distribution:
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pyprobabilitwith
pyprobabilitwith
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�
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=
 
     (A-9)

In other words, ),,2,1( niDi �=  for exposure i  in the portfolio (comprising n

exposures) takes the value 1 (default) with probability p  and 0 (non-default)

with probability p−1 .  Also, the correlation coefficient of each iD  is ρ

(constant).  The process of generating multivariate Bernoulli random numbers

that takes account of the correlation is not a simple application of the

Cholesky decomposition.  However, the Cholesky decomposition can be used

for normal distributions, so one method is to use the normal distribution as a

medium for generating Bernoulli random numbers.

We first consider a random variable ),,2,1( niX i �=  that follows the

standard normal distribution with 0 for its mean and 1 for its variance.

(However, individual variables are correlated rather than independent).  At

this time, iD  is expressed as:
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where )(1 ⋅Φ−  is the inverse function of the distribution function of the

standard normal distribution.

For the correlation coefficient of ),,2,1( niDi �=  to be ρ , one need

properly set a correlation coefficient ρ~  for ),,2,1( niX i �= .  ρ  can be expressed

as:
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Therefore, ][ ji DDE  is the distribution function of a two-dimensional normal

distribution with a correlation coefficient of ρ~ .
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This makes it possible to use Equation (A-13) and Equation (A-11) to

obtain a ρ~  that will satisfy (A-11) (however, numerical calculations will be

required to obtain the definite integral above).

It is, therefore, possible to obtain multivariate Bernoulli random

numbers iD  by using Equation (A-10) after generating multivariate normal

random numbers in the n -th dimension with a mean of 0, a variance of 1, and

a constant correlation coefficient of ρ~ .

The portfolio loss L  can be expressed as follows:

　 �
=

−=
n

i
iii rvDL

1
)1( , (A-14)

where iv  is the amount of exposure and ir ( 10 ≤≤ ir ) is the recovery rate at

default of exposure i .
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Appendix DAppendix DAppendix DAppendix D Proof of the Theorem oProof of the Theorem oProof of the Theorem oProof of the Theorem of Rockafeller and Uryasev [2000]f Rockafeller and Uryasev [2000]f Rockafeller and Uryasev [2000]f Rockafeller and Uryasev [2000]

This appendix explains a theorem on expected shortfall established by

Rockafeller and Uryasev [2000].  This theorem is used to develop an algorithm

of efficiently minimizing expected shortfall.

Consider the following function:

　 �
≤

=Ψ
β

β
x

xdF )()( . (A-15)

)(βΨ  is the probability that the loss x  does not exceed some threshold β ,
where )(xF  is the loss distribution function.  VaR at the 100α % confidence
level is defined as αβ , where

　 })(|min{ αβββα ≥Ψ∈= R . (A-16)

Expected shortfall at the 100α % confidence level is defined as the following

function.
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Theorem 1 below shows that expected shortfall is the minimization of
a function )(βαF  defined below with respect to β .
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Theorem 1（Rockafeller and Uryasev [2000]）

)(βαF  is a convex function of β .  It is also continuous and differentiable with

respect to β .  Expected shortfall is given by:

)(min βφ αβα F
R∈

= , (A-19)

where37

)(minarg βα
β

α FB
R∈

≡ . (A-20)

VaR is given by:

=αβ the left end point of αB . (A-21)

Furthermore, the following equality holds.

                                                
37  )(minarg βα

β
F

R∈
 is the β  that minimizes )(βαF .
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)(minarg ββ α
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=  and )( ααα βφ F= . (A-22)

Before proving Theorem 1, we prove the following Lemma.

Lemma

Suppose �
∈

+−=
Rx

xdFxG )(][)( ββ  is a function of β  with fixed x .  )(βG  is convex

with respect to β , and 1)()( −Ψ=′ ββG .

Proof:

The convexity of )(βG  is apparent from the convexity of +− ][ ββ x� .
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Q.E.D.

We prove Theorem 1 using this lemma.

Proof of Theorem 1:

From the Lemma, we obtain:

　 ])([)1(]1)([)1(1)( 11 αβαβαβ
β α −Ψ−=−Ψ−+=
∂
∂ −−F . (A-24)

Since )(βαF  is convex, )(βαF  is minimized when the first order condition

                                                
38  A1  is an indicator function which takes the value of 1 when A  is true and takes the value of 0 otherwise.
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0)( =−Ψ αβ  is satisfied (or when αβ B∈ ).  Since )(βΨ  is continuous and non-
increasing with respect to β , β  takes the lowest value that satisfies αβ ≥Ψ )(
when 0)( =−Ψ αβ .  Therefore, αββ =  when 0)( =−Ψ αβ , and the following
equality holds.
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Thus, the integral in Equation (A-25) is:
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The first term of the right hand side of Equation (A-26) is αφα )1( −  by the
definition of expected shortfall.  The second term is )(1 αβΨ− , by the definition
of distribution function.  Since αβα =Ψ )( , the following equality holds.

　 αααααβ
φαβφααββ =−−−−+= −

∈
)]1()1[()1()(min 1F

R
. (A-27)

This concludes the proof of Theorem 1.

Q.E.D.
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