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Abstract

This paper considers the problem of endogenous sampling in the duration
model. This is an important problem in the duration analysis of bank
failures and loan defaults because it is common for the researchers in these
areas to use only the default sample or non-default sample or both at a
certain ratio, rather than using a random sample. The properties of
endogenous sampling have been considered in various models, notably in
gualitative response models, but not in duration models as far as | am
aware. In this paper | obtain the asymptotic distribution of the endogenous
sampling maximum likelihood estimator and compare it with that of the
random sampling maximum likelihood estimator and indicate when
efficiency gain may result. | aso show that the random sampling
maximum likelihood estimator is inconsistent if the data are collected by
endogenous sampling.
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1. Introduction

Endogenous sampling in the duration model occurs when the statistician uses only the default
(non-right-censored) sample or only the non-default (right-censored) sample or both at a certain
predetermined ratio. This is an important problem in the duration analysis of banks and loans
because it is quite common for the researchers in these areas to use only the default sample or non-
default sample or both at a certain ratio. For example, Lee and Urrutia [1996] use both kinds of data
in an equal proportion in the analysis of insurer insolvencies. See other references cited there.

The properties of endogenous sampling have been considered in various models, most
notably in qualitative response models (see Amemiya [1985]), but not in duratio models as far as I
am aware. Kim et al. [1995], in their study of insurer insolvencies, recognize the problem and cite
Manski and Lerman [1977], who addressed the problem of endogenous sampling in the qualitative
response model, but do not correctly deal with it. In fact, endogenous sampling in the duration
model is so basically different from that in the qualitative response model that the results in one
model cannot be readily applied to the other.

The order of the presentation is as follows: In Section 2 I consider the asymptotic properties
of the endogenous sampling maximum likelihood estimator (ESMLE) in the model where defaults
and non-defaults are sampled in a certain proportion. I show that the random sample maximum
likelihood estimator (RSMLE) is inconsistent under this scheme. Next I compare ESMLE and
RSMLE under their respective favorable conditions. A problem with ESMLE is its necessity to
estimate a starting time distribution. In Section 3 I propose a conditional ESMLE which alleviates
this problem. In Section 4 I consider estimating the starting time distribution from a separate sample.

In Sections 5 and 6 I consider ESMLE and Conditional ESMLE in the models with left censoring.



Generalizations to the case of heterogeneous samples are given in Section 7, and conclusions are

given in Section 8.

2. Sampling Defaults and Non-Defaultsin a Certain Proportion
A. Asymptotic Propertiesof ESMLE
The duration data are generated according to the following scheme: A spell starts in an
interval (a, b), and the starting time X is distributed according to density h(x) and distribution
function H(x). The duration T ofthe spell is distributed according to density f(t) and distribution
function F(t). We assume that X and T are independent. A spell is a default if it ends before
b (D =1) and a non-default if it continues to b (D =0). Thus,
D=1<t<b-x=A,
D=0<=t>b-x=A,
The above is diagrammatically represented in Figure 1.
<Figure 1 here.>
We assume that the statistician samples defaults with probability A, and non-defaults with
probability A,(=1-A,). In order to write the likelihood function of the model, we first note
f(x,t | D=1) = h(x)f(t)/P,,
where P, =P(T<b-X)= }F(b -x)h(x)dx and
f(x | D=0) = h(x)[l-ﬁ(b-x)]/Po,
where P, = }h(x)[l -F(b-x)]dx.

Therefore, the likelihood function is

M L-p ] h(xi)f(ti)-le-Po'N()];[ h(x)[1-F(b-x))] - X",
1
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where H and H mean taking the produt over the default and non-default samples,
1 0

respectively, and N, and N, are the numbers of the default and non-default samples. Note that

N, is arandom variable distributed as Binomial (N, A,). Assume that the parameter § characterizes

f butnot h. (For simplicity of the notation, I will assume that B is a scalar, but all the subsequent

formulas can be easily generalized to the vector case.) Ignoring the terms that do not depend on f,

we have
(2) logL = N,logP, + 21: logf(t,) - N, logP, + 20: log[1-F(b-x))].

To show the consistency of the ESMLE of (3, consider

N oP
3) 1 dlogk . N 19% 1y plof
N OB NP op N fop
N, P -
D1 Py Ay gy L A0-B)
N P, 8 N 1-F 0B

where E means the summation over the whole sample and D. f, and F depend implicitly on 1.
The consistency of ESMLE is essentially equivalent to the condition that (3) converges to 0 in

probability. In order to verify this condition, note

A,
@ plimLY pl o ppl ot g L p - —fla— hfdtdx
N= T Fop £ op £ op P, | T3P
3
) P_a—B
5 E1-pyL 9B (1 a0k
1F  op 1-F op



b
- ﬁf_l Py pyax - 20 %o
p,J I-F op P, OB

Thus, the consistency follows from (3), (4), and (5). From the above results, we see that both
ESNLE using only the default sample (A, = 1) and the ESMLE using only the non-default sample
(A, = 1) are consistent.

Next we will derive the asymptotic variance using the well-known formula (see Amemiya

[1985, p. 121]):

2 71
B 1 o7logL
N op?

6)  AVIYNB-B)] =

dlogL \?
N ap
Rearranging the terms of the RHS of (3) and multiplying them by /N,

10f 10P 1 1 8(1-F) 13Po]
+—Ya-p| 2 _ 0
3wz

%) 1 dlogL _ LZD

/N BN fop P, op 1-F op P, op
Since
oP
® B||L1L - LT by :if Lof - 10l hfdtdx
fop P, op Pl top P op
2 oP, |* oP
—if L(a_f] L(_l] S 20 1 Tl fdedx
P |2\ op 2\ “op fop P, op
:th(_) L(ﬁ)z
Pl £l P\ op
we have



Since

2
(10) E LM_L% ID=0
1-F Jp P, 9B

afpoh (0-R)y 1R
PO[I—F op P aB) |
we have
ap, |’
(11) E(1-p)| 1-d0-H 10]
I-F_op P, op

Therefore, from (6), (7), (9), and (11)

(12)  AV(ESMLE)" - El(LOgL)z
N{ op

A 2 oP, |’
- _lfh(ﬁ) dtdx—i(—l]

PlAlf p P\ oB

A

X L(a(l—F))zdx_i(%]z,
P,[) 1-F{ 0B P,\ B

We can also verify the second equality of (6).

(o

+

B. Inconsistency of RSMLE

We will show that the RSMLE is inconsistent under the endogenous sampling scheme



described in the beginning of Section A. The likelihood function to be maximized to obtain RSMLE
is

(13) L, =1 h(xi)f(ti)l;[ h(x,)[1-F(b-x,)] .
1

Therefore we have

(14)  logL, = Y D.logf(t) +Y_ (1-D)log[1-F(b-x,)],

ologL. B
(15) 1 gR:lleﬂJriZ(l_D) I ad F),
N Jp N fop N 1-F B
logL A, OP, A, OP
(16) ElaOgR__liJr_ob_
N Jp P, op P, 9B

The inconsistency follows from the fact that the RHS of (16) is not zero unless A, =P, (hence
Ao = Py).

We will evaluate the degree of the inconsistency of RSMLE in a simple example. For this
purpose we must treat the [ that appears on the right-hand side of (15) as the domain of the function
and take the expectation using the true value p*. Note that in (16) I was implicitly evaluating the

function at the true value without defining a new symbol. Then, we have, instead of (16),

A ° -
(16) S Do - 2 [ OB gy,
Ay £ aB P0 a I-F

A

P, o
where the functions with * are evaluated at B°. Note that (16*) is reduced to (16) when we remove
" from the right-hand side. Given the true value B, the probability limit of RSMLE is given by

solving for P the equation obtained by equating (16") to zero. The simple example we will consider



is defined by a=0,b =1, h(x) = U(0,1), f(t) = Bexp(-pt), and A, =14, =0.5. We will assume
B"=1. Then we can calculate the probability limit of RSMLE to be 0.468.

C. Comparison of ESMLE and RSMLE

We will now compare the asymptotic variances of RSMLE and RSMLE derived under their
respective correct models. We have already done so for ESMLE in Section A, so we now do the
same for RSMLE. Note that equations (17), (18), and (19) below are analogous to equations (7), (9),

and (11). From (15) we obtain

1 ologL, 1 ap)
17y — S 21
(17 JN B WZ fop op
1 1 o(1-F) aPo]
+— 1-D - :
\NZ( ) B o

Note a slight difference between (17) and (7). Analogous to (9) we have

2 2
(18) E(Dlﬁ_@) :fg(a_fJ dtds [ap]
fop op I f\ ap B

and analogous to (11) we have

_ aP,
SAENEE

(19)

e (3]
f1 F %

Unlike the derivation in the case of ESMLE, however, here we need to calculate the expectation of

the cross product:

Dlafal’l)[(lml a(l—F)laPo) (ai)
fop op 1-F  op P, oB

(20) E

Therefore, from (17) through (20) we obtain



(21) AV(RSMLE)' = E%

dlogL, 2
P

- f%(g)zdtdx +}L(M)2dx.
A, B a 1-F ap
It is interesting to note that if we put A, =P, and A,=P, in (12), we do not get (21). In fact, what
we obtain by putting A, =P, and A,=P, in (12) is smaller than (21). For some values of A, and
A, however, (12) may be larger than (21), allowing for the possibility that ESMLE may be more
efficient than RSMLE. From (12) it is clear that the RHS of (12) is maximized either at A, =1 or
A, =1 depending on which of the coefficients on p, and p, is greater. Thus, contrary to intuition,
the optimum does not occur in between.

To get a concrete idea about the difference in asymptotic efficiency between ESMLE and
RSMLE, we will evaluate their asymptotic variances in the same simple example we considered at
the end of the preceding section: namely, a=0,b =1, h(x) =U(0,1), and f(t) = Bexp(-pt). Define
ESMLEI to be the estimator using only the default sample and ESMLEO using only the non-default
sample. Their asymptotic variances are given by (8) and (10). Then, inserting the values specified
by the simple example into (8) and (10), we obtain
B-3+(3+2p+pIe P _ (1-e P-pe Py

B -p>+pe P (B2-B+pe P
2-(B2+2p+2)e P (1-¢ P-pe Py

(22) AV(ESMLEI)! =

(23)  AV(ESMLEO)! =

p*-pre P (B-pe Py
1 1 1 € P

In the table below we have evaluated these three inverses of the asymptotic variances for some



values of .

B 0.5
AV(RSMLE)" 0.852
AV(ESMLE1)" 0.052
AV(ESMLEO)" 0.082

0.368
0.048
0.079

3. Conditional ESMLE Using Defaults

ESMLE using only the default sample maximizes

@5) L, - P[NI]:[ h(x) £(t.)

and its asymptotic variance is given by (8). A problem with this estimator is the fact that P,
depends on h(x) and hence h(x) cannot be ignored even if one wanted to estimate only the
parameter 3 that characterizes f(t). Conditional ESMLE alleviates this difficulty. This estimator

is analogous to the conditional maximum likelihood estimator used in the duration model with left

censoring (see Amemiya [1999]).

0.032
0.020
0.033

The conditional density of t given x in A, is given by

26)  fitx) = I
f h(x)f(t)dt
0

Therefore, CESMLE maximizes

f(t,)
F(b-x,)

27y L. =11
or, equivalently,

(28) logL.= Z logf - Z logF .

~ Fb-x)



Consider

dlogL
30) plim L 222 _ g( L p ) gl L p
B £ op B
B SIS B S R
P, Op P, op

Therefore, CESMLE is consistent.

To evaluate the asymptotic variance, consider

1 dlogL. 1
31y — = —
N BN

We need to evaluate the mean of the square of each term and the cross product. The mean of the

1 dP,

1of oF 1 P
fop P, op

1 1%
Fog P, B

Ly
/N
square of the first term has been derived in (8). We have

PSS /N U ) e :Lbh(@)zdx_i(@]z
fop P, op PlfF op P, op

a

and

(33) E[[laflapl)[lal:lapl] Dl]
fop P, BJ|\Fp P B

Therefore,
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(34)  AV(CESMLE)' =

1 d”logL.
Above can be shown to be equal to -E— ;
o

inverse of the asymptotic variance of ESMLE using only the default sample, namely, what we obtain

. We will show that (34) is smaller than the

by putting p, =1 in (12). For this we need to verify

2 b
(35) fﬁ(@)zdtdx—i[@] zfﬁ(ﬁ)zdtdx—fﬁ(@)zdx,
e P\ "L\ I\ o

or equivalently

(36) Pf (GF) dx > (ZE]

or equivalently

(37) thd f (@) hdx }%Ehdx ,

which follows from the Cauchy-Schwartz inequality
(38) EV?*-EU’>(EUV),

ifweput U = 1 oF

F 8_[3 V = /F, and the expectation is taken with respect to x.
ESMLE using only the non-default sample maximizes

39 L, = PO_NO H h(x,)[1-F(b-x,)]. Thus, each density has the form
0
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h(x)[1-F(b-x)]
b

fh(x)[l ~-F(b-x)]dx

(40)

Note that (40) depends only on x. Therefore, there is no conditional ESMLE using only the non-
default sample.
4. Separ ate Estimation of h(x)

We now consider the case where we can estimate the density h(x) or the distribution
function H(x) using an augmented sample independent of that used to estimate .

We maximize (25) after estimating h from a separate independent sample. That is,

maximize

@  w =[] fep, ",

where

b
42) P, - fF(b—x)dﬁ(x)

A
and H is the empirical distribution function based on K separate observations. Thus,
. K
43) P, = K'Y F(b-x,).
k-1

If we denote this estimator by El ,its asymptotic distribution can be obtained from

1 dlogW

NP

The second-derivative term above divided by N will converge to the same limit as if H were not

(l a%gw) B

(44) mﬁl—ﬁ):—( N o

12



estimated. So, here, we will consider only the first derivative part. We have, ignoring the terms that

do not depend on f,

N K
(45) logW =Y logf(t) -Nlog)_ F(b-x,).
k=1

i=1

Since
4g) JlogW :XN:lﬁ_ N XK:@
ap T fop XK T op’
Y F
k=1
(47 L dlogW 1 gf1of 1
\/N aB \/lel faB P1 aB
IR o, (&
Ly oF 20 izp_pl)
- N Kici df B P\ KiT
Ly Ly
~Y'F P -V F
Kk:1 1Kkzl
ply Lot 1
= \/Ni:l f op Pl ap
K oP,  oP K
Ly ok T T izp_pl)
- N Kiti a8 B~ B\ K
P, P12
dlogL,

in the case of using only the default sample,

Note that the first term after LD above is F
- N

as can be seen from the first term on the RHS of (7), and the second term arises from estimating H.

Therefore, if we define

(48) B =E




the asymptotic variance of \/N(El - PB) is given by

49)  AV[YNGB, -p)] =

LN 1 OF N 1

P |* oP
Tl yp- o2 N LTl B BT
B K p> op B

Thus, if N/K - 0, the estimator is as efficient as if H were known. Otherwise, K must go to infinity
at least as fast as N in order for the above to remain finite.

If we estimate the density h by a kernel estimator of the form

d | kd’

K _
(50) &w=;4“XyL

We can get the same asymptotic result as above provided that the kernel function g and the rate of
convergence of d to O satisfy certain conditions. But the proof is more involved in this case. See,
for example, Ait-Sahalia [1994].

We will now obtain an analogous result for the case of ESMLE using only the non-default

sample. Here we maximize

1 W =[] 11-Fo-x)18, ",

where

. 1 &
(52) P = E2[1 -F(b-x,)

We have, ignoring the terms that do not depend on f,
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N K

(53) logW = Y log[1-F(b-x,)] -Nlog)_ [1-F(b-x)].
i=1 k=1

Since

N K
(54 JlogW g~ 1 1-F) N 3\ 301F)

i- - K . 0
P i 1-F 0B NG B
k=1
(55 L dlogW _ L ygf 1 30F) 1%
JN OB JNiT\1-F o P, 0
_lK B1-F) Py R _P)
s K R Kng( ) =Py
1 1
— 1-F | — 1-F
K§( ) OKQ( )
D=i§: 1 o(1-F) 1 9P,
- NI | d-F) B P, OB

1 K a(l_F)_aPO dP, 1 K o
N Klg B B aﬁ(Kg(l R
2

P, P,

dlogL,

Note that the first term after LD above is L
= \/N
as can be seen from the second term on the RHS of (7), and the second term arises from estimating

in the case of using only the default sample,

H. Therefore, if we define

1 odlogL,

N

(56) C =E

2 2
Y fi(@)d _L[%]
P, a 1-F ap P, \ oB
the asymptotic variance of \/N(ﬁo - B) is given by
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(57)  AV[YN(B, - B)] =

N1 gob N1
2 K 4

KpZ o

clc+

aP, |’
—O| VF
P

LN 1P COV(F,@) c.
K p; 9B B
5. ESMLE with Left Censoring

At the beginning of Section 1A, we defined the range of the starting time x of a spell as
(a, b), where a is a certain time in the past and b is the present time. Now we consider a time
within this interval and denote it as 0. The assumption of the present section is that we sample only
those spells which either are continuing at time 0 or start after 0. (This is the problem of left
censoring studied by Amemiya [1999].) Moreover, we sample only defaults, that is, only those
spells which end before b. (This is the problem of endogenous sampling.) In this section we
consider a simultaneous occurrence of left censoring and endogenous sampling.

Consider the following two types of spells: (1) those that start in (a, 0) and continue to 0
but end before b and (2) those that start in (0, b) and end before b. The two types of spells are
described in the Figure 2.

<Figure 2 here>
In the Figure 3 the domains of the two types of spells are described on the x-t plane.

<Figure 3 here>

We have
0 b—x

(58) P, =PA) - f f fhdtdx = f [F(b-x) - F(-x)]hdx ,
b b—x

(59) P, =PA) - f f fhdtdx = fF(b x)hdx .
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The question that we now wish to address is: Should we divide Type (1) sample by P, and Type
(2) sample by P,, or all the samples by P = P, + P,?

If we divide all the samples by P, we maximize
60) L =P N[] hex)ft) ] hx)f(t).
1 2
Ignoring the terms that do not depend on 3, we have

(61)  logL =- NlogP + X logf,

1 dlogl _ 1 x~(10f 1P
© N o fz(fas Paﬁ)

Thus, in analogy to (12),

dlogL
(63) E N( )

B3]

where A = A UA,.

If we divide Type (1) sample by P, and Type (2) sample by P,, we maximize
64) L =P, '] hee)ft)P, [T h(x)f(t).
1 2

Ignoring the terms that do not depend on B, we have

(65) logL =-N,logP, - N,logP, + Elogf,

66) Lol  Ni 1P Ny 1 9P 1 g1 of
JN B NP o NP, OB NT fOP

oP P oP P

1S 1y Dl__l)_i_sz Dz__z]

P, B /N P) P, B N P




I 1af 1apP
+ﬁz(?a_s Pas)’

where D, =1 ifthe spell is of Type (1) and D, =1 ifitis of Type (2). Since the last term above

is equal to the RHS of (62),

«) 2 2 2
) E;( alogL] i L(@] 5(1_5] L(ai) &(1_&]
N ap P12 p) P P P22 p) P P

_iaPl P, 2 aPl( 1P P GP] _

p2 op op P, op

2
E l( 8logL)

N\ o
2 2
I O ) S U LY RS U LY I R oY A
p2\ op PP, | OB PP,\ o N\ op )
1 d*logl . S
The above can be shown to be equal to ~-E— - To see that L is the better likelihood
o
function than L, verify
1(alogL)? . 1 alogl|’
68) E—| L8| _p_| 208
N\ oJp N{ OB
2 2
) ) (E)
PP, \ op PP,\ B p2\ op

| Pz(apl]_ P1(8P2]2>0
i A |

6. Conditional ESMLE with Left Censoring

Conditional density of t given x in A (= A UA,) is given by

18



69) it = MO~ 1O

f h(x)f(dt  G(x)

A

where

(70)  G(x) = F(b-x) - X, 0(X)F(-x) .

Note that X, ,(x) =1 if x € (a,0) and =0 otherwise. All the results of Section 3 will go through

by replacing F by G. Thus,

4 Ll phfof) gy ph(36)’
(71)  AV(CESMLE) > [ f(aﬁ) dtdx f G( GB) dx

Above can be shown to be less than (63) by replacing F by G on the Cauchy-Schwartz inequality
(36).
7. Generalizations to the Case of Heter ogenous Samples

So far we have assumed that we have i.i.d. observations on the random variables X and T.
In actual applications, however, their densities, h and f, are likely to depend on vectors of
exogenous variables s; and z, so that we can write h(x; - s;0) and f(t; - z;' B). We will indicate
how the foregoing results should be modified to take into account these specifications. Below we
will indicate necessary modifications to some of the preceding equations.
(1) Replace h and f with h(x;-s,'0) and f(t; - z,/'P).

N

(12) Add lim 1 to every term after the above replacement.
i-1

(21)  Same as above.

(34) Same as above.

@) w =[] ft, -z/'pb,,.
i-1

19



b
(42) P, - f F(b—x-z,/B)]dH(x),

where H is a step function with a jump of size 1/K at b sk’é, 0 being the least squares

estimator of the regression of x, on s,. Therefore,

5 _ 1y 0y
43) P, = —) F(b-x,+s'0-z'p).
Ki=

A further error is introduced by the estimation of 0, but the rate of convergence is the same as in the

case of the homogenous sample.
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