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1. Introduction

Endogenous sampling in the duration model occurs when the statistician uses only the default

(non-right-censored) sample or only the non-default (right-censored) sample or both at a certain

predetermined ratio.  This is an important problem in the duration analysis of banks and loans

because it is quite common for the researchers in these areas to use only the default sample or non-

default sample or both at a certain ratio.  For example, Lee and Urrutia [1996] use both kinds of data

in an equal proportion in the analysis of insurer insolvencies.  See other references cited there.

The properties of endogenous sampling have been considered in various models, most

notably in qualitative response models (see Amemiya [1985]), but not in duratio models as far as I

am aware.  Kim et al. [1995], in their study of insurer insolvencies, recognize the problem and cite

Manski and Lerman [1977], who addressed the problem of endogenous sampling in the qualitative

response model, but do not correctly deal with it.  In fact, endogenous sampling in the duration

model is so basically different from that in the qualitative response model that the results in one

model cannot be readily applied to the other.

The order of the presentation is as follows:  In Section 2 I consider the asymptotic properties

of the endogenous sampling maximum likelihood estimator (ESMLE) in the model where defaults

and non-defaults are sampled in a certain proportion.  I show that the random sample maximum

likelihood estimator (RSMLE) is inconsistent under this scheme.  Next I compare ESMLE and

RSMLE under their respective favorable conditions.  A problem with ESMLE is its necessity to

estimate a starting time distribution.  In Section 3 I propose a conditional ESMLE which alleviates

this problem.  In Section 4 I consider estimating the starting time distribution from a separate sample.

In Sections 5 and 6 I consider ESMLE and Conditional ESMLE in the models with left censoring.
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Generalizations to the case of heterogeneous samples are given in Section 7, and conclusions are

given in Section 8.

2. Sampling Defaults and Non-Defaults in a Certain Proportion

A. Asymptotic Properties of ESMLE

The duration data are generated according to the following scheme:  A spell starts in an

interval (a, b), and the starting time  X  is distributed according to density  h(x)  and distribution

function  H(x).  The duration  T  of the spell is distributed according to density  f(t)  and distribution

function  F(t).  We assume that  X  and  T  are independent.  A spell is a default if it ends before  

b (D = 1)  and a non-default if it continues to  b (D = 0).  Thus,

D = 1 � t < b - x � A1

D = 0 � t � b - x � A0

The above is diagrammatically represented in Figure 1.

<Figure 1 here.>

We assume that the statistician samples defaults with probability  λ1  and non-defaults with

probability  λ0 ( = 1 - λ1).  In order to write the likelihood function of the model, we first note

f(x,t | D=1) = h(x)f(t)/P1,

where  P1 = P(T < b - X) = �
b

a

F(b�x)h(x)dx and

f(x | D=0) = h(x)[1-F(b-x)]/P0,

where  P0 � �
b

a

h(x)[1�F(b�x)]dx.

Therefore, the likelihood function is

(1) L � P
�N1
1 �

1
h(xi)f(ti) � λ

N1
1 � P

�N0
0 �

0
h(xi)[1�F(b�xi)] � λ

N0
0 ,
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where   mean taking the produt over the default and non-default samples,�
1

and �
0

respectively, and  N1  and  N0  are the numbers of the default and non-default samples.  Note that

N1  is a random variable distributed as Binomial  (N, λ1).  Assume that the parameter  β  characterizes

f  but not  h.  (For simplicity of the notation, I will assume that  β  is a scalar, but all the subsequent

formulas can be easily generalized to the vector case.)  Ignoring the terms that do not depend on  β,

we have

(2) logL � N1 logP1 ��
1

logf(ti) � N0 logP0 ��
0

log[1�F(b�xi)].

To show the consistency of the ESMLE of  β, consider

(3) 1
N

�logL
�β

� �

N1

N
1
P1

�P1

�β
�

1
N � D 1

f
�f
�β

�

N0

N
1
P0

�P0

�β
�

1
N � (1�D) 1

1�F
�(1�F)

�β
,

where  �  means the summation over the whole sample and  D. f, and  F  depend implicitly on  i.

The consistency of  ESMLE is essentially equivalent to the condition that (3) converges to  0  in

probability.  In order to verify this condition, note

(4) plim 1
N � D 1

f
� f
�β

� ED 1
f
�f
�β

� λ1 E 1
f
�f
�β

|D�1 �

λ1

P1 �
A1

1
f
�f
�β

hfdtdx

     �
λ1

P1

�P1

�β
,

(5) E(1�D) 1
1�F

�(1�F)
�β

� λ0 E l
1�F

�(1�F)
�β

|D�0
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�

λ0

P0 �
b

a

1
1�F

�(1�F)
�β

h(1�F)dx �

λ0

P0

�P0

�β
.

Thus, the consistency follows from (3), (4), and (5).  From the above results, we see that both

ESNLE using only the default sample  (λ1 = 1)  and the ESMLE using only the non-default sample

(λ0 = 1)  are consistent.

Next we will derive the asymptotic variance using the well-known formula (see Amemiya

[1985, p. 121]):

(6) AV[ N(β̂�β)] � E 1
N

� logL
�β

2 �1

� �E 1
N

�
2 logL
�β2

�1

.

Rearranging the terms of the RHS of (3) and multiplying them by  ,N

(7) 1
N

� logL
�β

�
1
N
� D 1

f
�f
�β

�
1
P1

�P1

�β
�

1
N
� (1�D) 1

1�F
�(1�F)
�β

�
1
P0

�P0

�β
.

Since

(8) E 1
f
�f
�β

�
1
P1

�P1

�β

2

|D�1 �
1
P1 �A1

1
f
�f
�β

�
1
P1

�P1

�β

2

hfdtdx

�
1
P1 �A1

1
f 2

� f
�β

2
�

1

P 2
1

�P1

�β

2

�
2
f
�f
�β

1
P1

�P1

�β
hfdtdx

�
1
P1 �

A1

h
f

�f
�β

2
dtdx �

1
P1

�P1

�β

2

,

we have

(9) ED 1
f
�f
�β

�
1
P1

�P1

�β

2

�

λ1

P1 �
A1

h
f

�f
�β

2
dtdx �

1
P1

�P1

�β

2

.
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Since

(10) E 1
1�F

�(1�F)
�β

�
1
P0

�P0

�β

2

|D�0

�
1
P0 �

b

a

1
1�F

�(1�F)
�β

�
1
P0

�P0

�β

2

h(1�F)dx

�
1
P0 �

b

a

h
1�F

�(1�F)
�β

2
dx �

1
P0

�P0

�β

2

,

we have

(11) E(1�D) 1
1�F

�(1�F)
�β

�
1
P0

�P0

�β

2

�

λ0

P0 �
b

a

h
1�F

�(1�F)
�β

2
dx �

1
P0

�P0

�β

2

.

Therefore, from (6), (7), (9), and (11)

(12) AV(ESMLE)-1 
� E 1

N
�logL
�β

2

  �
λ1

P1 �A1

h
f

�f
�β

2
dtdx �

1
P1

�P1

�β

2

    �
λ0

P0 �
b

a

h
1�F

�(1�F)
�β

2
dx �

1
P0

�P0

�β

2

.

We can also verify the second equality of (6).

B. Inconsistency of RSMLE

We will show that the RSMLE is inconsistent under the endogenous sampling scheme
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described in the beginning of Section A.  The likelihood function to be maximized to obtain RSMLE

is

(13) LR � �
1

h(xi)f(ti) ��
0

h(xi) [1�F(b�xi)] .

Therefore we have

(14) logLR � � Di logf(ti) �� (1�Di) log[1�F(b�xi)] ,

(15) 1
N

�logLR

�β
�

1
N � D 1

f
�f
�β

�
1
N � (1�D) 1

1�F
�(1�F)
�β

,

(16) E 1
N

�logLR

�β
�

λ1

P1

�P1

�β
�

λ0

P0

�P0

�β
.

The inconsistency follows from the fact that the RHS of (16) is not zero unless  λ1 = P1  (hence   

λ0 = P0).

We will evaluate the degree of the inconsistency of RSMLE in a simple example.  For this

purpose we must treat the  β  that appears on the right-hand side of (15) as the domain of the function

and take the expectation using the true value  β*.  Note that in (16) I was implicitly evaluating the

function at the true value without defining a new symbol.  Then, we have, instead of (16),

(16*)
λ1

P �

1
�
A1

1
f

�f
�β

hf �dtdx �

λ0

P �

0
�
b

a

l
1�F

�(1�F)
�β

h(1�F �)dx ,

where the functions with  *  are evaluated at  β*.  Note that (16*) is reduced to (16) when we remove

 *   from the right-hand side.  Given the true value  β*, the probability limit of RSMLE is given by

solving for  β the equation obtained by equating (16*) to zero.  The simple example we will consider
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is defined by  a = 0, b = 1, h(x) = U(0,1), f(t) = βexp(-βt), and  λ0 = λ1 = 0.5.  We will assume      

β* = 1.  Then we can calculate the probability limit of RSMLE  to be 0.468.

C. Comparison of ESMLE and RSMLE

We will now compare the asymptotic variances of RSMLE and RSMLE derived under their

respective correct models.  We have already done so for ESMLE in Section A, so we now do the

same for RSMLE.  Note that equations (17), (18), and (19) below are analogous to equations (7), (9),

and (11).  From (15) we obtain

(17) 1
N

�logLR

�β
�

1
N
� D 1

f
�f
�β

�

�P1

�β

�
1
N
� (1�D) 1

1�F
�(1�F)
�β

�

�P0

�β
.

Note a slight difference between (17) and (7).  Analogous to (9) we have

(18) E D 1
f
�f
�β

�

�P1

�β

2

� �
A1

h
f

�f
�β

2
dtdx �

�P1

�β

2

,

and analogous to (11) we have

(19) E (1�D) 1
1�F

�(1�F)
�β

�
1
P0

�P0

�β

2

� �
b

a

h
1�F

�(1�F)
�β

2
dx �

�P0

�β

2

.

Unlike the derivation in the case of ESMLE, however, here we need to calculate the expectation of

the cross product:

(20) E D 1
f
�f
�β

�

�P1

�β
(1�D) 1

1�F
�(1�F)
�β

�
1
P0

�P0

�β
�

�P1

�β

2

Therefore, from (17) through (20) we obtain
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(21) AV(RSMLE)-1  � E 1
N

�logLR

�β

2

  � �
A1

h
f

�f
�β

2
dtdx � �

b

a

h
1�F

�(1�F)
�β

2
dx .

It is interesting to note that if we put  λ1 = P1  and  λ0 = P0  in (12), we do not get (21).  In fact, what

we obtain by putting  λ1 = P1  and  λ0 = P0  in (12) is smaller than (21).  For some values of  λ1  and

λ0, however, (12) may be larger than (21), allowing for the possibility that ESMLE may be more

efficient than RSMLE.  From (12) it is clear that the RHS of (12) is maximized either at  λ1 = 1  or

λ0 = 1  depending on which of the coefficients on  p1  and  p0  is greater.  Thus, contrary to intuition,

the optimum does not occur in between.

To get a concrete idea about the difference in asymptotic efficiency between ESMLE and

RSMLE, we will evaluate their asymptotic variances in the same simple example we considered at

the end of the preceding section:  namely, a = 0, b = 1, h(x) = U(0,1), and  f(t) = βexp(-βt).  Define

ESMLE1 to be the estimator using only the default sample and ESMLE0 using only the non-default

sample.  Their asymptotic variances are given by (8) and (10).  Then, inserting the values specified

by the simple example into (8) and (10), we obtain

(22) AV(ESMLE1)-1 =  β�3�(3�2β�β2)e �β

β3
�β2

�β2e �β
�

(1�e �β
�βe �β)2

(β2
�β�βe �β)2

,

(23) AV(ESMLE0)-1 = 2� (β2
�2β�2)e �β

β2
�β2e �β

�
(1�e �β

�βe �β)2

(β�βe �β)2
,

(24) AV(RSMLE)-1 = 1
β2

�
1
β3

�
e �β

β3
.

In the table below we have evaluated these three inverses of the asymptotic variances for some
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values of  β.

β 0.5 1 5
AV(RSMLE)-1 0.852 0.368 0.032
AV(ESMLE1)-1 0.052 0.048 0.020
AV(ESMLE0)-1 0.082 0.079 0.033

3. Conditional ESMLE Using Defaults

ESMLE using only the default sample maximizes

(25) L1 � P
�N1
1 �

1
h(xi) f (ti)

and its asymptotic variance is given by (8).  A problem with this estimator is the fact that  P1

depends on  h(x)  and hence  h(x)  cannot be ignored even if one wanted to estimate only the

parameter  β  that characterizes  f(t).  Conditional ESMLE alleviates this difficulty.  This estimator

is analogous to the conditional maximum likelihood estimator used in the duration model with left

censoring (see Amemiya [1999]).

The conditional density of  t  given  x  in A1  is given by

(26) f(t |x) �
h(x)f (t)

�
b�x

0

h(x)f (t)dt

�
f(t)

F(b�x)
.

Therefore, CESMLE maximizes

(27) LC � �
f (ti)

F(b�xi)
,

or, equivalently,

(28) logLC = � logf - � logF .
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Consider

(29) 1
N

�logLC

�β
�

1
N �

1
f

�f
�β

�
1
N �

1
F

�F
�β

.

Taking the probability limit,

(30) plim 1
N

�logLC

�β
� E 1

f
�f
�β

|D�1 � E 1
F

�F
�β

|D�1

   � 1
P1

�P1

�β
�

1
P1

�P1

�β
� 0 .

Therefore, CESMLE is consistent.

To evaluate the asymptotic variance, consider

(31) 1
N

�logLC

�β
�

1
N

�
1
f
�f
�β

�
1
P1

�P1

�β
�

1
N

�
1
F

�F
�β

�
1
P1

�P1

�β
.

We need to evaluate the mean of the square of each term and the cross product.  The mean of the

square of the first term has been derived in (8).  We have

(32) E 1
f
�f
�β

�
1
P1

�P1

�β

2

|D�1 �
1
P1 �

b

a

h
F

�F
�β

2
dx �

1
P1

�P1

�β

2

and

(33) E 1
f
�f
�β

�
1
P1

�P1

�β
1
F

�F
�β

�
1
P1

�P1

�β
|D�1

�
1
P1 �

b

a

h
F

�F
�β

2
dx �

1
P1

�P1

�β

2

.

Therefore,
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(34) AV(CESMLE)-1  
� E 1

N

�logLC

�β

2

�
1
P1 �

A1

h
f

�f
�β

2
dtdx � �

b

a

h
F

�F
�β

2
dx .

Above can be shown to be equal to   We will show that (34) is smaller than the�E 1
N

�
2 logLC

�β2
.

inverse of the asymptotic variance of ESMLE using only the default sample, namely, what we obtain

by putting  p1 = 1 in (12).  For this we need to verify

(35) �
A1

h
f

�f
�β

2
dtdx �

1
P1

�P1

�β

2

� �
A1

h
f

�f
�β

2
dtdx � �

b

a

h
F

�F
�β

2
dx ,

or equivalently

(36) P1�
b

a

h
F

�F
�β

2
dx �

�F
�β

2
,

or equivalently

(37) �
b

a

Fhdx � �
b

a

1
F

�F
�β

2
hdx � �

b

a

�F
�β

hdx
2

,

which follows from the Cauchy-Schwartz inequality

(38) EV2 � EU2 �(EUV)2 ,

if we put   and the expectation is taken with respect to  x.U �
1
F
�F
�β

, V � F,

ESMLE using only the non-default sample maximizes

(39)  Thus, each density has the formL0 � P
�N0
0 �

0
h(xi) [1�F(b�xi)] .
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(40) h(x)[1�F(b�x)]

�
b

a

h(x)[1�F(b�x)]dx

.

Note that (40) depends only on  x.  Therefore, there is no conditional ESMLE using only the non-

default sample.

4. Separate Estimation of  h(x)

We now consider the case where we can estimate the density  h(x)  or the distribution

function  H(x)  using an augmented sample independent of that used  to estimate  β.

We maximize (25) after estimating  h  from a separate independent sample.  That is,

maximize

(41) W � � f (ti) P̂ �1
1 ,

where

(42) P̂1 � �
b

a

F(b�x)dĤ(x)

and    is the empirical distribution function based on  K  separate observations.  Thus,Ĥ

(43) P̂1 � K�1�
K

k�1
F(b�xk) .

If we denote this estimator by  its asymptotic distribution can be obtained fromβ~1 ,

(44) N(β~1 � β) � �
1
N

�logW
�β

1
N

�
2logW
�β2

�1

.

The second-derivative term above divided by  N  will converge to the same limit as if  H  were not
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estimated.  So, here, we will consider only the first derivative part.  We have, ignoring the terms that

do not depend on  β,

(45) logW � �
N

i�1
logf(ti) � Nlog�

K

k�1
F(b�xk) .

Since

(46) �logW
�β

� �
N

i�1

1
f
�f
�β

�
N

�
K

k�1
F
�
K

k�1

�F
�β

,

(47) 1
N

�logW
�β

�
1
N

�
N

i�1

1
f

�f
�β

�
1
P1

�P1

�β

� N

1
K �

K

k�1

�F
�β

�

�P1

�β

1
K �

K

k�1
F

�

�P1

�β
1
K �

K

k�1
F � P1

P1
1
K �

K

k�1
F

LD
=

1
N

�
N

i�1

1
f
�f
�β

�
1
P1

�P1

�β

� N

1
K �

K

k�1

�F
�β

�

�P1

�β
P1

�

�P1

�β
1
K �

K

k�1
F � P1

P 2
1

Note that the first term after   above is    in the case of using only the default sample,LD
=

1
N

�logL1

�β
as can be seen from the first term on the RHS of (7), and the second term arises from estimating  H.

Therefore, if we define

(48) B � E 1
N

�logL1

�β

2

�
1
P1 �

A1

h
f

�f
�β

2
dtdx �

1
P1

�P1

�β

2

,
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the asymptotic variance of    is given byN(β
~

1 � β)

(49) AV[ N(β
~

1 � β)] �

B �1 B �
N
K

1

P 2
1

V �F
�β

�
N
K

1

P 4
1

�P1

�β

2

VF � 2 N
K

1

P 3
1

�P1

�β
Cov F, �F

�β
B �1 .

Thus, if  N/K � 0, the estimator is as efficient as if  H  were known.  Otherwise, K must go to infinity

at least as fast as  N  in order for the above to remain finite.

If we estimate the density  h  by a kernel estimator of the form

(50) ĥ(x) � �
K

i�1
g

xi�x
d

1
Kd

,

We can get the same asymptotic result as above provided that the kernel function  g  and the rate of

convergence of  d  to  0  satisfy certain conditions.  But the proof is more involved in this case.  See,

for example, Ait-Sahalia [1994].

We will now obtain an analogous result for the case of ESMLE using only the non-default

sample.  Here we maximize

(51) W � � [1�F(b�xi)]P̂
�1
0 ,

where

(52) P̂ �
1
K �

K

k�1
[1�F(b�xk)] .

We have, ignoring the terms that do not depend on  β,
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(53) logW � �
N

i�1
log[1�F(b�xi)] � Nlog�

K

k�1
[1�F(b�xk)] .

Since

(54) �logW
�β

� �
N

i�1

1
1�F

�(1�F)
�β

�
N

�
K

k�1
(1�F)

�
K

k�1

� (1�F)
�β

,

(55) 1
N

�logW
�β

�
1
N

�
N

i�1

1
1�F

�(1�F)
�β

�
1
P0

�P0

�β

� N

1
K �

K

k�1

�(1�F)
�β

�

�P0

�β

1
K �

K

k�1
(1�F)

�

�P0

�β
1
K �

K

k�1
(1�F) � P0

P0
1
K �

K

k�1
(1�F)

LD
=

�
1
N

�
N

i�1

1
(1�F)

�(1�F)
�β

�
1
P0

�P0

�β

� N

1
K �

K

k�1

�(1�F)
�β

�

�P0

�β
P0

�

�P0

�β
( 1

K �
K

k�1
(1�F) � P0)

P 2
0

.

Note that the first term after   above is   in the case of using only the default sample,LD
=

1
N

�logL0

�β
as can be seen from the second term on the RHS of (7), and the second term arises from estimating

H.  Therefore, if we define

(56) C � E 1
N

�logL0

�β

2

�
1
P0 �

b

a

h
1�F

�(1�F)
�β

2
dx �

1
P0

�P0

�β

2

,

the asymptotic variance of   is given byN(B~0 � β)
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(57) AV[ N(B~0 � β)] �

C �1 C �
N
K

1

P 2
0

V �F
�β

�
N
K

1

P 4
0

�P0

�β

2

VF�2 N
K

1

P 3
0

�P0

�β
Cov F, �F

�β
C �1 .

5. ESMLE with Left Censoring

At the beginning of Section 1A, we defined the range of the starting time x  of a spell as  

(a, b), where  a  is a certain time in the past and  b  is the present time.  Now we consider a time

within this interval and denote it as  0.  The assumption of the present section is that we sample only

those spells which either are continuing at time  0  or start after  0.  (This is the problem of left

censoring studied by Amemiya [1999].)  Moreover, we sample only defaults, that is, only those

spells which end before  b.  (This is the problem of endogenous sampling.)  In this section we

consider a simultaneous occurrence of left censoring and endogenous sampling.

Consider the following two types of spells:  (1) those that start in  (a, 0)  and continue to  0

but end before  b  and (2) those that start in  (0, b)  and end before  b.  The two types of spells are

described in the Figure 2.

<Figure 2 here>

In the Figure 3 the domains of the two types of spells are described on the  x-t  plane.

<Figure 3 here>

We have

(58) P1 � P(A1) � �
0

a
�

b�x

�x

fhdtdx � �
0

a

[F(b�x) � F(�x)]hdx ,

(59) P2 � P(A2) � �
b

0
�

b�x

0

fhdtdx � �
b

0

F(b�x)hdx .
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The question that we now wish to address is:  Should we divide Type (1) sample by  P1  and Type

(2) sample by  P2, or all the samples by  P � P1 + P2?

If we divide all the samples by  P, we maximize

(60) L � P �N�
1

h(xi) f (ti)�
2

h(xi) f (ti) .

Ignoring the terms that do not depend on  β, we have

(61) logL = - NlogP + � logf ,

(62) 1
N

�logL
�β

�
1
N
�

1
f

�f
�β

�
1
P

�P
�β

.

Thus, in analogy to (12),

(63) E 1
N

�logL
�β

2
�

1
P �

A

h
f

�f
�β

2
dtdx �

1
P

�P
�β

2
.

where  A � A1�A2 .

If we divide Type (1) sample by  P1  and Type (2) sample by  P2, we maximize

(64) L* � P
�N1
1 �

1
h(xi) f (ti)P

�N2
2 �

2
h(xi) f (ti) .

Ignoring the terms that do not  depend on  β, we have

(65) logL = - N1logP1 - N2logP2 + �logf ,

(66) 1
N

�logL*

�β
�

N1

N
1
P1

�P1

�β
�

N2

N
1
P2

�P2

�β
�

1
N

�
1
f

�f
�β

� �
1
P1

�P1

�β
1
N
� D1 �

P1

P
�

1
P2

�P2

�β
1
N
� D2 �

P2

P
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�
1
N
�

1
f
�f
�β

�
1
P

�P
�β

,

where  D1 = 1   if the spell is of Type (1) and  D2 = 1  if it is of Type (2).  Since the last term above

is equal to the RHS of (62),

(67) E 1
N

�logL*

�β

2

�
1

P 2
1

�P1

�β

2 P1

P
1 �

P1

P
�

1

P 2
2

�P2

�β

2 P2

P
1 �

P2

P

�
2

P 2

�P1

�β
�P2

�β
�

2
P1

�P1

�β
1
P

�P1

�β
�

P1

P 2

�P
�β

�
2
P2

�P2

�β
1
P

�P2

�β
�

P2

P 2

�P
�β

� E 1
N

�logL
�β

2

�
1

P 2

�P
�β

2
�

1
PP1

�P1

�β

2

�
1

PP2

�P2

�β

2

� E 1
N

�logL
�β

2
.

The above can be shown to be equal to   To see that L  is the better likelihood�E 1
N

�
2logL*

�β2
.

function than  L*, verify

(68) E 1
N

�logL
�β

2
� E 1

N
�logL*

�β

2

�
1

PP1

�P1

�β

2

�
1

PP2

�P2

�β

2

�
1

P 2

�P
�β

2

1
P 2

P2

P1

�P1

�β
�

P1

P2

�P2

�β

2

� 0,

6. Conditional ESMLE with Left Censoring

Conditional density of  t  given  x  in  A (� A1�A2)  is given by
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(69) f(t |x) �
h(x)f(t)

�
A

h(x)f(t)dt
�

f(t)
G(x)

,

where

(70) G(x) = F(b-x) - X(a,0)(x)F(-x) .

Note that  X(a,0)(x) = 1  if  x � (a,0) and  = 0  otherwise.  All the results of Section 3 will go through

by replacing  F  by  G.  Thus,

(71) AV(CESMLE)�1
�

1
P �

A

h
f

�f
�β

2
dtdx � �

b

a

h
G

�G
�β

2
dx .

Above can be shown to be less than (63) by replacing  F  by  G  on the Cauchy-Schwartz inequality

(36).

7. Generalizations to the Case of Heterogenous Samples

So far we have assumed that we have i.i.d. observations on the random variables  X  and  T.

In actual applications, however, their densities, h  and  f, are likely to depend on vectors of

exogenous variables  si  and  zi  so that we can write  h(xi - si	θ)  and  f(ti - zi	 β).  We will indicate

how the foregoing results should be modified to take into account these specifications.  Below we

will indicate necessary modifications to some of the preceding equations.

(1) Replace  h  and  f  with  h(xi - si	θ)  and  f(ti - zi	β).

(12) Add   to every term after the above replacement.lim 1
N �

N

i�1

(21) Same as above.

(34) Same as above.

(41) W � �
i�1

f(ti � zi	β)P̂ �1
1i .
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(42) P̂1i � �
b

a

F(b�x�zi	β)]dĤ(x) ,

where    is a step function with a jump of size  1/K  at   being the least squaresĤ xk � sk	θ̂, θ̂

estimator of the regression of  xk  on  sk.  Therefore,

(43) P̂1i �
1
K �

K

k�1
F(b�xk�sk	θ�zi	β) .

A further error is introduced by the estimation of  θ, but the rate of convergence is the same as in the

case  of the homogenous sample.
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