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Abstract

   Common practice for managing the credit risk of lending portfolios is to calculate

maximum loss within the "value at risk" framework. Most financial institutions use large-

scale Monte Carlo simulations to do this. However, such simulations may impose heavy

calculation loads. This paper proposes a simplified method that approximates maximum loss

with minimal simulation burden.

   Our method divides a portfolio into sub-portfolios at each credit rating level and calculates

the maximum loss of each sub-portfolio. We assume that the sub-portfolio's structure

provokes little fluctuation in the ratio between the maximum loss and the standard deviation.

We therefore begin with a sub-portfolio in which each exposure is of the same amount (a

homogeneous sub-portfolio). Simple calculations provide the standard deviation for both the

heterogeneous sub-portfolio whose risk is to be measured and the homogeneous sub-

portfolio. The maximum loss for the homogeneous sub-portfolio can be obtained by using

analytical techniques rather than simulations. The maximum loss for a heterogeneous sub-

portfolio is then approximated by multiplying the ratio of the maximum loss and standard

deviation of the homogeneous sub-portfolio by the standard deviation of the heterogeneous

one. Simulation examples indicate that this approximation is effective in all portfolios except

those including extremely large exposures. This paper also describes a technique for using the

total maximum loss of all sub-portfolios to find the maximum loss for the entire portfolio.
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1. INTRODUCTION

   Financial institutions in Japan and many other countries are developing and enhancing

methods to measure and manage the main risk inherent in their business operations: the credit

risk of their lending portfolios. The specific direction that these efforts have taken is to draw

on advances in financial engineering and statistics to create computer simulations and

analytical methods. These techniques provide a more accurate measurement of risk, which

can then be used in bank management, for example, to determine more accurately the pricing

of financial instruments and effective credit limits, or even appropriate allocations of capital.

   The measurement of the credit risk of lending portfolios usually entails the same basic

procedure as the measurement of market risk, i.e. the VaR (Value at Risk) framework is used

in a model that calculates the maximum potential loss or expected loss of the portfolio.

However, there are several impediments to these measurements: 1) Models are harder to

handle than those for market risk. In other words, credit risk models deal with a default event

for which one cannot assume simple (logarithmic) normality, and particular attention must be

paid to data constraints that will impinge on many aspects of parameter estimation and

setting, including default rate and recovery rate parameters. 2) Simulations are time-

consuming. When a financial institution has tens or hundreds of thousands of credit

exposures, simulations for credit risk management require enormous calculation loads. Even

powerful computers require a long calculation time before risk results are available.

   This paper focuses on simulation problems especially in credit risk models. We propose a

method that roughly captures portfolio credit risks while minimizing the need for simulations,

and we consider the impact of this technique on credit risk management.

   The structure of this paper is as follows. In Chapter 2, we outline the framework for

portfolio credit risk management. In Chapter 3, we describe the concepts for simplified credit

risk measurement. In Chapter 4, we apply these techniques to a sample portfolio and

demonstrate their applicability. In Chapter 5, we draw some conclusions about these

techniques.

2. FRAMEWORK FOR THE MANAGEMENT AND MEASUREMENT OF
PORTFOLIO CREDIT RISK

2-1 Framework for the management of portfolio credit risk

(1) Credit ratings

   Most financial institutions in Japan and other countries have internal credit rating systems

("internal ratings"), and these systems form an important part of their infrastructure for
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managing credit risk.1 There are two main forms that these ratings take: 1) borrower-based

ratings that use a borrower default rate (for example, a default rate for the following year) as a

basis for assessing creditworthiness (see Chart 1 for an example), and 2) facility-based ratings

that consider the recovery rate and expected loss for each loan. Facility-based ratings will

consider the creditworthiness of the borrower and other factors during the rating process, but

at Japanese banks most ratings are borrower-based,2 so the remainder of this paper will

assume borrower-based ratings.

Chart 1: Example of Internal Rating Systems3

Rating Degree of risk Definition Borrower
category by self-

assessment

1 No essential
risk

Extremely high degree of certainty of repayment

2 Negligible risk High degree of certainty of repayment

3 Some risk Sufficient certainty of repayment

A

B4

C

Better than
average

There is certainty of repayment, but substantial changes in
the environment in the future may have some impact on
this certainty.

A

B5

C

Average
There are no problems foreseeable in the future, but a
strong likelihood of impact from changes in the
environment.

A

B6

C

Tolerable There are no problems foreseeable in the future, but the
future cannot be considered entirely safe.

7 Lower than
average

There are no problems at the current time but the financial
position of the borrower is relatively weak.

Normal

A8

B

Needs
preventive

management

There are problems with lending terms or fulfilment, or
the borrower’s business conditions are poor or unstable,
or there are other factors requiring careful management.

Needs attention

9 There is a high likelihood of bankruptcy in the future. In danger of
bankruptcy

I The borrower is in serious financial straits and
“effectively bankrupt.”

Effectively
bankrupt

10

II

Needs serious
management

The borrower is bankrupt. Bankrupt

   Ratings (i.e., default rates) assigned to borrowers form the basis for credit risk management.

They are the starting point for determining the level of interest rates and credit limits on an

individual exposure basis; on a portfolio basis, they are used in simulations to quantify credit

risk and calculate the capital required for internal management purposes.

                                                          

1See Financial Supervisory Agency/FISC [1999] for an overview of the internal ratings systems currently used

by financial institutions in Japan; see Treacy and Cary [1998] for a similar study of US institutions.

2From Financial Supervisory Agency/FISC [1999].

3Also taken directly from Financial Supervisory Agency/FISC [1999].
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(2) Outline of credit risk measurement techniques

   A variety of input data is required in the measurement of credit risk: the default rate for

each exposure, the amount of the exposure, the recovery rate, and the correlations with other

exposures.

   Simulation techniques use this input data to develop a loss distribution, whereby it is

possible to calculate the expected value of loss (expected loss), variance, and maximum loss

at the 99th percentile (see Chart 2). The amount remaining when expected loss is deducted

from maximum loss is defined as "unexpected loss." Ordinary business practice says that this

"unexpected loss" should be covered by economic capital.

Chart 2: Conceptual diagram of the density function of loss distribution

Amount of loss
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Expected loss

Maximum loss (ex, 99th percentile)

Unexpected loss

2-2 Credit risk measurement techniques and their problems

(1) Definition of loss (default mode versus MTM)

   The concept of loss must be defined in order to measure credit risk. The Basel Committee

on Banking Supervision provides two definitions of loss.4 The "default mode" concept defines

loss in terms of loss that would be generated only if the borrower defaulted during the risk

evaluation period. The "MTM" (Mark to Market) concept takes account of declines in the

borrower's creditworthiness (rating) in addition to default. The differences are illustrated

below by calculating portfolio losses under the two definitions.

                                                          

4Basel Committee on Banking Supervision [1999].
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A. Default mode

   A portfolio has n  exposures. The default rate for exposure i  up to some point in the future
is ip ; the amount of the exposure iv  and the recovery rate at default ir  ( 10 ≤≤ ir ) (all values

are fixed).5 The portfolio loss L  can be expressed using a random variable with either 1 or 0

as its value:




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)-1y Probabilit(0

)y    Probabilit(1
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i
i p

p
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   In Equation (2-1), the loss is a discrete value, but when n  is sufficiently large and the

interval between values is sufficiently small, it can be treated as continuously distributed. The

expected value for L  can be found as:

∑
=

−=
n

i
iii rvpLE

1

)1(][

B. MTM

   The probability that exposure i  will migrate to rating k ),,1( mk !=  is )1(  
1

,, =∑
=

m

k
ikik pp ;

the difference between the present value of exposure i  and its value when it migrates to
rating k  is ikdv , . (The market value implicitly incorporates the recovery rate.) Calculation of

the loss L  on the portfolio uses a random variable with values m,,1 !  ( m  represents

default):
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The expected value is therefore:

                                                          

5It is common to set up models so that these parameters are deterministic values, but ordinarily they will have
some degree of uncertainty.
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(2) Use of simulation to calculate maximum loss

   Quantification of portfolio credit risk begins with a definition of the concepts of loss as

shown above. The input parameters for calculation are default rates, exposure amounts, and

correlations etc.6, and the calculation gives the maximum loss of the portfolio for a given

confidence level. Generally, Monte Carlo simulation is used to calculate the maximum loss

and/or the unexpected loss. Rather than assume a specific loss distribution, this approach uses

Monte Carlo simulation to generate a loss distribution, and estimates the maximum loss etc.

See CreditMetrics (J.P. Morgan & Co. [1997]), for an example.7

(3) Problems with simulation

   One problem with simulation is that it takes time. The computing load becomes enormous

for financial institutions with tens or hundreds of thousands of exposures. Even with the most

powerful computers, a very long calculation time (in some cases, several days) are required

before risks and other calculation results are obtained. This becomes a bottleneck for financial

institutions when they attempt to use simulation results for such practices as capturing day-to-

day changes in the amount of credit risk.

   In the light of this problem with simulation, the next chapter discusses the basic concepts

needed for a simplified technique for measuring portfolio credit risk.

3. A FRAMEWORK FOR SIMPLIFIED MEASUREMENT OF CREDIT RISK

3-1 The standard deviation approach to risk measurement

(1) Outline of the framework

   We noted above that the maximum loss and unexpected loss of a lending portfolio are

ordinarily found by simulating loss distribution and assuming a certain confidence level (for

                                                          

6Models generally assume these parameters to be mutually independent because of the simulation loads.

7There is also an analytical approach other than the simulation approach. This approach makes certain
assumptions about the loss distribution for individual exposures, and then uses analytical techniques to obtain the
loss distribution of the portfolio as a whole. For example, see CreditRisk+ (Credit Suisse Financial Products
[1997]).
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example, the 99th percentile). In the discussion that follows, we express this as "UL"

(Unexpected Loss), but for purpose of simplicity we do not distinguish between maximum

loss and unexpected loss.

   In our approach, we do not use simulations to arrive at UL. Instead, we use the standard

deviation of the loss distribution (which we will call the "Volatility of Loss" or "VL").8

   The definition of loss used in this paper is "assessed loss from book value only in the case

of default" (i.e., the "default mode"). We do not take account of changes in market values due

to changes in ratings. We also use fixed values for the exposure amount and the recovery rate.

The exposure amount is the amount remaining when the amount recoverable from collateral

etc. (conservatively estimated) is subtracted from the amount of the loan. The recovery rate

for this remainder is assumed to be 0%. The default rate is the one-year cumulative default

rate assuming a one-year risk evaluation period.

   In the discussion that follows, we assume that the default rates that underlie the internal

ratings are constant within each rating. From this standpoint, we then consider the sub-

portfolio risks for each rating.

(2) The impact of diversification and concentration on credit risk

A. Zero correlation between default events

   We begin by assuming a default rate of kp  for all exposures rated k , and an exposure

within rating k  of ikv ,  ),2,1( !=i . If VL for each individual exposure is ikVL , , then the

default is a Bernoulli event expressed by the following equation:

ikkkikkkik vppvppVL ,
2
,, )1()1( −=−= (3-1)

   Next, we use kVL  to express VL for a sub-portfolio consisting entirely of exposures rated

k . If we assume the correlation between default events of individual exposures to be 0, then:

∑∑ −=−=
i

ikkk
i

ikkkk vppvppVL 2
,

2
, )1()1(

 
∑
∑

∑−=

i
ik

i
ik

i
ikkk

v

v

vpp
,

2
,

,)1( (3-2)

                                                          

8For market risk VaR (variance/covariance method, Monte Carlo simulation method), it is common to assume a
(logarithmic) normal distribution for the risk factor fluctuation. Therefore, for example, there is a relationship
that the maximum loss at the 99th percentile will be approximately 2.33 times the standard deviation of the loss
value, but we would caution that in credit risk VaR the maximum loss cannot be given a priori as a multiple of
the standard deviation.
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If the number of exposures included in rating k  is fixed, then ∑∑
i

ik
i

ik vv ,
2
, /  (a number

between 0 and 1) will be lowest in a homogeneous portfolio in which the amount of

individual exposures is equal. The greater the concentration of lending, the closer the figure is

to 1. Therefore, ∑∑
i

ik
i

ik vv ,
2
, /  can be considered a factor expressing the degree of

concentration or diversification in the portfolio. For the purposes of this paper, we will refer

to it as the "Concentration Factor" (CF).

B. Non-zero correlation between default events (extension of A)

   We assume the default rate for rating k  to be kp , and individual exposures within rating k

to be ikv ,  ),2,1( !=i . If kVL  for a sub-portfolio consisting entirely of the same rating has a

correlation ijρ  between default events of exposures i  and j  )( ji ≠ , then:

∑∑
<

+=
ji

jkikij
i

ikk VLVLVLVL ,,
2

, 2 ρ (3-3)

where ikkkikkkik vppvppVL ,
2
,, )1()1( −=−=

This can be transformed as follows:
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ρ
(3-4)

   We will refer to the final CF× portion on the right hand side of Equation (3-4) as the

"Extended Concentration Factor" ("ExCF").

Extended Concentration Factor 
2

,

,,
2
,

)(

2

∑
∑∑
<

+
=

i
ik

ji
jkikij

i
ik

v

vvv ρ
(3-5)

   Note in relation to the CF×  portion (i.e., ExCF) of Equation (3-4) that the CF and

the  cannot be considered separately. For example, the more the portfolio is diversified, the
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closer CF will be to zero. But if at that time the default correlation between all exposures is

considered to be 1, then the ExCF will always be 1. Mere diversification by itself may not be

successful in decreasing risk. Therefore, with an ordinary portfolio in which the default

correlation between exposures is not zero, it is necessary to evaluate the portfolio's degree of

concentration or diversification using the ExCF.

(3) The correlation between default events

   In order to estimate the correlation coefficient between default events of exposures, it is

possible to use correlation coefficients between stock prices, for example.9 But the more

exposures there are, the harder it becomes in practical terms to arrive at correlation

coefficients between each pair. If the average level of the correlation coefficient can be
assumed to be given as ρ , then the ExCF becomes:

Extended Concentration Factor 
2

,

,,
2
,

)(

2

∑
∑∑
<

+
=

i
ik

ji
jkik

i
ik

v

vvv ρ
(3-6)

A. Homogeneous portfolio

   This section assumes a homogeneous portfolio that contains n exposures each of the same

amount. The ExCF from Equation (3-6) can be expressed with simple calculations10 to arrive

at the following:

Extended Concentration Factor 
n

ρρ −+= 1
(3-7)

   Chart 3 was created to illustrate the dependence of the ExCF on the levels of n  and ρ .

                                                          

9This method is used, for example, in CreditMetrics. See Appendix 2 for an explanation of the methods used to
calculate correlation coefficients between default events when this is included.

10Set kik vv =,  for all i  in Equation (3-6) (i.e., a homogeneous portfolio), and both the numerator and the

denominator in have a 
2
kv  factor, so that kv  is canceled out to give Equation (3-7).
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Chart 3: Relationship between ExCF and n  and ρ  (in homogeneous portfolio)
(Horizontal axis: ρ , Vertical axis: ExCF)����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
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   Note the following:

1) The ExCF is an increasing function of ρ  (however, the ExCF stays at 1 when

1=n ).

2) The ExCF is a decreasing function of n . When n  exceeds about 100, the
ExCF is at almost the same value except for cases in which ρ  is close to 0. When

∞→n , the ExCF ρ→  (in other words, the diversification effect has a floor of

ρ ).

3) When ρ  is large, even though n  is large, the ExCF is close to 1. In other

words, the greater the correlation between exposures, the less prevalent the effect of

diversification is as measured by the ExCF.

B. Heterogeneous portfolio

   Now let us consider a heterogeneous portfolio.11 We use CF to express the concentration

factor when the correlations between the default events of exposures are not considered. The

ExCF is therefore expressed as a simple calculation:12

Extended Concentration Factor )1(2 ρρ −+= CF (3-8)

                                                          

11The portfolios held by financial institutions--the portfolios whose risk is to be measured--are generally
heterogeneous.

12This calculation uses the relationship ∑∑ ∑
<

+=
ji

jkik
i i

ikik vvvv ,,
2

,
2

, 2)( .
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Note in Equation (3-8) that the ExCF can be calculated as long as one has information for two
parameters: 1) CF, and 2) ρ . As already discussed, if the total amount and number of

exposures are fixed for the portfolio, the ExCF (and CF) will be lowest when the portfolio is

homogeneous. When the portfolio is heterogeneous, the ExCF is a value between

n/)1( ρρ −+  and 1 (the CF, between n/1  and 1).

   In Chart 4, we calculated the ExCF assuming a portfolio with 100 exposures (the lowest
possible CF will be 0.1 in a homogeneous portfolio). We assumed ρ  to be 0.15, as an

example, and set the CF between 0.1 and 0.7 in increments of 0.1. When the CF is relatively
low (0.1-0.3) and the portfolio is ostensibly diversified, the ExCF, which takes account of ρ ,

is 4.0-1.6 times the CF. Therefore, when ρ  is not taken into account, the effect of

diversification on portfolio risk will be understated by a fraction.

Chart 4: Relationship between CF and ExCF ( ρ =0.15)

CF (a) 0.1 0.2 0.3 0.4 0.5 0.6 0.7

ExCF (b) 0.39812 0.42895 0.47592 0.53479 0.60208 0.67528 0.75266

(b)/(a) 3.98 2.14 1.59 1.34 1.20 1.13 1.08

3-2 Relationship with maximum loss

(1) A simplified method for calculating maximum loss (approximation with standard
deviation)

   This section builds on the concepts described above to present a simplified method for

calculating ULs for each rating. As noted above, the UL is usually deduced from simulations

based on loss distribution models, with an assumed confidence level (for example, the 99th

percentile). However, simulations for portfolios that contain large numbers of exposures

require a very long time to run, and this becomes a bottleneck in risk management.

   Instead of running a model-based simulation every time the portfolio UL was required, it

would be possible to obtain an approximate sub-portfolio UL using an analytic method. The

approximation is based on the assumption that the homogeneous portfolio’s ratio of UL and

ExCF could be nearly equal to the ratio of the heterogeneous portfolio.13  In short, the basic

concept that this paper proposes is that of approximating the UL rather than running a time-

consuming simulation for the portfolio to be measured.

   The process is described in more detail below.

                                                          

13In this calculation, the UL of a homogeneous portfolio can be obtained analytically without simulation, but
here we use figures obtained by simulation. See Appendix 1 for a detailed discussion of the analytical techniques
used to derive the UL of a homogeneous portfolio.
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1) For a homogeneous portfolio comprising n  exposures of the same rating (constant

default rate) and amount,14 the correlation coefficients between default events are
assumed to be ρ , and the UL is calculated.

2) It is assumed that the ratio between the VL of the homogeneous portfolio and the

VL of the heterogeneous portfolio is the same as the ratio between their ULs. The UL

of the heterogeneous portfolio is therefore approximated as shown in Equation (3-9)

using the ExCF of the homogeneous portfolio (with the same rating) and the ExCF of

the heterogeneous portfolio (Equation (3-8)).

UL of heterogeneous portfolio

×
−+

−+
≅

n

CF

ρρ

ρρ
1

)1(2

 UL of homogeneous portfolio (3-9)

Chart 5: Maximum loss and standard deviation in homogeneous portfolio and
heterogeneous portfolio
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Expected loss (common)

Standard deviation (homogeneous portfolio)

Standard deviation (heterogeneous portfolio)

Maximum loss (homogeneous portfolio)

Maximum loss (heterogeneous portfolio)

   If this approximation can be performed with sufficient precision, then it would be possible

simply to approximate the UL of the heterogeneous portfolio using Equation (3-9). This is the

case even if the heterogeneity of the portfolio changes as long as the number of exposures n

is unchanged or the change in n  can be ignored (for example, when 1/1 <<n ). All that is

required is a one-time calculation of the UL of a homogeneous portfolio of n exposures. This

calculation can be implemented either analytically as described in Appendix 1 or by

simulation.

                                                          

14We assume n  is sufficiently large.
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    In the next chapter we examine the degree of precision that can be achieved when actually

using this approximation in practical settings.

(2) Limits of the approximation, evaluation of the credit risk of portfolios

A. Limits of the approximation

   Before considering the feasibility of the approximation described above, we should first

note the limits of our method.

   Our method assumes that there is no large difference between the UL/ExCF ratio of the

homogeneous portfolio and that of the heterogeneous portfolio. We then calculate the ExCF

and the UL of the heterogeneous portfolio based on the ratio between the UL and ExCF of the

homogeneous portfolio. If the composition of the heterogeneous portfolio is vastly different

from the homogeneous portfolio that serves as the base, then its UL/ExCF ratio may be vastly

different from that of the homogeneous portfolio, so that the approximation could not be

used. One example might be a portfolio that includes large-lot exposures. As will be

discussed more fully when we consider simulations below, the UL of a portfolio in which

credits concentrate in certain borrowers will be vastly different when calculated using our

approximation than it will be when calculated by simulation.

   Also, the approximation may not perform well when n is not very large or when the loss

distribution can not be regarded as continuous.

   What both of these cases have in common is the existence of large-lot exposures in the

portfolio. Our method for using ExCF to approximate UL may not fully incorporate the

impact of large-lot exposures on UL.

B. Evaluation of the credit risk of portfolios

   Generally speaking, at Japanese financial institutions: 1) most borrowers are medium and

small-sized companies, so it is unlikely that there will be an extreme lack of borrowers at any

level in the internal ratings system;15 and 2) the credit limits set for internal management

purposes limit the existence of extremely large exposures. Therefore, the composition of

portfolios at financial institutions will in most cases probably not be subject to the limitations

discussed in Subsection A.

                                                          

15During economic slumps such as Japan is currently experiencing, there would be fewer companies with high
ratings. In addition, most of the high-rated borrowers would be large companies, and the exposures to them
would therefore be relatively large. Certainly, this could be an impediment to calculating ULs for these ratings.
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4. SIMULATIONS AND DISCUSSIONS

   We perform simulations to derive the maximum loss of a portfolio and compare these

results with those obtained by our approximation in order to ascertain the validity of our

method. As already described, simulations require complex calculations in order to obtain the

maximum loss. We describe the calculations and procedures in Section 4-1. In Section 4-2,

we provide our results together with some discussion of them.

4-1 Simulation methodology

(1) Generation of Bernoulli random numbers

   It is easy to generate multivariate normal random numbers using the Cholesky

decomposition of the variance/covariance matrix as long as the random variables exhibit a

(logarithmic) normal distribution. However, the default mode approach used in this paper

assumes a Bernoulli distribution of "default" and "non-default," so it is not possible simply to

apply the Cholesky decomposition. We therefore use the following method to generate

multivariate Bernoulli random numbers.

A. When the default rates and default correlations are equal

   We will first consider a lending portfolio in which the amounts and default rates are equal

for individual exposures and the default correlation between individual exposures is constant.
   First we consider the random variable ),,2,1( niDi != , which has a Bernoulli distribution.

)1y Probabilit(

)y     Probabilit(

0

1

p

p
Di −




= (4-1)

In other words, ),,2,1( niDi !=  for exposure i  in the portfolio (comprising n  exposures)

takes the value 1 (default) with probability p  and 0 (non-default) with probability p−1 .

Also, the correlation coefficient of each iD  is ρ  (constant). As noted above, the process of

generating multivariate Bernoulli random numbers that take account of the correlation is not a

simple application of the Cholesky decomposition. However, the Cholesky decomposition

can be used for normal distributions, so one method is to use the normal distribution as a

medium for generating Bernoulli random numbers.

   We first consider a random variable ),,2,1( niX i !=  that follows the standard normal

distribution with 0 for its mean and 1 for its variance. (However, individual variables are
correlated rather than independent). At this time, iD  is expressed as:
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where )(1 ⋅Φ−  is the inverse function of the cumulative density function of the
standard normal distribution.

   For the correlation coefficient of ),,2,1( niDi !=  to be ρ , one need properly set a

correlation coefficient ρ~  for ),,2,1( niX i != . ρ  can be expressed as:

)1()1(

][ 2

pppp

pDDE ji

−−

−
=ρ (4-3)

where

)(

))(   ),((

0

1 11

otherwise

pXpX
DD ji

ji

−− Φ≤<∞−Φ≤<−∞





= (4-4)

Therefore ][ ji DDE  is the cumulative density function of a two dimensional normal

distribution with a correlation coefficient of ρ~ .

{ } jijiji

p p

ji dxdxxxxxDDE 





−+

−
−

−
= ∫ ∫

− −Φ

∞−

Φ

∞−

ρ
ρρπ

~2
)~1(2

1
exp

~12

1
][ 22

2

)( )(

2

1 1

(4-5)

   This makes it possible to use Equation (4-5) and Equation (4-3) to obtain a ρ~  that will

satisfy Equation (4-3). (However, numerical calculations will be required to obtain the

definite integral above.)

   It is therefore possible to obtain multivariate Bernoulli random numbers iD  by using

Equation (4-2) after generating multivariate normal random numbers at the n -th dimension
with mean of 0, variance of 1, and constant correlation coefficient of ρ~ .

B. When the default rates and default correlations are different

   We express default/non-default for exposure i  within the portfolio using the Bernoulli
random number iD  as was shown in Subsection A. But, when ji ≠ , one cannot necessarily

assume that the individual default rates ji pp ,  will be equal, nor does it necessarily follow

that the correlation coefficient between the default events of these exposures ijρ  will be

constant either. In this case, random numbers are generated as follows.
   First ji DD ,  ( ji ≠ ) is expressed as shown below using random variables ji XX , , which

follow the standard normal distribution.
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If the correlation coefficient of ji DD ,  is ijρ , then the following relationship holds:

)1()1(

][

jjii

jiji

ij
pppp

ppDDE

−−

−
=ρ (4-8)

Likewise, if the correlation coefficient of ji XX ,  is ijρ~ , then through ][ ji DDE , the

relationship between ijρ  and ijρ~  is:

[ ] { } jijiijji
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(4-9)

We can therefore find ijρ~  for all ji ≠  to arrive at a correlation matrix of standard normal

distribution variables nXX ,,1 !  such that we can get nDD ,,1 ! .

(2) Correlation between default events

   Generally, there are two methods for calculating correlation coefficients between default

events. One method uses a corporate asset value model; the other utilizes bond default data.

We explain the details of these methods in Appendix 2; suffice it to say that for our purposes

we have chosen to use actual default data to confirm the level of correlation coefficients

between default events.

   Our data comes from historical default data of Moody's ratings (Keenan, Shtogrin and

Sobehart [1999]).
   We begin with using default rate data for the 1970-1998 period to calculate an average p

and variance 2σ  for the default rate at each rating level. Then, assuming that an adequately
large sample can be obtained, the average default correlation ρ  for each rating can be

approximated as shown in Chart 6.
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Chart 6: Annual default rates for different ratings and correlations within ratings
Year Aaa Aa A Baa Ba B
1970 0.00% 0.00% 0.00% 0.27% 4.12% 23.38%
1971 0.00% 0.00% 0.00% 0.00% 0.42% 4.00%
1972 0.00% 0.00% 0.00% 0.00% 0.00% 7.41%
1973 0.00% 0.00% 0.00% 0.45% 0.00% 3.92%
1974 0.00% 0.00% 0.00% 0.00% 0.00% 10.34%
1975 0.00% 0.00% 0.00% 0.00% 1.02% 6.15%
1976 0.00% 0.00% 0.00% 0.00% 1.01% 0.00%
1977 0.00% 0.00% 0.00% 0.27% 0.52% 3.39%
1978 0.00% 0.00% 0.00% 0.00% 1.08% 5.56%
1979 0.00% 0.00% 0.00% 0.00% 0.49% 0.00%
1980 0.00% 0.00% 0.00% 0.00% 0.00% 5.06%
1981 0.00% 0.00% 0.00% 0.00% 0.00% 4.60%
1982 0.00% 0.00% 0.26% 0.30% 2.73% 2.41%
1983 0.00% 0.00% 0.00% 0.00% 0.91% 6.36%
1984 0.00% 0.00% 0.00% 0.36% 0.83% 6.78%
1985 0.00% 0.00% 0.00% 0.00% 1.75% 8.28%
1986 0.00% 0.00% 0.00% 1.33% 2.05% 11.80%
1987 0.00% 0.00% 0.00% 0.00% 2.72% 5.86%
1988 0.00% 0.00% 0.00% 0.00% 1.24% 6.02%
1989 0.00% 0.61% 0.00% 0.60% 2.98% 9.17%
1990 0.00% 0.00% 0.00% 0.00% 3.32% 16.11%
1991 0.00% 0.00% 0.00% 0.28% 5.25% 14.66%
1992 0.00% 0.00% 0.00% 0.00% 0.30% 9.00%
1993 0.00% 0.00% 0.00% 0.00% 0.55% 5.76%
1994 0.00% 0.00% 0.00% 0.00% 0.23% 3.81%
1995 0.00% 0.00% 0.00% 0.00% 0.67% 4.84%
1996 0.00% 0.00% 0.00% 0.00% 0.00% 1.45%
1997 0.00% 0.00% 0.00% 0.00% 0.19% 2.10%
1998 0.00% 0.00% 0.00% 0.12% 0.61% 4.08%

p 0.00% 0.02% 0.01% 0.14% 1.21% 6.63%

σ2 0 1.28E-06 2.33E-07 8.01E-06 1.88E-04 2.49E-03

ρ — 0.0061 0.0026 0.0058 0.0158 0.0402

   It should be apparent from Chart 6 that the default rate for A or better rated bonds is 0.00%
in most years, so default correlation ρ  calculated from this is not very reliable. However, for

ratings of Baa or below, one finds that the lower the rating--i.e. the higher the default rate--the

higher the correlation coefficient between default events. For example, at Baa (average

default rate of 0.14%), the default correlation is 0.006; at Ba (average default rate of 1.21%),

the default correlation is 0.016; at B (average default rate of 6.63%), the default correlation is

0.040.
   Below we calculate the average default correlation klρ  for two different rating levels, k

and l , both of which are in the Baa range or lower. The small number of samples makes it

difficult to arrive at firm conclusion, but the trend is for the default correlation to be larger the

lower the rating.
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(3) Profile of sample portfolio16

A. Internal ratings

   This paper assumes seven ratings levels depending on the level of creditworthiness. Ratings

are categorized by default rates (one-year default rates are assumed). We also assume that all

exposures within a sub-portfolio have the same default rate, in other words, that default rates

are discrete (Chart 7).

Chart 7: Default rates for ratings level
Rating 1 2 3 4 5 6 7

Default rate 0.1% 0.5% 1.0% 2.0% 5.0% 10.0% 20.0%

B. Correlation coefficient between default events

   The table below shows correlation coefficients assumed for default events within the sub-

portfolio (Chart 8). This reflects the conclusion from Subsection (2) that the default

correlation will be higher the higher the default rate.

Chart 8: Correlation coefficient between default events at different ratings levels
Ratings 1 2 3 4 5 6 7

Default correlation 0.001 0.005 0.010 0.010 0.015 0.017 0.020

C. Sub-portfolios for individual ratings levels

   We set the total exposure included in the sub-portfolio for any rating at ¥100 billion. We

also set three different numbers of exposures: a. 100, b. 500, and c. 1,000. Likewise, we set

six types of distributions for exposures: 1) homogeneous distribution, 2) concentration on a

single borrower, 3) concentration on 10% of borrowers, 4) exponential distribution, 5) three

levels, and 6) five levels. (See Chart 9, for details. This provides a total of eighteen

combinations, which we numbered 1a-6c.)

                                                          

16In this paper, we term a portfolio comprising exposures of the same rating a "sub-portfolio" and an assembly
of sub-portfolios of different ratings a "sample portfolio."
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Chart 9: Exposure distributions etc. for individual sub-portfolios
a. 100 borrowers b. 500 borrowers c. 1,000 borrowers

1)
Homogeneous
distribution

1a:  ¥1 billion each
(CF=0.100)

1b: ¥200 million each
(CF=0.045)

1c: ¥100 million each
(CF=0.032)

2)
Concentration
in one borrower
(100-times
others)

2a: ¥50,251 million for
one, ¥502 million for
other 99

(CF=0.505)

2b: ¥16,694 million for
first, ¥166 million for
other 499

(CF=0.171)

2c: ¥9,099 million for
first, ¥90 million for
other 99

(CF=0.095)

3)
Concentration
in 10% of
borrowers (100-
times others)

3a: ¥9,174 million for
10, ¥92 million for
other 90

(CF=0.290)

3b: ¥1,835 million for
50, ¥18 million for
other 450

(CF=0.130)

3c: ¥917 million for
100, ¥9 million for
other 900

(CF=0.092)

4) exponential
distribution

4a: exponentially
distributed with mean
¥1 billion

(CF=0.142)

4b: exponentially
distributed with mean
¥200 million

(CF=0.065)

4c: exponentially
distributed with mean
¥100 million

(CF=0.046)
5) 3-level
distribution
(Amount
double at 2nd

level, 10-times
at 3rd level)

5a: ¥285 million for
50, ¥1,429 million for
40, ¥2,857 million for
10

(CF=0.129)

5b: ¥57 million for
250, ¥286 million for
200, ¥571 million for
next 50

(CF=0.058)

5c: ¥29 million for
500, ¥143 million for
400, ¥286 million for
100

(CF=0.041)

6) 5-level
distribution
(multiplied by
1.5 at each
level)

6a: ¥379 million, ¥569
million, ¥853 million,
¥1,280 million, ¥1,919
million, to 20
borrowers each

(CF=0.114)

6b: ¥76 million, ¥114
million, ¥171 million,
¥256 million, ¥384
million to 100
borrowers each

(CF=0.051)

6c: ¥38 million, ¥57
million, ¥85 million,
¥128 million, ¥192
million to 200
borrowers each

(CF=0.036)

   Note that Distributions 2 and 3 posit a portfolio with a relatively high degree of

concentration. As discussed in the previous chapter, we do not anticipate a very high degree

of precision for approximations of maximum loss for such portfolios. Indeed, they were set in

order to verify that point.

   We noted concentration factors (CF) for these eighteen sub-portfolios. These figures show

the most diversified portfolio to be 1c and the most concentrated to be 2a.

D. Sample portfolios

   We created twelve sample portfolios by combining the sub-portfolios for individual ratings

described in Subsection C. Each sample portfolio is made up of (ratings-based) sub-portfolios

with the same distribution and number of exposures. We have numbered the sample

portfolios 1A-6A (total of 700 exposures) and 1B-6B (total of 3,500 exposures). (See Chart

10, for details.)
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Chart 10: Sample portfolios
        Rating

Portfolio

1 2 3 4 5 6 7 Total
exposures

Total
amount
(¥100

million)

1A 1a 1a 1a 1a 1a 1a 1a 700 7,000
2A 2a 2a 2a 2a 2a 2a 2a 700 7,000
: : : : : : : : : :
: : : : : : : : : :

5B 5b 5b 5b 5b 5b 5b 5b 3,500 7,000
6B 6b 6b 6b 6b 6b 6b 6b 3,500 7,000

   We assume that the correlation between default events of exposures )(, jiji ≠  depends

only on the combination of rating k , to which i  belongs, and rating l , to which j  belongs.

For the correlation coefficient within individual ratings we use the numbers from Chart 8.

Correlation coefficients between exposures with different ratings were set with reference to

these levels as shown in Chart 11.
   Non-diagonal components )( lkkl >ρ  are determined as follows. First, we set the

covariance of default events as )1( kkkkkk pp −= ρσ  using diagonal components. Next, we

determine the covariance of non-diagonal components as ),min( llkkkl σσσ = .17 Finally, we

get klρ  using the relationship )1()1( llkkklkl pppp −−= ρσ .

Chart 11: Correlation coefficients for ratings combinations
Rating 1 2 3 4 5 6 7

1 0.0010
2 0.0004 0.0050
3 0.0003 0.0035 0.0100
4 0.0002 0.0025 0.0071 0.0100
5 0.0001 0.0016 0.0046 0.0064 0.0150
6 0.0001 0.0012 0.0033 0.0047 0.0109 0.0170
7 0.0001 0.0009 0.0025 0.0035 0.0082 0.0127 0.0200

(4) Detailed description of simulation method

   We set the sub-portfolios and sample portfolios that combine them as described above, and
calculate UL using a Monte Carlo simulation with 000,100=N .

                                                          

17We have imposed the condition that the covariance of different ratings ),( lk  klσ  cannot be higher than the

level of covariance of the individual ratings ),( lk  llkk σσ ,  so that the variance/covariance matrix obtained is

applicable to the Cholesky decomposition. It is possible that there will be cases in which this condition is not
valid, but our purpose is to provide an example of UL calculation for the sample portfolio, so we do not delve
into this point any more deeply in this paper. Rather, we opt to move forward with the discussion under the
assumption that the variance/covariance matrix will be applicable to the Cholesky decomposition.
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A. Simulation of sub-portfolios

   We assume a sub-portfolio of rating k  with the number of exposures n , default rate kp

and a correlation coefficient between default events kkρ . To use a Monte Carlo simulation to

calculate the UL of this sub-portfolio one must have a set of correlated n -variate Bernoulli
random numbers ),,(,),,,(),,,( 1

22
1

211
1

1 N
n

NN
nn ddddddddd !!!! === . The procedure

for obtaining this set of random numbers is described in Subsection (1)A.
   We set the value of n  exposures included in this sub-portfolio at nkk vv ,1, ,,!  (×¥100

million) each, so that the loss 1l  (×¥100 million) for the first trial 1d  is found as

∑
=

=
n

i
iki vdl

1
,

11 . For the second trial and beyond, we also derive Nll ,,2 !  and draw histograms

of Nll ,,1 ! . We then assume these histograms to represent the true loss distribution,

calculate percentage points, and deem this to be the UL.

B. Simulation of sample portfolios

   As described in Subsection (3) D, our sample portfolios contain seven levels of ratings.

From the perspective of calculating losses, the major difference between the sample portfolios

and the sub-portfolios is that in the sample portfolios the default rates and correlations

between default events are not constant. See Subsection (1) B for a description of the method

used to generate multivariate Bernoulli random numbers when default rates and correlations

between default events are not constant. The other procedures down to the calculation of UL

are the same as for the sub-portfolios.

4-2 Simulation results and discussions

(1) Sub-portfolio simulations

   We use the methods described in the preceding section to calculate ULs for each of the sub-

portfolios. It is normal practice when calculating VaR for market risk to use the 99% point of

loss distribution as UL, but here we calculate both the 99% point and the 99.9% point of loss

distribution obtained from the results of 100,000 calculations. For the remainder of this

section, we assume that UL equals maximum loss.
   The example in Chart 12 plots the loss distribution when three ρ  values (0.01, 0.10 and

0.20) are set for a homogeneous portfolio with a default rate of 0.1% (number of exposures

500, total amount ¥100 billion). The intersections with the horizontal lines indicate the loss
amount at that level. At the 99% point, there is little difference due to differences in ρ  levels.

Indeed, 10.0=ρ , which could be assumed to have a smaller loss than 20.0=ρ , actually has

a slightly larger loss. In other words, at the 99% point, the sub-portfolio's risk is not
accurately captured. However, at the 99.9% point, these problems do not occur. When ρ  and
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other parameters are set for actual analysis, there are no cases like that shown in Chart 12, but

we calculate both the 99.0% point and the 99.9% point just to be sure.

Chart 12: Loss distribution (number of borrowers: 500, default rate: 0.1%)

   (Horizontal axis: loss amount (¥100 million), Vertical axis: observed

frequency (cumulative, common logarithm))

-4

-3

-2

-1

0

0 100 200 300 400 500 600

(90.0% level)

(99.0% level)

(99.9% level)

01.0=ρ

10.0=ρ 20.0=ρ

In Chart 13, we have an example of loss probability density distributions created

based on the results of sub-portfolio simulation.18 This sample shows ratings 6 and 7 for sub-

portfolio 1b (homogeneous portfolio, 500 borrowers). Note that the distribution is not

symmetric.

                                                          
18 These distributions are also obtained analytically without simulation. See Appendix 1 for details.
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Chart 13: Example of loss amount probability density distribution

(Horizontal axis: loss amount (¥100 million), Vertical axis: observed frequency)

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

0 100 200 300 400 500 600

Sub-portfolio 1b, rating 6

Sub-portfolio 1b, rating 7

   In Charts 14-18, we show the relative error for ULs calculated with the approximation in

Equation (3-9) and ULs calculated with the simulation for sub-portfolios 2-6.19,20

Chart 14: ExCF and relative error of Sub-portfolio 2

(Horizontal axis: ExCF, Vertical axis: relative error)

-100%

0%

100%

200%

300%

400%

500%

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

2a

2b

2c

                                                          

19In this case, relative error is the error in the approximated value for the 99th percentile UL obtained from the
simulation.

20For each sub-portfolio we plot data (49 points) showing all combinations of default rates and default
correlations. (However, we omit from Charts 14-18 any data with a relative error of 500% or more.)
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Chart 15: ExCF and relative error of Sub-portfolio 3

(Horizontal axis: ExCF, Vertical axis: relative error)

-100%

0%

100%
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300%

400%
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3a
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Chart 16: ExCF and relative error of Sub-portfolio 4

(Horizontal axis: ExCF, Vertical axis: relative error)
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Chart 17: ExCF and relative error of Sub-portfolio 5

(Horizontal axis: ExCF, Vertical axis: relative error)
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Chart 18: ExCF and relative error of Sub-portfolio 6

(Horizontal axis: ExCF, Vertical axis: relative error)
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   In Chart 19, we show the average and maximum values of the absolute value of the relative

errors for each sub-portfolio.
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Chart 19: Average and maximum absolute values of relative error (unit: %)

2a 2b 2c 3a 3b 3c 4a 4b 4c
Average
absolute

value

230.53 53.74 24.42 128.13 18.31 14.73 8.34 4.50 3.34

Maximum
value

860.01 280.43 147.00 1,218.43 86.29 78.90 49.41 23.53 18.53

5a 5b 5c 6a 6b 6c
Average
absolute

value

8.22 3.46 2.53 5.09 2.10 1.42

Maximum
value

55.56 15.15 12.37 41.16 8.23 5.84

   These results indicate that the relative error is larger when there is a large exposure to a

single borrower (Sub-portfolio 2) and when lending is concentrated on 10% of borrowers

(Sub-portfolio 3). By contrast, the average absolute value of relative error is only a few

percent for the sub-portfolios in which exposures are fairly diversified (Sub-portfolios 4-6;

shown in the shaded cells). There are unlikely to be many cases in which real portfolios of

financial institutions are as overly concentrated as in Sub-portfolios 2 and 3, so the UL

approximation in Equation (3-9) would seem to work to some extent in practical applications

within the range of simulations run for these sub-portfolios.

   Note that sub-portfolios 4a, 5a, and 6a have comparatively large relative errors of -40% or

more, though for only one example each. In Chart 20, we show the relationship between

default rates and relative errors for Sub-portfolios 4a-6a, 4b-6b, and 4c-6c.

Chart 20: Default rates and relative error for sub-portfolios 4-6

(Horizontal axis: default rate, Vertical axis: relative error)

-100%
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-20%

0%

20%

40%

60%

80%

100%

0% 5% 10% 15% 20% 25%

4-6a

4-6b

4-6c

Number of exposures = 100
Default rate = 0.1%
Default correlation = 0.001
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   One can see that a maximum relative error in excess of -40% is generated when the number

of exposures is 100, the default rate 0.1%, and the default correlation 0.001.

   As discussed in Footnote 15, during economic slumps such as Japan is currently

experiencing, there may not be all that many exposures in lending portfolios of financial

institutions that have high internal ratings (i.e., ones that have fairly low default rates).

Because of this, it may not be possible to achieve sufficient precision when approximating

sub-portfolios with high internal ratings as we have done here. For such sub-portfolios,

however, it may be possible to calculate relative error levels from simulation results and use

those levels (in the examples above, -40% or more) as givens to estimate an adjusted UL.

(2) Calculation of the ULs for the sample portfolios

   We use the methods described in Section 4-1 to calculate ULs of sample portfolios 1A-6A

and 1B-6B. We also calculate ULs by each of the sub-portfolios and total them for

comparison in Chart 21.

Chart 21: ULs of sample portfolios

99.0%UL (¥100 million) 99.9%UL (¥100 million)
(1)

Overall
total

(2) Sub-
portfolio

total

(2)/(1) (1)
Overall

total

(2) Sub-
portfolio

total

(2)/(1)

1A 750.00 980.00 1.31 920.00 1,280.00 1.39

2A 1,296.48 2,417.09 1.86 1,788.95 3,537.69 1.98

3A 958.12 1,609.17 1.68 1,164.22 2,273.39 1.95

4A 779.12 1,117.85 1.43 946.62 1,489.89 1.57

5A 771.43 1,074.29 1.39 937.14 1,417.14 1.51

6A 760.66 1,026.07 1.35 918.72 1,352.37 1.47

1B 726.00 876.00 1.21 878.00 1,122.00 1.28

2B 828.05 1,288.82 1.56 1,028.38 1,764.61 1.72

3B 773.95 1,055.60 1.36 953.39 1,394.68 1.46

4B 732.84 905.23 1.24 893.02 1,163.86 1.30

5B 730.85 892.57 1.22 893.14 1,138.85 1.28

6B 729.57 882.94 1.21 887.77 1,126.49 1.27

   Note that the arithmetical total of the ULs calculated by the sub-portfolio is naturally larger

than the ULs of the sample portfolios. In these results, the former is between 1.2 and 2.0

times larger than the latter.21

                                                          

21Generally, the more ratings categories there are, the more the exposure diversification effect is offset within
sub-portfolios, so this multiple is larger.
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 (3) Simplified method for calculating portfolio UL

   One conceivable simplified method for calculating the UL of a sample portfolio would be to

total the ULs of individual sub-portfolios and then divide by the multiples shown in

Subsection (2) above. These multiples can probably be considered constant unless there are

substantial changes in the composition of the portfolio. Given the low probability of

substantial changes in the lending portfolios of financial institutions,22 at least over the short

term, it may be sufficient to re-calculate the multiples periodically using simulations.

   For the sub-portfolio UL, as described above, even when there are changes in the

heterogeneity of the portfolio, as long as the number of exposures n  does not change, or the

change in n  is negligible for practical purposes, ULs can be approximated by using the UL of

a homogeneous portfolio with n  exposures as a proxy for the heterogeneous sub-portfolio.

5. CONCLUSIONS

   It is common to use computer simulation to calculate the credit risks associated with the

lending portfolios of financial institutions. However, these simulations are time-consuming

when there is a large number of exposures involved, which makes it difficult to calculate

credit risk dynamically.

   This paper describes a simplified technique for approximating the credit risk of lending

portfolios that attempts to minimize, wherever possible, the simulation burden. There are two

main points in this technique: 1) when the number of exposures and the total amount of

exposures in the portfolio are constant, the standard deviation of loss is smallest in a

homogeneous portfolio in which all exposures are of the same amount; and 2) the

heterogeneity of the portfolio can be defined as the "Concentration Factor" (CF) or the

"Extended CF (ExCF)" which adjusts the CF using a default correlation. The loss for a

heterogeneous portfolio at an arbitrary confidence level (for example, the 99th percentile) can

therefore be approximated by multiplying the loss of a homogeneous portfolio (in which the

number of exposures and amounts are the same) by the ratio between the ExCFs of the two

portfolios.

   In this paper, we run simulations for several types of hypothetical portfolios to verify

whether these assumptions are valid in practical applications. The results of our simulations

indicate that it is possible that the simplified technique using ExCF can approximate the

credit risk of a portfolio with some degree of precision (our results indicate a relative error of

less than 10% on average) except in cases in which there are large exposures and a high

                                                          

22Currently, the rate of change in the total of lending assets outstanding is extremely low at Japanese banks.
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degree of concentration in the portfolio. We have verified that our assumptions hold within a

range that is generally suited to practical application.

   Obviously, the approximations we describe here will contain more error than simulations.

However, unlike trading portfolios, the composition of lending portfolios does not change all

that rapidly, so it will be effective to use the approximations described in this paper together

with simulations.
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APPENDIX 1: ANALYTICAL CALCULATION OF MAXIMUM LOSS FOR A
HOMOGENEOUS PORTFOLIO

(1) Analytical calculation of maximum loss

   In a homogeneous portfolio, the exposure to each borrower is the same, so maximum losses

can be calculated in terms of how many borrowers will default at a set confidence level (for
example, 99% or 99.9%). If the probability that n  out of N  borrowers will default is N

nP ,

then the 99% maximum loss is mv , where m is minimum integer which satisfies

99.0
0

≥∑
=

m

n

N
nP  and v  is the exposure amount per borrower.

   One must therefore begin by finding the probability N
nP  that n  of N  borrowers will

default. The default rate of each borrower is p . The default correlation is given as in

Subsection 4-1(1) A: )(⋅Φ  is the cumulative density function of the standard normal

distribution and )(1 p−Φ=α , so that N
nP  can, through the normal distribution, be expressed

as shown in Equation (1).
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In this equation, nN C  is the number of combinations choosing n  out of N . The random

variable iX  has a correlation as shown in Equation (1), so it is not independent, but it can be

rewritten using two independent random variables U  and iV :
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where )(uφ  is the probability density function of the standard normal distribution,

that is,
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   Equation (3) can be further transformed:
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This transformation utilizes the fact that iV s are mutually independent.

   Therefore, in order to arrive at the 99% maximum loss, one first obtains the smallest m

such that:
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One then multiplies this by the exposure amount of each borrower v  to arrive at mv , which

is the 99% maximum loss.

(2) Comparison with results from loss distribution simulation

   The concepts described in Section (1) can be used to analytically derive a loss distribution
because N

nP  is the probability that n  borrowers will default, i.e. that the loss will be nv .

Chart A superimposes the results obtained by this analytical technique together with the loss

probability density derived by simulation results from Chart 13 for the same sub-portfolios. In

Chart A, the smooth curves show the results obtained by the analytical method; the jagged

curves are the results obtained by simulation.
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Chart A: Probability density distribution of loss amount (comparison of
simulation and analytical methods)

(Horizontal axis: loss amount (¥100 million), Vertical axis:
observed frequency, probability)

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

0 100 200 300 400 500 600 700 800 900 1000

Sub-portfolio 1b, rating 6

Sub-portfolio 1b, rating 7

   Note in Chart A that there is very little difference in the results obtained by simulation and

by the analytical method.

   Chart B compares the 99% maximum loss obtained by the two methods.

Chart B: 99% UL obtained by analytical method and simulation

Unit: ¥100 million

Rating of sub-portfolio 1b Error (analytical method -
simulation)

1 0.00

2 0.00

3 0.00

4 0.00

5 0.00

6 0.00

7 2.00

   Note in Chart B that there is very little difference in the results produced by the two

techniques for 99% maximum loss.
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APPENDIX 2: METHOD OF CALCULATING CORRELATION COEFFICIENTS
BETWEEN DEFAULT EVENTS

(1) Approach using the corporate asset value model

   The concepts of Merton [1974] indicate that default will occur if the value of a company's

assets falls below a certain level. In other words, corporate asset value contains a threshold

value that is the dividing line between default and non-default.

   One can therefore create a model that assumes that the rate of return on assets will have the
standard normal distribution. In other words, if the default rate of Company i  is pi , then the

threshold value for default/non-default is given by )(1
ip−Φ , where )(1 ⋅Φ−  is the inverse

function of the cumulative density function of the standard normal distribution. This can be
used to calculate ijp , which is the simultaneous default rate for Company i  and Company j :

{ } jijiji

p p

ij dxdxxrxxx
rr

p
i j







−+

−
−

−
= ∫ ∫

− −Φ

∞−

Φ

∞−

2
)1(2

1
exp

12

1 22

2

)( )(

2

1 1

π
 (7)

where r  is the correlation coefficient between the asset profit rates23 of companies i
and j .

   Therefore, Equation (8)24 can be used to obtain the correlation coefficient between the
default events of Company i  and Company j , D

ijρ .

)1()1( jjii

jiijD
ij

pppp

ppp

−−

−
=ρ  (8)

(2) Approach using bond default data

   Let us now turn to a method that uses bond default data. This approach, could, for example,

be used with the ratings-based bond default data published by ratings agencies to find the

average level of correlation between default events within a rating or among different ratings.

                                                          

23CreditMetrics uses the rate of return on stock price as a proxy for that on assets and provides a framework for
calculating its correlation coefficient.

24In Zhou [1997], this technique is extended into a method that uses a first-passage-time model to calculate the
correlation coefficient between default events.
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A. Correlation within a rating25

   We first consider N  companies with the same default rate (same rating). iD  is a random

variable with a value of 1 when Company i  defaults and 0 when it does not. The average
default rate is p , and the standard deviation of default is σ . This produces the following

relationship:
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   S  is the total number of defaults so that ∑
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. The variance of S  is therefore:
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   The default correlation between companies is ijρ  so that 1=iiρ  and ijji ρρ = . When one

turns to the average default correlation ρ  rather than the default correlation between

companies ijρ , one can define ρ  as follows:
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Using this to express the variance of S , we arrive at:

[ ]ρ)1()1()( −+−= NNNppSVar  (14)

The volatility of default σ  is in the relationship )/(2 NSVar=σ , so that

                                                          

25 We referred to Appendix F of JP Morgan & Co. [1997] for this section.
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This can be transformed to express the average default correlation ρ  as:

1

1
)1(

2

−

−
−=
N

pp

Nσ

ρ  (16)

   When N  is large, Equation (16) can be approximated as:
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B. Correlation between different ratings

   Similarly, for different ratings k  and l , random variables ikD ,  and jlD ,  can be defined for

Company i  and Company j , so that their value is 1 in default and 0 otherwise. Assume that

N  companies have rating k ; M  companies have rating l . The total numbers of defaults are
defined as kS  and lS , and the average default rates as kp  and lp , as shown below.
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   The average default correlations klρ  for different ratings k  and l  are defined as:
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Like Equation (14), the covariance of kS  and lS  becomes as follows:
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However, the following also holds true:
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Therefore, the average default correlation klρ  between ratings can be expressed as follows:
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