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1 Introduction

The financial industry, both private firms and regulators, has become increasingly aware of
the impact of risk in tradable assets. There are many reasons for this, deregulation makes
risk taking activities available to banks, technology both fosters risk taking and makes
the measurement of risk more accurate, and increasing competition means banks need to
engage in increasingly risky activities simply to stay competitive. As a result, market risk
measurement and management, which until recently was an arcane part of the banking
business, has been thrust into the forefront of issues facing bankers and regulators alike.
In response to this, supervisory authorities require banks to practice risk management,
and report risk measures to them. In addition to publicly mandated risk measuring, many
banks choose to measure and manage risk internally. Banks approach to risk management
ranges from a reluctant minimum compliance to regulations to comprehensive internal risk
management programs. Since market risk management is a recent phenomenon, innate
banking conservatism in many cases hinders the adoption of modern market risk methods.
These techniques have been to a large extent developed in the USA whose banks have by
and large the best risk management systems in the world, undoubtedly underpinning their
preeminent role in global finance.

In the analysis of risk management one has to distinguish between external and internal
practices. Banks in all major financial centers are required to comply with the so called
‘Basel rules’, regulations proposed by the Basel Committee on Banking Supervision (1996)
which consists of members from Central Banks and other supervisory authorities, such as
the Japanese FSA. The grist of these regulations is the use of internal models by banks,
i.e. banks model risk internally and report the outcome to the regulators in the form of
Value—at—Risk (VaR). VaR is the minimum amount of losses on a trading portfolio over a
given period of time with a certain probability. VaR has to be reported daily. While the
VaR measure has been rightly criticized by risk managers for being inadequate, it bridges
the gap between the need to measure risk accurately and for non—technical parties to be
able to understand the risk measure. As such it is the minimum technical requirement
from which other, more advanced measures, are derived from. In addition, while VaR
as a risk measure may be inadequate, at least it serves to force recalcitrant banks to
practice minimum risk management. The concept of VaR does have several shortcomings,
the main one being that is only the minimum amount of losses, while expected losses
are more intuitive. For example, if the VaR is ¥1bn. then we do not know if maximum
possible losses are ¥1.1bn. or ¥10bn. In response, other measures have been proposed, e.g.
expected shortfall, defined as the expected loss, conditional on exceeding the threshold. For
a discussion on the properties of risk models and their application to regulatory capital, see
Danielsson (2000a). Interestingly, the criticism that current VaR measure being excessively
volatile, results in excessive fluctuations in bank capital, is not valid in practice. While
it is unquestionably true that most VaR measures are excessively volatile, this has little
or no regulatory impact on financial institutions. The reason is that regulatory VaR is a
loss that happens more than twice a year, and a financial institution that cannot handle
that loss is faced with more serious problems than fluctuating regulatory capital. While
regulatory capital is three or four times the 10 day 99% VaR level, capital for most banks
is an order of magnitude higher than that. This is both due to the fact that credit risk



capital is much larger than market risk capital, and also that a bank that has the minimum
market risk capital will be viewed as a very high risk by prospective clients. For example,
in 1996, the average reported daily VaR by the JP Morgan bank was $36 million, implying
regulatory capital of $340 million. This surprisingly small amount is only a small fraction
of JP Morgan’s capital in 1996.

Internal risk management is a different issue. Here banks are able to employ a wide variety
of techniques to deal with the myriad of risk management issues. For example, capital has
to be allocated to various risky activities, fund managers and traders have to be monitored,
etc. As a result, internal requirements for financial risk measurement are more complex
and diverse than regulatory requirements. For example, risk measurement serves diverse
managerial purposes ranging from integrated risk management to allocation of position
limits. When risk measurement methods are used to allocate position limits to individual
traders, or set mandate letters for fund managers, high volatility of risk measures is a
serious problem because it is very hard to manage individual positions with highly volatile
position limits.

Fundamentally, all statistical risk measuring techniques fall into one of three categories,
or a hybrid thereof. Fully parametric methods based on modelling the entire distribution
of returns, usually with some form of conditional volatility, the non—parametric method of
historical simulation, and parametric modelling of the tails of the return distribution. All
these methods have pros and cons, generally ranging from easy and inaccurate to difficult
and precise. No method is perfect and usually the choice of a technique depends on the
market in question, and the availability of well trained financial engineers to implement
the procedures.

Below we compare some of these procedures, with a special focus on extreme value theory
(EVT) and the issue of dependence. In Section 2 we discuss the general properties of
financial returns, and how they relate to risk management, along with a brief review of
common risk methods. Then in Section 3 we present an extensive discussion of EVT from
a risk perspective, examining the pros and cons of that method. After that Section 4
contains discussion on extensive empirical results. Mathematical derivations are contained
in Appendix A, while Appendix B has the plots and tables.

2 Distribution of Returns and Risk Forecasting

In order to predict risk, one needs to model the dynamic distribution of prices. However,
even though financial practitioners usually prefer to work with the concepts of profit and
loss (P/L), it is not well suited for risk management with returns being a preferred measure.
There are two equivalent ways to calculate returns
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the compound returns in (2) are generally preferred for risk analysis, both due to its
connection with common views of the distribution of process and returns, as well as the




link with derivatives pricing, which generally depends on (2). In empirical analysis of the
empirical properties of returns on liquid traded assets, three properties, or stylized facts,
emerge which are important from a risk perspective:

1. Non—normality of returns
2. Volatility clustering

3. Asymmetry in return distributions

In addition, the volatility of risk forecasts is problematic in practical risk applications. We
address each issue in turn.

2.1 Distribution of Returns
2.1.1 Non—Normality and Fat Tails

The fact that returns are not normally distributed is recognized, both by risk managers
and supervisory authorities:
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. as you well know, the biggest problems we now have with the whole evolu-
tion of risk is the fat—tail problem, which is really creating very large conceptual
difficulties. Because as we all know, the assumption of normality enables us to
drop off the huge amount of complexity in our equations ... Because once you
start putting in non—normality assumptions, which is unfortunately what char-
acterizes the real world, then these issues become extremely difficult.”

Alan Greenspan (1997)

The non—normality property implies the following for the relative relationship between the
return distribution and a normal distribution with the same mean and variance:

1. The center of the return distribution is higher
2. The sides of the return distribution are lower

3. The tails of the return distribution are higher

This implies that the market is either too quiet or too turbulent relative to the normal. Of
these the last property is most relevant for risk. The fat tailed property results in large losses
and gains being more frequent than predicted by the normal. An assumption of normality
for the lower tail is increasingly inaccurate, the farther into the tail one considers the
difference. For example, if one uses the normal distribution to forecast the probability of
the 1987 crash by using the preceding years data and the normal, one roughly estimates that
a crash of the ’87 magnitude occurs once in the history of Earth. Most financial analysis,
until recently has been based on the assumption of normality of returns. The reason for
that is the mathematical tractability of the normal, since non—normal distribution are
very difficult to work with. While normality may be a relatively innocuous assumption in
many applications, in risk management it is disastrous, and the non—normality needs to be
addressed.



2.1.2 Volatility Clustering

The second stylized fact is that returns go through periods when volatility is high and
periods when it is low. This implies that when one knows that the world is in a low
volatility state, a reasonable forecast is for low financial losses tomorrow. Most risk models
will take this into account, usually with a form of the GARCH model, see Bollerslev (1986).
The reason for the prevalence of the GARCH models is that it incorporates the two main
stylized facts about financial returns, volatility clustering and unconditional non-normality.
The popular RiskMetrics method is a restricted GARCH model where w = 0 and a+3 = 1:
The most common form of the GARCH model is the GARCH(1,1):

|-y ~ N (%@52) (3)
ol =wtaol  +0rt,, wa,B>0 at+tpf<l1 (4)

One of the appealing properties of this model is that even if the conditional distribution is
normal, the unconditional distribution is not normal. This model will perform reasonably
well in forecasting common volatility, e.g. in the interior 90% of the return distribution.
However, as the normal GARCH model implies that the thickest tails of the conditional
forecast distribution are only as fat as the normal with the highest volatility forecast, they
are still normal. This coupled with the fact that the parameters of the GARCH model are
estimated using all data in the sample equally weighted, and that, say only 1% of events
are in the tails, the estimation is driven by common events. Furthermore, because of the
functional form of the normal distribution, the tail observations have lower weight than
the center observations, and hence contribute too little to the estimation. This is the same
reason why the Kolmogorov—Smirnoff test is not robust in testing for non—normality in fat
tailed data. Note that the JP Morgan RiskMetrics technique (J.P. Morgan 1995) is based
on a restricted form of the GARCH model.

For this reason a GARCH model with Student—t innovations is sometimes used for risk,

Tt|7“t—1

~ t(l,) (5)
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where o, is as in (4), and the degrees of freedom parameter, v, is estimated along with
the other parameters. Since the Student—t is fat tailed, see Section 3, it has much better
properties for risk forecasting. There are three reasons why the Student—t is not ideal for
risk forecasting:

1. Its tails generally have a different shape than the return distribution
2. It is symmetric
3. It does not have a natural multivariate representation
As a result, while the GARCH Student—t will in most cases provide much better risk

forecasting than a normal GARCH, its limitations imply that the model should be used
with care.



2.1.3 Extreme Clustering

While it is a stylized fact that returns exhibit dependence, it is less established whether
extremes are clustered. We suggest the following definition:

Definition 1 (Extreme Clustering) Data is said to have extreme clusters if the arrival
time between extreme events is not i.i.d.

Furthermore, data with extreme clustering may have the following property:

Hypothesis 1 Dependence in time between quantiles decreases with lower probability of
the quantiles

The truthfulness of the hypothesis depends on the underlying distribution of returns.
Hence, the validity of the hypothesis will of course crucially affect the choice of optimal risk
forecast technique. For example, Hypothesis 1 is true for the popular GARCH model. As
we argue below, this may imply that for very low probability quantiles one should use an
unconditional risk forecast technique, even if the true data generating process is GARCH.
In addition, the rate at which dependence decreases will affect the modelling choice. If the
rate is rapid, then unconditional risk forecast methods are preferred, but if the rate is slow,
long memory models should be used. Since the GARCH model, and most related models
fall into the rapid decline class, unconditional models are preferred to GARCH models.

We propose a test for extreme dependence in order to aid in the modelling decision. Specif-
ically, we decide on a threshold, and count the number of the consecutive non—exceedances
between two exceedances. If observations exceed the threshold independently, the counted
numbers are geometrically distributed. If the sample counted numbers are far from geo-
metric distribution, it is reasonable evidence for extreme clustering, and can be tested by
the x? goodness of fit test.

Specifically if r; is the return, then the statistic ¢, defined as

. 0 if’l“t>)\
¢t—{1 i, < A A>0 (6)

becomes increasingly more i.i.d. as \ increases.

The data used is the TOPIX index, the oil price index WTI, the SP-500 index, the
JPY /USD exchange rate, and the Tokyo stock exchange second section index TSE2. In
addition various subsets of the data were used. See Table 1 for summary statistics. We
tested the independence of extremes for returns, as well as the residuals of normal and
Student-t GARCH forecasts. The thresholds chosen were 5%, 2.5%, 1%, and 0.5% for each
tail. These results are presented in Tables 2—4.

Table 2 shows the dependence in returns. As expected, at the lower probability levels (5%,
2.5%) there is significant dependence, but at the 0.5% level the data is mostly independent.
Interestingly, at the 1% level, for the lower tail there is dependence but not at the upper
tail. This is consistent with the fact that the upper tail is usually thinner than the lower
tail. The longest datasets have dependence at the 0.5% level. These results indicate that



dependence decay is slow, suggesting that long memory models may be appropriate for risk
forecasting.

Table 3 shows the results from testing for dependence of residuals in normal GARCH
residuals, and Table 4 does the same for a Student—t GARCH model. As expected, there is
much less dependence in residuals, however for some of the datasets, the GARCH models
fail in eliminating dependence. Even worse, if the extreme dependence is not of the GARCH
type, the residuals may exhibit spurious extreme dependence.

2.1.4 Violation Clustering

While the concept of extreme clustering applies to the actual data, it is also of interest to
consider clustering in violations of the VaR. We propose the following definition:

Definition 2 (Violation Clustering) When the time between VaR violations is not i.i.d.

Violation clustering depends on the data and VaR forecast method. In practice it is prob-
ably impossible to create a VaR model that does not result in some type of violation
clustering, either globally, or at least locally. A form of local violation clustering can be
seen in Figure 3 where we forecast VaR for the TOPIX index with both normal GARCH
and EVT methods (see below for a more detailed discussion of the VaR forecasts). We see
that the GARCH methods lags behind the returns, but overcompensates by producing ex-
tremely large VaR forecast. The EVT methods is hardly affected by the event. The overly
sharp reaction in the GARCH model combined with a rapid decrease suggests that the long
memory models would be much preferable to the GARCH model, and in the absence of a
long memory model, the EVT methods is preferred.

2.1.5 Asymmetry

One feature of conditional volatility models, such as the GARCH model is the implicit
assumption of symmetry of the return distribution. As discussed below this is not correct.
Usually one of the tails is fatter than the other. For example, for equities, the lower tail
is commonly thicker than the upper tail. In general, if the market is trending upwards
the upper tail is thinner than the lower tail, i.e. the market moves in small steps in the
direction of the trend, and has larger jumps away from the trend. In the 1990s most major
stock indices have relatively thicker lower tail, except the NIKKEI. Since the GARCH
model, and its immediate extended forms, are symmetric, due to conditional normality or
Student—t distributional assumptions, they tend to underpredict losses relatively to gains,
and hence for an unsuspecting risk manager will provide false comfort. While in theory
it is straight forward to extend the GARCH model to take into account asymmetry, this
necessarily complicates the model.

The EGARCH model by Nelson (1991) is sometimes used for volatility forecasting.
Yo = Vhz, 2z~ N(0,1)

q p -1
log (h) = w (1 + Zozﬂf) (1 — Z@-L“) {0zi-1 + v [|2t-1| — E |2e-1]]}
i=1 i=1



where 6 and ~y are the parameters of asymmetry, and L? is the lag operator. Its advantages is
primarily the relation to stochastic volatility models. Hence it provides a link to continuous
time finance. For risk applications, the primary advantage is the explicit asymmetry, where
risk forecasts depend on the direction of lagged marked movements. However, typically
when this model is estimated the asymmetry parameters are non-significant, suggesting
that this model is misspecified. As a result, in risk applications, this models does not
have any special advantage over the GARCH model and since it is more complex than the
GARCH, it cannot be recommended for risk forecasting.

The best way to forecast risk would be to use skewed conditional distributions, this however
is not commonly done, due to the difficulty of finding an appropriate skewed distribution
and estimating its parameters.

2.1.6 VaR Volatility

One feature of conditional volatility models, such as the GARCH, is that the volatility of
risk forecasts is very high. Table 5 shows some sample statistics of predicted VaR numbers
for the first two quarters of 1999 for the TOPIX index. We see that in a portfolio of
¥1bn. a normal GARCH model predicts VaR ranging from ¥18m. to ¥41m. Since market
risk capital is 3 x VaR this would imply very large fluctuations in capital. If financial
institutions actually set capital at this level it would imply very high financing costs, and
most likely result in the institution keeping a higher capital level than unnecessary. The
reason why this is largely irrelevant from a regulatory point of view is that the regulatory
VaR is typically an order of magnitude higher than required. One area where this problem
is not academic is in internal risk management, where VaR may be used e.g. to set limits
for traders. Since frequently fluctuating VaR limits would result in high variability in
the size of positions, this would be considered unacceptable in most cases. As a result,
in practice, most banks would use various techniques to dampen the VaR volatility. In
many cases the covariance matrix is updated at infrequent intervals, e.g. once every 3
months. This of course usually results in large jumps in the limits (which are derived from
the covariance matrix) 4 times a year which in itself creates problems. Alternatively, a
dampening function on the covariance matrix could be used, e.g. a moving average. A
better way would be to use a long memory model for volatility. In this case the variance
is neither stationary nor non-stationary, implying a fractal dimension. The advantage is
that these models provide persistence in shocks that falls in-between the extremely short
horizon of the GARCH type model and infinite persistence of I (1) models like RiskMetrics.
Long memory models are however notoriously difficult to work with, and have some way
to go until they can be employed in regular risk management. Another common method
is to dispense conditional volatility based methods altogether for the setting of limits, and
perhaps use historical simulation or extreme value theory. See Danielsson (2000b) for more
discussion on risk volatility.



3 Extreme Value Theory

In common statistical methods, such as GARCH, all observations are used in the estimation
of a forecast model for risk, even if the only one in 100 events is of interest. This obviously
is not an efficient way to forecast risk. The basic idea behind extreme value theory (EVT) is
that in applications where one only cares about large movements in some random variable,
it may not be optimal to model the entire distribution of the event with all available data,
instead it may be better only to model the tails with tail events. For example, an engineer
designing a dam, is only concerned with the dam being high enough for the highest waters.
Regular days when the waters are average simply do not matter. Extreme value theory
is a theory of the behavior of large, or extreme, movements in a random variable, where
extreme observations are used to model the tails of a random variable. See Figure 1. EVT

Figure 1: The Tail
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(a) Entire Distribution (b) Left tail

has been widely used in diverse fields, such as, engineering, physics, chemistry, insurance.
However, it is only recently that it has been applied to financial risk modelling.

3.1 Theoretical Background

Classifications of tails of distributions are often arbitrary. For example, a high kurtosis is
perhaps the most frequently used indication of fat tails. This however is an incorrect use
of kurtosis, which measures the overall shape of the distribution. One way to demonstrate
that is by Monte Carlo experiments. We generated repeated samples of size 2000 from a
known fat tailed distribution, the Student—t(3). For each sample, we excluded the largest
and smallest 40 values. Our random sample was hence truncated from above and below,
and clearly thin tailed. However, the average excess kurtosis was 7.1, falsely indicating fat
tails. In addition, various models are frequently labeled as fat tailed, e.g. the conditionally
normal stochastic volatility (SV) model. It can be shown that according to the criteria
below that the SV model is thin tailed. Note in contrast that the GARCH model is fat
tailed since the return process feeds back to the volatility process.

Formally, random variables fall into one of three tail shapes, fat, normal, and thin, depend-
ing on various properties of the distribution.

1. The tails are thin, i.e. the tails are truncated. An example of this is mortality



2. The tails are normal. In this case the tails have an exponential shape. The most
common member is the normal distribution

3. The tails are fat. The tails follow a power law

It is a stylized fact that financial returns are fat, hence we only need to consider the third
case. An extremely important result in EVT is that the upper tail® of any fat tailed random
variable (z) has the following property

t&r&%zx_a, a>0, x>0. (7)
where « is known as the tail index and F'(-) is the asymptotic distribution function. The
reason why this is important, is that regardless of underlying distribution of z, the tails
have the same general shape, where only one parameter is relevant, i.e. «. If the data
are generated by a heavy tailed distribution, then its distribution has, to a first order
approximation, a Pareto type tail:

P{X >z}~ax™ a>0, a >0, (8)

as x — 00. Danielsson and de Vries (1997b) and Danielsson and de Vries (1997a) demon-
strate that the distribution of the lower tail is

Flo)= (Xiﬂ)_a ¥

where n is the number of observations, m is the number of observations in the tail, and
Xmt1 1s the decreasing order statistics, X7 > Xy > ... > X,,, > ... > X,,. The tail index «
is the key parameter, in that it governs how rapidly the tails go down

o If a = oo, the tails decline exponentially, and the distribution is usually normal

e if & < oo, the tails are fat, in that case

— « is the number of finite moments
— For the student—t distributions « is the degrees of freedom

— For the stable distributions « is the characteristic exponent

3.2 Applications of EVT

Many applications exist for EVT for financial institutions. By estimating the tails of re-
turn distributions, a financial institution is able to obtain better forecasts of out—of-sample
events, as well as better measurements of extreme in—sample quantiles. The primary appli-
cation considered here is risk management, but in addition, EVT has important implications
for measurement of diversification effects under heavy tails, which implies that standard

IThis applies trivially to the lower tails as well.



portfolio theory which is based on risk-return profiles in a mean variance framework, is not
strictly correct. Also, derivatives pricing, especially for exotic options is strongly affected
by the presence of heavy tails, this is as predicted by EVT. However risk management
remains the primary use of EVT within the financial industry.

When EVT is used for VaR forecasting, the parameters of the lower tail are estimated, i.e.
a and m. (9) forms the basis of the VaR forecast. Conditional on the estimates of a and
m, we obtain X,,,1. These three variables, in addition to the sample size n, enable us to
calculate any probability—quantile combination (P, Q) where P < m/n. Specifically, if we
need to calculate VaRP”, we ascertain whether p > m/n. If that is the case, we use the p™
sample quantile from the data to get ¢ (p), i.e. historical simulation is used to provide the
VaR forecast. If p < m/n, (9) is used to obtain the corresponding quantile ¢ (p). Knowing
the quantile forecast ¢ (p), calculating the VaR is straightforward.

3.3 Estimation
If the tails follow the Pareto distribution in (8) exactly, i.e.
F(z)=1—az™" (10)

estimation of the tail index « is straightforward. Hill (1975) shows that a maximum
likelihood estimator of the tail index is

1 1 X;
- 1 i 11
& mz Ong+1 (11)

The estimator in (11) is known as the Hill estimator, m is the number of observations in
the tail, and X, is the quantile (threshold) where the tail begins. If the Pareto approx-
imation in (10) is only asymptotically correct, the Hill estimator is a consistent method of
moments estimator. For an appropriately chosen m it is well known that this estimator
currently has the best empirical properties for the tail index of financial returns. However,
the choice of m is not trivial. Choosing m is the same as determining where the tail begins.
Choosing m arbitrarily, e.g. as 1% of the sample size is not recommended. Hall (1990)
proposes a subsample bootstrap method for the determination of m. His method relies on
strong assumptions on the tail shape, and Danielsson and de Vries (1997a) propose an au-
tomatic double subsample bootstrap procedure for determination of the optimal threshold,

*

m-.

3.3.1 The Optimal Threshold

The choice of the optimal threshold m* is very important, since the estimates of o and
hence risk will vary highly with changing m. The optimal choice of m* depends on the
following results

1. The inverse estimate of the tail index is 1/& is asymptotically normally distributed

10



2. Therefore we can construct the asymptotic mean square error (AMSE) of 1/&

3. Since in general 1/& is biased and is subject to estimation variance we need to take
both into account

(a) As both the variance and bias are affected by the choice of m, it is optimal to
choose m there the bias and variance vanish at the same rate

(b) Therefore the level where the AMSE is minimized gives us the optimal threshold
level, m*, i.e. we have to

~ 2
m* = min AMSE (l — l)

We obtain the AMSE by a bootstrap procedure. However re—sampling of size T does
not eliminate variation in the AMSE, and a subsample bootstrap is needed. Hall (1990)
proposes a sub—sample procedure, where he needs to assume an initial m level to obtain
an initial a, as a proxy for 1/a in the AMSE, then one obtains 1/& estimates for each
sub-sample bootstrap realization, and chooses m?,, for the subsample where the average
is minimized. This is then scaled up to the full sample m* using A, and the assumption
of Bsub = Qgup, Where (3 is the parameter of the second order expansion of the limit law in

(7). This however has two drawbacks:

1. Need to assume initial «

2. Assuming a value for the second order parameter 5 (Hall argues that 8 = « is a good
assumption, but for Student-t 5 = 2)

Danielsson and de Vries (1997a) propose an automatic procedure to determine m*, where
they use a double sub—sample bootstrap to eliminate the reliance on the initial o and as-
sumption of B . The difference statistic between Hill estimator and the Danielsson—de Vries
estimator converges at the same rate and has a known theoretical benchmark which equals
zero in the limit. The square of this difference statistic produces a viable estimate of the
MSE[1/a] that can be minimized with respect to the choice of the threshold. Further-
more, in order to attain the desired convergence in probability, instead of convergence of
distribution that can be obtained at most by full sample bootstrap, they show that one
needs to create resamples of smaller size than original sample with a sub-sample bootstrap
technique. The reason is that two samples with different sampling properties are needed
for the estimation of the second order parameter 3 which is used in scaling the sub-sample
optimal threshold up to the full sample threshold, where the Hill estimator is used to obtain
the full sample « estimate.

3.4 Issues in Applications of EVT

While sometimes EVT is presented as a panacea for risk management, this is not correct.
There are several issues which limit the applicability of EVT to the financial sector.

11



3.4.1 Sample Size

While there is nothing intrinsic which limits the sample size in EVT applications, in practice
there are constraints. There are primarily two types of constraints which limit the sample
size from below

1. We need to observe some events which constitute extremes

2. Most estimation methods for the threshold, m, depend on sub sample bootstrap or
even double subsample bootstrap which implies that the first constraint has to be
observed in all bootstrap subsamples

If the Hill estimator is used for the determination of m one requires at the absolute minimum
that the number of observations in the tail is m + 1. However, m is estimated with a
sub—sample procedure, where the size of the sub—sample should be as small as feasible.
Practical experience and theoretical results indicate that the size of the sub—sample should
be perhaps 10% of the sample size. Therefore, if the sample size is 1000, the subsample
size is 100, and on average one will observe 50 positive values, from which to estimate
the sub—sample values. However, in repeated bootstraps, the particular bootstrap with
the smallest number of positive observations will provide the upper constraint on feasible
positive values. In practice this implies that 1,000 observations is the absolute minimum,
and 1,500 observations is preferable. Having more than 6000 observations does not seem to
make much of a difference. The risk manager is therefore in a classical Catch22 situation;
statistical demands may be inconsistent with the fact that the world is changing. Actually,
this is a reflection of a greater problem. In many markets, especially emerging markets,
there is simply not enough data to do sensible analysis, whether with EVT or something
else. Perhaps for this reason, most published work on risk management is focused on
modelling risk in highly liquid, long running data series such as the SP-500.

3.4.2 EVT is Usually Univariate

While multidimensional EVT is actively being developed, it suffers from the same curse
of dimensionality problems as many other techniques, such as GARCH. As a result at the
time of writing such methods have very limited applicability in risk management. There
are however signs that this is changing, especially in the very interesting work of Longin
(1999) where he measures how the covariance changes as one moves into the tails.

3.4.3 Dependence

EVT as presented here assumes that the data is i.i.d. This however is not a theoretic
limitation. Resnick and Starica (1996) have shown that the Hill estimator is consistent
under certain types of dependence, such as GARCH.
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3.5 Extreme Value Theory Forecasting

Results from using EVT are presented in Table 6, and plots of the lower tail of the TOPIX
in the 1990’s is presented in Figure 2. EVT was used to predict the largest expected
decrease and increase in each series over a 20 year interval. Of the datasets, oil prices are
the most volatile, a one day increase of 29% is expected once every 20 years, with a one day
drop of 19% once in the same period. We note that the JPY/USD exchange rate is getting
more risky over time, with a one day increase of 9%. Curiously, the second section stocks
are subject to less extreme risk than the TOPIX stocks. The main US index, SP-500 is less
risky than the major Japanese index TOPIX in the 1990’s, and the TOPIX is especially
risky on the downside.

4 Empirical Analysis

The empirical analysis is based on a variety of datasets from several periods. For most
parts our empirical protocol was strictly non—-data—snooping, i.e. we did not look at the
data before applying our procedures.

4.1 VaR Predictions

The most common models for VaR forecasting is the GARCH class of models. We use the
GARCH model with normal and Student—t innovations to forecast VaR. The estimation
window was 1000 observations, and the model is re-estimated each day. We move the
1000 day window to the end of the sample. Each day we forecast the next day VaR and
count the number of violations. The results from this exercise, which are presented in
Table 7, will not come as a surprise to readers of the VaR literature, since many authors
have tested this and reached the same conclusions. The normal GARCH model has the
worst performance, followed by the Student—t GARCH, with EVT the best method. These
results are especially interesting in light of the results on VaR volatility below.

4.2 Asymmetry

Both the normal and Student—t GARCH models are based on the assumption of a symmet-
ric conditional distribution, with no asymmetric responses of returns onto the risk forecasts.
As a result, these models assume that the unconditional distribution of returns is symmet-
ric. This has two drawbacks for risk forecasting First, it implies that the upper and lower
tails are identical. However, this is clearly not the case. It is well known that return distri-
bution are not symmetric, with the upper tail typically thinner than the lower tail. This is
also the case with our data, see Table 6. In addition, with the normal GARCH model, the
thinner tail will be more important in the estimation, due to the exponential kernel, hence
the thicker tail, typically the lower, will have relatively lower impact on the estimation. We
see that the VaR predictions with the GARCH models bear this out. There is considerable
asymmetry in the GARCH results. The VaR levels in the upper tail are over predicted,
while those in the lower tail are under predicted.
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4.3 VaR Volatility

As discussed above, VaR volatility is of considerable concern. Table 5 shows statistics on
VaR predictions for a portfolio of ¥1bn. of the various models under consideration. We
first focus on the entire sample period. The normal GARCH models suggests that the
largest one day 1% VaR is ¥280m. while the largest one day loss on the TOPIX was only
¥150m, with unconditional probability of 0.007%, clearly indicating the implausibility of
the GARCH results. Attempting to rectify the forecast by the use of a Student-t GARCH
model does not help much since its largest predicted loss is ¥220m. A completely different
picture emerges from the EVT results. The VaR forecasts are stable, and do not have any
of the wild VaR forecasts produced by the GARCH models. The standard error of the
normal GARCH model VaR forecasts is 1.04, for the Student-t GARCH model 1.09, but
only 0.70 for the EVT forecast .

A similar picture emerges from the first and second quarters of 1999. (Q1 and Q2) We see
that the normal GARCH model predicts VaR ranging from ¥18m. to ¥41m. A factor of
three change in VaR in 3 months is problematic for a financial institution using VaR for
either external or internal risk management, but this is a very typical result from conditional
volatility models. Similar results obtains for a Student—t GARCH model, with VaR ranging
from ¥20m. to ¥42m. In Q1 of 1999, the EVT model had VaR forecasts which ranged
from ¥31m to ¥33m, in line with expectations.

4.4 Violation Clustering

We also consider VaR clustering in the forecasts from the models by use of the extreme
clustering test discussed above. These results are presented in Table 8. We find that when
considering the entire dataset that there is still considerable clustering in EVT forecasts,
and as expected the dependence in the GARCH models results is much less global clustering.
However when considering local clustering another picture emerges. Figure 3 shows both
GARCH normal and EVT forecasts of TOPIX VaR. We see that the GARCH methods lags
behind the returns, but overcompensates by producing extremely large VaR forecast. The
EVT methods is hardly affected by the event. The overly sharp reaction in the GARCH
model combined with a rapid decrease suggests that the long memory models would be
much preferable to the GARCH model, and in the absence of a long memory model, the
EVT methods is preferred.

5 Conclusion

Risk management has undergone vast changes in recent years. Traditional methods, such
as the GARCH class of models have been pressed into service to provide risk forecasts, with
mixed results. New techniques, such as extreme value theory (EVT), have been applied to
the problem of risk forecasting. This is a dynamic field, and no single technical solution
exists. One faces the classical problem of accuracy vs. complexity. In the paper we compare
and analyze the various methods for VaR forecasting of Japanese financial data.
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We find that Japanese market data is well suited for advanced techniques such as EVT. The
data exhibits patterns observed in other markets rendering risk forecasts relatively straight
forward. By using EVT we find that VaR forecasts are very accurate and stable over time.
This implies that the use of EVT risk forecasting for Japanese financial institutions and
other users of Japanese market data is recommended.

In contrast we find that GARCH type techniques are less accurate than EVT VaR forecasts,
and even more worryingly are very volatile. As a result, such models cannot be recom-
mended for practical VaR predictions. A detailed examination of the VaR forecasts from
both EVT and GARCH models demonstrated that the wild swings observed in the GARCH
VaR predictions are more an artifact of the GARCH model, rather than the underlying
data. Finally, we note that a long memory model would provide the best risk forecasts,
however they cannot be recommended. This is because they are notoriously difficult to
estimate and require very long estimation horizons, effectively rendering them useless for
most practical risk forecasting.

A Extreme Value Theory

This appendix gives an overview of the statistical methods that are used in obtaining
the estimated extreme tail distribution. The following is a brief summary of results in
Danielsson and de Vries (1997a) which also provide all the proofs; the method has been
applied by Danielsson and de Vries (1997b) .

Let x be the return on a risky financial asset where the distribution of z is heavy tailed.
Suppose the distribution function F' (z) varies regularly at infinity with tail index «:
1—F (tx)

lim ———==2"% a>0, z>0. 12

PR TZF @) ! (12)
This implies that the unconditional distribution of the returns is heavy tailed and that
unconditional moments which are larger than a are unbounded. The assumption of regular
variation at infinity as specified in (12) is essentially the only assumption that is needed for
analysis of tail behavior of the returns x. Regular variation at infinity is a necessary and
sufficient condition for the distribution of the maximum or minimum to be in the domain of
attraction of the limit law (extreme value distribution) for heavy tailed distributed random
variables.

A parametric form for the tail shape of F'(x) can be obtained by taking a second order
expansion of F'(z) as x — 0o. The only non-trivial possibility under mild assumptions is

F(z)= 1—az[1+bz P +o(z")], >0 as r — 00 (13)

The tail index can be estimated by the Hill estimator (Hill 1975), where M is the random
number of exceedances over a high threshold observation X, ;.

1

1 1 X,

Do Y o 14
a miZmOgX ’ (14)
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The asymptotic normality, variance, and bias, are known for this estimator. It can be
shown that a unique AMSE minimizing threshold level exists which is a function of the
parameters and number of observations. This value can be estimated by the bootstrap
estimator of Danielsson and de Vries (1997a).

It is possible to use (13) and (14) to obtain estimators for out of sample quantile and prob-
ability (P, Q) combinations given that the data exhibit fat tailed distributed innovations.
The properties of ih\e quantile and tail probability estimators below follow directly from
the properties of 1/a. In addition, the out of sample (P, () estimates are related in the
same fashion as the in sample (P, Q) estimates.

To derive the out of sample (P, @Q)) estimator consider two excess probabilities p and ¢ with
p < 1/n < t, where n is the sample size. Corresponding to p and ¢ are the large quantiles,
x, and x;, where for x; we have 1 — F'(z;) = i, i = t,p. Using the expansion of F'(z) in
(13) with # > 0 we can show that by ignoring the higher order terms in the expansion,
and replacing t by m/n and z; by the (m + 1)-th descending order statistic one obtains the
estimator

np

1
. m '\«
Ty = X(m+1) ( ) . (15)

It can be shown that the quantile estimator Z, is asymptotically normally distributed. A
reverse estimator can be developed as well by a similar manipulation of (13).

The excess probability estimator p is also asymptotically normal distributed.
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B Tables and Plots

Table 1: Summary Statistics

Data From To Obs.  Mean S.D.  Skew. Kurt. AC(1)
TOPIX 08/01/49 07/30/99 14,179 0.032% 0.88% -0.44 19.30 0.16
TOPIX 08/01/49 07/31/59 3,007 0.052% 0.90% -0.12 12.41 0.25
TOPIX 08/01/59 07/31/69 3,006 0.021% 0.72% -0.36 6.46  0.16
TOPIX 08/01/69 07/31/79 2,896 0.039% 0.69% -1.44 17.28 0.22
TOPIX 08/01/79 07/31/89 2,803 0.063% 0.79% -2.41 70.62 0.10
TOPIX 08/01/89 07/30/99 2467 -0.023% 1.25% 0.30 7.81 0.11
WTI 06/01/83 07/30/99 4,021 -0.010% 2.45% -1.38 28.87 0.01
SP500 08/01/49 07/30/99 12,632 0.035% 0.85% -1.78 50.89 0.10
SP500 08/01/49 07/31/59 2,518 0.055% 0.71% -0.83 10.27 0.10
SP500 08/03/59 07/31/69 2,515 0.017% 0.63% -0.50 12.82 0.16
SP500 08/01/69 07/31/79 2,543  0.005% 0.86% 0.29 545 0.24
SP500 08/01/79 07/31/89 2,529 0.048% 1.09% -3.75 83.59 0.06
SP500 08/01/89 07/30/99 2,527 0.053% 0.88% -0.50 9.31  0.01
JPY/USD 08/01/79 07/30/99 5093 -0.012% 0.71% -0.81 10.65 0.02
JPY/USD 08/01/79 07/31/89 2,489 -0.018% 0.66% -0.39 548 0.04
JPY/USD 08/01/89 07/30/99 2,604 -0.007% 0.76% -1.06 13.20 0.00
TSE2 08/01/69 07/30/99 8,166 0.031% 0.70% -0.79 13.10 0.43
TSE2 08/01/69 07/31/79 2896 0.049% 0.63% -1.02 13.96 0.47
TSE2 08/01/79 07/31/89 2803 0.051% 0.54% -1.76 30.21 0.32
TSE2 08/01/89 07/30/99 2,467 -0.012% 091% -0.31 729 0.45
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Table 2: Extreme Dependence in Returns

Lower Tail Upper Tail
Data 5% 25% 1% 05% 5% 25% 1% 0.5%
TOPIX 49-99 kokk  kkk okk kkk Rk okkk okk kokok
TOPIX 49-59 kokk kkk KRk skk Rk Rkk koK
TOPIX 59-69 Ak kR ok fokokfokok
TOPIX 69-79 ok kR ok fofokfokok
TOPIX 79-89 kokk  kkk kK Rk Rkk kkk kx kKK
TOPIX 89-99 KRk kK kokk sokx kK
WTI 83-99 kokk kkk okk kkk kkk okkk okk Kok
SP500 49-99 Kok kkk kk kkk kkk kk okok Kok
SP500 49-59 ok
SP500 59-69 KRk kK Kkk KKk k¥ Kok
SP500 69-79 kokk  kkk kK kR kkk kkk kkk kKK
SP500 79-89 KRk kkk kokk skk kkk kkk koK
SP500 89-99 Ak Rk ko Kok okokok
JPY /USD 79-99 clkek o shokok *okkkokok
JPY/USD 79-89 ‘#k ek kil bk sk ek bk ik
JPY /USD 89-99 ook wx shokok *ok kok
TSE2 69-99 kokk  kkk kK kR kkk kR kkk kKK
TSE2 69-79 Kok kkk kk kkk kkk kkk okok koK
TSE2 79-89 ok
TSE2 89-99 KRk kK Kkk skx k¥ ok

Notes: *** indicates significance at the 1% level, ** at the 2.5% level and * at the 5% level.
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Table 3: Extreme Dependence in Normal GARCH Residuals

Data

Lower Tail

Upper Tail

5%

25% 1%

0.5% 5%

2.5%

1%

0.5%

TOPIX 49-99
TOPIX 49-59
TOPIX 59-69
TOPIX 69-79
TOPIX 79-89
TOPIX 89-99

ok

Kkosk

Kk
KKk

*k

X%k

X%k

WTT 83-99

SP500 49-99
SP500 49-59
SP500 59-69
SP500 69-79
SP500 79-89
SP500 89-99

Koksk

X%

Koksk

*3k
Kok

Kk

k%

JPY/USD 79-99
JPY/USD 79-89
JPY/USD 89-99

k%

TSE2 69-99
TSE2 69-79
TSE2 79-89
TSE2 89-99

Koksk

Notes: *** indicates significance at the 1% level, ** at the 2.5% level and * at the 5% level.
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Table 4: Extreme Dependence in Student—t GARCH Residuals

Data

Lower Tail

Upper Tail

5%

2.5%

1%

0.5%

5%

2.5%

1%

0.5%

TOPIX 49-99
TOPIX 49-59
TOPIX 59-69
TOPIX 69-79
TOPIX 79-89
TOPIX 89-99

ok

Kkosk

Kk
KKk

Kk
KKk

X%k

%%k

WTT 83-99

SP500 49-99
SP500 49-59
SP500 59-69
SP500 69-79
SP500 79-89
SP500 89-99

Koksk

X%

k%
k%

*k

JPY/USD 79-99
JPY/USD 79-89
JPY/USD 89-99

X%k

TSE2 69-99
TSE2 69-79
TSE2 79-89
TSE2 89-99

*okosk
ko
ok

X%k

ok

kkx

*3k
*3k

Notes: *** indicates significance at the 1% level, ** at the 2.5% level and * at the 5% level.
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Table 5: VaR Volatility in the TOPIX Index (Percentage Returns)

Name from to mean se min max violations
GARCH Normal 1954/07/29 1999/07/30 -1.71 1.04 -28.28 -0.59 1.65%
GARCH t 1954/07/29 1999/07/30 -1.86 1.09 -22.30 -0.65 1.25%
EVT 1954/07/29 1999/07/30 -2.20 0.70 -3.94 -1.03 1.17%
GARCH Normal 1996/01/04 1999/07/30 -2.64 0.91 -7.56 -1.43 1.48%
GARCH t 1996/01/04 1999/07/30 -2.90 0.92 -7.13 -1.75 0.91%
EVT 1996/01/04 1999/07/30 -3.25 0.21 -3.94 -290 0.91%
Returns 1999/01/04 1999/03/31 0.26 1.18 -241 +3.70
GARCH Normal 1999/01/04 1999/03/31 -2.59 0.64 -4.12 -1.80

GARCH t 1999/01/04 1999/03/31 -2.79 0.61 -4.21 -2.04

EVT 1999/01/04 1999/03/31 -3.18 0.03 -3.31  -3.09

Returns 1999/04/01 1999/06/30 0.18 1.00 -2.01 +3.24
GARCH Normal 1999/04/01 1999/06/30 -2.57 0.37 -3.57 -2.02

GARCH t 1999/04/01 1999/06/30 -2.82 0.40 -3.84 -2.23

EVT 1999/04/01 1999/06/30 -3.17 0.03 -3.19 -3.09

Notes: These are summary statistics on VaR predictions.
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Table 6: EVT Tail Estimates (Percentage Returns)

Name from to Qy, Qy m, my; max 20 min 20

TOPIX  08/01/49 07/30/99 3.83 4.02 37 30 734  -7.37
TOPIX  08/01/49 07/31/59 327 470 32 17 627  -8.26
TOPIX  08/01/59 07/31/69 4.74 3.15 20 36 685  -4.29
TOPIX  08/01/69 07/31/79 3.44 268 28 41 889  -534
TOPIX  08/01/79 07/31/89 292 2.83 48 29 826  -7.63

TOPIX  08/01/89 07/30/99 4.00 557 22 12 751  -9.73
WTI 06/01/83 07/30/99 4.25 2.82 14 32 295  -189
SP500 08/01/49 07/30/99 3.89 3.25 61 163 7.18  -6.01
SP500 08/01/49 07/31/59 4.59 2.85 33 32 7.57  -4.02
SP500 08/03/59 07/31/69 2.97 359 76 25 507  -5.78
SP500 08/01/69 07/31/79 3.46 4.81 31 23 479  -7.13
SP500 08/01/79 07/31/89 3.97 2.80 33 56 104  -6.83
SP500 08/01/89 07/30/99 391 333 29 28 751  -6.15

JPY/USD 08/01/79 07/30/99 4.60 3.61 25 34 629  -4.08
JPY/USD 08/01/79 07/31/89 689 6.61 14 11 380  -3.02
JPY/USD 08/01/89 07/30/99 3.98 2.66 29 36 946  -4.91

TSE2 08/01/69 07/30/99 520 3.13 20 34 756  -4.35
TSE2 08/01/69 07/31/79 4.69 241 23 51 850  -3.86
TSE2 08/01/79 07/31/89 595 337 16 32 453  -281
TSE2 08/01/89 07/30/99 4.55 7.97 17 11 571  -5.67

Notes: a,, and «; is the tail index for the upper and lower tails, respectively. m,, and m; is the number of order statistics in
the upper and lower tails, respectively. max 20 and min 20 is a forecast of the expected largest one day increase and

decrease in the data over 20 years in percentages.
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Table 7: VaR Violation Ratios

Lower Tail Upper Tail
Model Data 5% 2.5% 1% 0.5% 5% 2.5% 1% 0.5%
Normal TOPIX 4.50% 3.07% 1.98% 1.47% 4.10% 2.711% 1.59% 1.21%
SP500 513% 3.40% 1.96% 1.41% 4.81% 2.93% 1.66% 1.19%
JPY/USD 5.65% 3.84% 2.50% 1.89% 5.15% 3.23% 2.09% 1.53%
WTI 5.08% 3.05% 1.98% 1.39% 4.80% 2.86% 1.90% 1.51%
TSE2 4.76% 3.06% 2.04% 1.53% 5.06% 3.29% 1.86% 1.35%
GARCH TOPIX 5.14% 3.01% 1.65% 1.25% 4.05% 2.19% 1.05% 0.63%
SP500 547% 3.33% 1.81% 1.12% 4.30% 2.31% 0.99% 0.59%
JPY/USD 5.57% 3.42% 2.12% 1.64% 4.90% 2.84% 1.50% 1.00%
WTI 5.04% 2.98% 1.71% 1.27% 4.40% 2.66% 1.43% 1.15%
TSE2 5.25% 3.26% 1.82% 1.26% 4.34% 2.54% 1.22% 0.72%
GARCH-t TOPIX 5.80% 3.02% 1.25% 0.76% 4.44% 2.11% 0.71% 0.28%
SP500 6.01% 3.18% 1.28% 0.60% 4.62% 2.11% 0.71% 0.34%
JPY/USD 6.26% 3.01% 1.34% 0.92% 5.23% 2.31% 0.86% 0.19%
WTI 6.27% 2.82% 1.15% 0.48% 4.68% 2.30% 0.99% 0.63%
TSE2 5.39% 2.91% 1.29% 0.69% 4.76% 2.33% 0.89% 0.21%
EVT TOPIX 5.23% 2.68% 1.18% 0.69% 5.38% 2.90% 1.30% 0.72%
SP500 5.61% 3.11% 1.27% 0.69% 5.55% 3.12% 1.27% 0.70%
JPY/USD 5.51% 298% 1.31% 0.95% 6.43% 3.03% 1.53% 0.81%
WTI 5.08% 2.94% 0.87% 0.48% 5.32% 2.78% 1.23% 0.63%
TSE2 5.45% 2.72% 1.23% 0.72% 5.75% 2.99% 1.38% 0.78%

Notes: Length of Test: TOPIX=12,679, SP500=11,133, JPY/USD=3,593, WTI=2,521, TSE2=6,666. Each cell contains the
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Table 8: Violation Dependence

Lower Tail Upper Tail

Model Data 5% 25% 1% 05% 5% 25% 1% 0.5%
Normal TOPIX koksk kosksk koksk kkosk kksk kksk kksk kksk

WTI dokk  kkk okkk kkok kokok dokk dokk ok

TSE2 sk kkk ckkk kkok ko ok kokk ko
GARCH normal TOPIX oAk ok *

SP500 kksk *kksk

JPY/USD
GARCH-t TOPIX oAk ok

JPY/USD

WTI

TSE2 kokok * *ok
EVT TOPIX Fokk  kkk | kkk  kkk  kRk kkk | Rkk | kEX

TSE2 fokk  kkk ok kkok kol dokk dokk ok

Notes: *** indicates significance at the 1% level, ** at the 2.5% level and * at the 5% level.
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Figure 3: Risk Overshooting in TOPIX VaR Forecast
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