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I. Introduction

According to Cochrane and Hansen (1992), asset prices can provide us with the

intertemporal general equilibrium reflection of theories about consumption, production,

and demography, and offer a useful insight into the validity of theoretical representations

of the economy.

In fact, there is a tremendous quantity of literature that studies the interaction

between the U.S. capital market and the economic activity underlying it. The number of

studies concerning the relationship between the Japanese capital market, which is the

second-largest in the world, and its fundamental economic activity, however, has been

quite limited and the few existing studies generally use ad hoc factor-pricing-type models

or the Consumption-Based Capital Asset-Pricing Model (C-CAPM) as their empirical

framework.

For example, Chan, Laconishok and Hamao (1991) have explored the relationship

between U.S. capital market fundamentals and stock market returns in a cross-sectional

context. Also, Campbell and Hamao (1992) have studied the degree of integration

between the U.S. and Japanese capital markets. These studies use factor-pricing models,

which are thought to be extensions of the traditional CAPM.

On the other hand, Hamori (1992, 1994) was the first to apply the C-CAPM to the

Japanese stock market and consumption data and he concluded that it performed well

over the period from the 1970s to the 1980s in terms of the Generalized Method of

Moments (GMM)-based overidentifying restrictions test, which was first proposed by

Hansen (1982). However, Hori (1996) rejects the C-CAPM in terms of Hansen and

Jagannathan’s (1991) volatility bound test1 despite the fact that Hamori (1992, 1994) and

Hori (1996) used very similar data sets. Since both types of test frequently reject the C-
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CAPM in the case of the U.S data2, the coexistence of these competing results has been

said to be characteristic of Japanese asset markets.

Another direction for testing asset-pricing is to use the production-based capital

asset-pricing model (P-CAPM), which characterizes intertemporal marginal rates of

substitution using physical investment data, not consumption data, in the belief that

investment should reflect variations in stock returns much more than consumption, as

suggested by Mehra and Prescott (1985).

Nevertheless, the P-CAPM shares many features with the C-CAPM. For example,

Just as the latter model derives its asset-pricing implications from the consumers’ first-

order Euler conditions regarding the intertemporal marginal rate of substitution of

consumption, the former model relies on the firm's Euler conditions regarding the

intertemporal marginal rate of transformation,  and both models coincide in a particular

case.

More specifically, the return on investment is the marginal rate at which a firm

can transfer resources through time by increasing investment in the current period and

decreasing it in the future period, leaving its production plan unchanged in all later

periods. In this paper, I examine whether the variation in expected stock returns can be

explained by the investment return, which is inferred from investment data via a

production function interacting with an adjustment cost function.

Most previous empirical studies on the relationship between Japanese stock prices

and physical investment are based on the q theory of investment originally proposed by

Tobin (1969). Although its theoretical basis is robust, measures of the q index are often

empirically inappropriate for testing whether or not stock prices reflect their fundamental

values. Concretely speaking, in computing Tobin’s q, one is obliged to use either (i) firm

                                                                                                                                                                     
1 Recently, Bakshi, and Naka (1997) examined the empirical performance of various specifications in
the class of the C-CAPM using these methods. The empirical results indicate that habit-forming
preferences provide a relatively good characterization of the Japanese security market data.
2 For example, see Singleton (1990) and Cochrane and Hansen (1992).
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value evaluated in the stock market divided by the market value of existing capita stock

(average q) or (ii) the present value of a stream of firm profits with some interest rate as

its discount rate (marginal q).

However, it is difficult to measure (i) the market value of equity net of cross-

holdings3 and/or the capital stock in computing average q, and (ii) the discount rate in

computing marginal q. Hence the accuracy of measuring Tobin’s q mainly depends on the

choice made between those methodologies. Further, ex post stock prices, which are

usually used to construct average q, have a lot of noisy components, which, by definition,

do not reflect fundamental firm activity associated with both investment and production.

In this regard, the use of the P-CAPM enables one to avoid such problems because it

concentrates on the ex ante relationship between asset returns and investment, although

from the perspective of the theoretical basis, the two models are closely related to each

other.

Motivated by the above discussion, this paper tries to examine the relationship

between asset returns and physical investment within the framework of the P-CAPM

using the industry-level data that consist of the firms listed on the Tokyo, Osaka, and

Nagoya Stock Exchanges, as well as the over-the-counter (OTC) market4. To my

knowledge, there are only a few existing studies that examine the validity of the P-CAPM

using detailed Japanese stock market data5.  

                                                          
3 For example, Kiyotaki and West (1996) state that in Japan, q was almost always negative during the
period between the 1960s and the 1980s, reflecting a negative numerator (equity value net of cross-
holding) . They point out that one possible cause is a mismeasurement of equity values caused by the
use of book value for non-traded corporations. Hoshi and Kashap (1990) also point out this kind of
problems, finding that a substantial fraction of firms with equity valued at market has a negative value
of q.
4 In fact, this is the most extensive coverage of the stock returns of firms out of all the previous studies,
which typically cover only the stock returns of the firms listed on the first section of the Tokyo Stock
Exchange. It is important to include as many stock returns as possible since investment and production
data available reflect not only large-scale leading firms, but also small ones.
5 Kasa (1997) compares the ability of two competing asset-pricing models, C-CAPM and P-CAPM to
explain cross-sectional and time-series variation of national stock returns in the U.S., Japan, the UK,
Germany, and Canada. The result shows that the P-CAPM performs better than the C-CAPM.
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On the one hand, Bakshi, Chen, and Naka (1995)6 found supporting evidence for

the P-CAPM. However, their analysis is not complete because they do not examine their

results within a framework of Hansen and Jagannathan’s volatility bound test.  On the

other hand, Hori (1997) tried to estimate the parameter of the adjustment cost function by

GMM using industry-level data, but failed to find evidence supporting the P-CAPM.

However, he applies GMM to the Euler equations only for the stock returns in excess of

the risk-free interest rate, which might incur a serious bias in his estimation results7.

In fact, there are several ways of deriving the testable form of the P-CAPM. The

differences between them largely depend on how the stochastic discount factor (pricing

kernel) or the intertemporal marginal rate of substitution is specified. Following Cochrane

(1991,1996), this paper characterizes it as a function of returns on physical investment.

Thus, this paper can be thought to be an application of the methodologies used by

Cochrane (1991,1996) to deal with Japanese industry-level asset return data, but the

following modifications have been made: (i) I focus on manufacturing industries because

(a) in the 1980s, there was large-scale privatization in some non-manufacturing industries,

so that there are big jumps in the investment and capital stock data for such industries,

and (b) in evaluating the marginal productivity of capital that is one of the essential

elements of investment return, it is much more appropriate if one adjusts capital stock for

the corresponding operating ratio, which is available only for manufacturing industries.

(ii) Although Cochrane (1996) treats the marginal productivity of capital as a constant

parameter given a priori under the assumption that the variation in the investment return

depends solely on the adjustment cost function, not on the production function, I use the

specification such that the marginal productivity of capital is also time-varying. (iii)

                                                          
6 In their GMM estimation, they estimate the parameter of the marginal productivity, which plays a role
in determining the mean value of the investment return, not the parameter of adjustment costs, which
plays a decisive role in determining the variation of the investment return, thus the stock returns.
7 In other words, he ignored the Euler equation for the risk-free interest rate itself. Let me discuss this
point later. Also he estimated the quarterly industry GDP under the assumption that the output of each
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Relating to this point, Cochrane (1991,1996) also gives an arbitrary value to a parameter

of the adjustment cost function and tests whether or not the constructed investment return

can be regarded as a pricing-factor of the stochastic discount factor. But I try to directly

estimate this parameter within the framework of GMM. (iv) In evaluating the values of

the parameter estimated by GMM in terms of the volatility bound test, I construct a

confidence region to perform a proper statistical inference taking into account possible

sampling and measurement errors.

The rest of the paper is organized as follows. Section II outlines a basic theoretical

framework of the P-CAPM, referring to the link with the q theory of investment. Then I

will discuss the testable implications of the P-CAPM.  Section III describes the empirical

methodologies. First, I briefly discuss the thrust of the GMM estimation, followed by the

method of Hansen and Jagannathan’s volatility bound test and its statistical inference, the

estimation of mispricing coefficients that have an implication for equity premium and

risk-free rate puzzles, and the ability of stock and investment returns to forecast future

economic activity. Section IV describes the empirical results, which turned out to be

favorable to the P-CAPM. Section V concludes the paper.

II. Theoretical Framework

A. Basic Model8

(i) Maximization Problem for a Firm

This section derives the formula of the investment return from the production and

investment technologies and then shows that a firm’s first-order conditions imply that the

firm tries to make decisions so as to remove arbitrage opportunities between physical

investment and asset returns.

                                                                                                                                                                     
industry has the same pattern of quarterly variation as has total output. This treatment might cause
another bias.
8 Description of the basic model follows Hori (1997).
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Now, consider the following production economy similar to those of Lucas and

Prescott (1981), Abel and Blanchard (1986), and Cochrane (1996)9. There are N securities

in frictionless markets. By frictionless markets, I mean that agents are able to buy and sell

any securities at a given price without paying any transaction costs10.

Different securities correspond to different technologies. There are numerous

investors in the stock market and their belief is assumed to be homogeneous. Also let me

assume that shareholders can choose an optimal physical investment plan directly or

delegate managers to do the task perfectly. Every agent takes the price as given under

perfect competition.

Under this setting, the technology11 can be described as

( ) ( ) tttttttt LwKICvLKFQ −−= ,, , (1)

and ( )( )ttt IKK +−=+ δ11 , (2)

where tQ  is the cash flow, ( )tt LKF ,  the production function, ( )tt KIC ,  the adjustment cost

function, tK  the capital stock, tw  the wage rate, tL  the labor input, tv  the exogenous

shock, and δ  the constant depreciation rate. The production function is concave and

increasing in its arguments. The adjustment costs indicate deadweight costs incurred by

installing and transforming investment goods into capital stock.

The firm pays out a dividend jtD +  that is equal to the net cash flow such that

jtjtjt IQD +++ −= . (3)

Given the technology (1) and the capital accumulation rule (2), the firm chooses jtI +  and

jtL +  in order to maximize its present discounted value. Thus, the maximization problem

for the firm can be written as

                                                          
9 These works are descended from Breeden (1979).
10 Later I refer to the implications derived from frictionless asset markets.
11 One alternative specification is that adjustment costs are included in the capital accumulation rule
instead of the production function such that ( ) ( )ttttt KICIKK ,11 −+−=+ δ . As will be shown later, it

turns out that the results are qualitatively very similar. For more details, see Cochrane (1991), Baksi,
Chen, and Naka (1995), and Arroyo (1996).
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where tE  denotes the expectation operator conditional on the information set available at

the beginning of period t, and jttM +,  is a stochastic discount factor (pricing kernel) or an

intertemporal marginal rate of substitution from period t to t+j12, which is assumed to be

common to every investor. In a complete market, jttM +,  is equivalent to the contingent

claims price divided by the probability, hence the present value (4) is equal to the firm’s

period t contingent claims value.

The first-order conditions and a transversality condition can be written as

( ) ttL wvtF = , (5)
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Equation (5) states that at optimum, the marginal product of labor should be equal to the

wage rate, and equation (6) states that the cost of one unit of investment good should be

equal to the marginal gain of the firm value. Now equation (6) can be rewritten as

( ) ( ) ( ) ( )[ ]{ } ( )tCtCvtFtCME IKtKIttt +=++++++− ++ 111111 11, δ . (8)

Thus the one-period investment return I
ttR 1, +

13 can be defined as

( ) ( ) ( ) ( )
( )tC

tCvtFtC
R

I

KtkII
tt +

+−++++
−≡ +

+ 1

1111
1 1

1, δ . (9)

                                                          
12 In general, jttM +,  is defined as ( ) ( )tjtjtt CUCUM '', ++ = ρ , where ρ  is the time discount factor,

jtC +  the investor’s consumption in period t+j, and ( )jtCU +  the period utility of consumption in period

t+j. By definition, jttM +,  can be transformed as jttttjtt MMM ++++ ×= ,11,, .
13 Here, as emphasized by Cochrane (1996), it should be noted that for some production technologies, it
is not possible to summarize the price versus present value relation (6) in a single-period investment
return. For example, if the adjustment costs depend on p lags of investment, then a p-period investment
strategy must be considered.
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Combining the definition of the investment return (9) and the transformed first-condition

(8) yields the following Euler equation:

[ ] 11,1, =++
I
ttttt RME . (10)

The pricing condition (10) says that the time variation in the investment return that is

predictable based on the information set is removed when the investment return is

multiplied by an appropriate stochastic discount factor.

(ii) Specification of the Production Function and the Adjustment Cost Function

To estimate the parameters in definition (9) within the framework of the Euler

equation (10), one needs to specify a concrete form of the investment return I
tR 1+ , which

in turn requires the specification of the production function and the adjustment cost

function. As for the production function, the following Cobb-Douglas form is used:

( ) ttttt vLKLKF αα −= 1,  and  10 <<α . (11)

Here, the marginal productivity of capital can be derived as ( ) ( )ttttK KYLKF α=, , where

under the assumption of perfect competition, the parameter α  indicates the ratio of

income going to capital in total income.

Next, I will specify the adjustment cost function as1415:

( )
t

t
tt K

I
KIC

2

2
,

β=  and  0>β . (12)

This functional form has the properties such that ( ) ( ) ( ) 0, ≥=∂∂≡ tttttI KIIKICtC β ,

( ) ( ) ( ) 01 ≥=∂∂≡ ttIII KItCtC β , and  ( ) ( ) ( )( ) 02, 2 ≤−=∂∂≡ tttttK KIKKICtC β .

Now the investment return defined as (9) can be rewritten as

( ) ( ) ( ) ( )( )
( )tt

ttttttI
tt KI

KIKYKI
R

β
βαβδ

+
+++−≡ ++++++

+ 1

21
1

2
111111

1, . (13)

                                                          
14 This form is used in Cochrane (1996) and Hori (1997).
15 The adjustment cost function of this form is often used when one tries to prove the equality of
marginal q and average q. For more details, see Obstfeld and Rogoff (1996).
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This expression states that basically, the output-capital ratio and the depreciation rate

determine the mean value of the investment return, while the investment-capital stock

ratio plays a role in determining the variation of the investment return around its mean

value16.

(iii) Relation with Tobin’s q

Here, the so-called envelope condition is given by

( ) ( ) ( ) ( )[ ]111, ,)1(, +++−+−= ttKtttKtKttK vKVMEtCvtFvKV δ . (14)

Let q  denote an increase in the value of the firm when another unit of capital stock is

installed, that is, ( )ttKt vKVq ,= . Combining equations (6) and (14) gives the following

equilibrium condition:

 ( ) ( ) ( ) ( )
2

2
11, 





+++=−++=≡

t

t

t

t

t

t
KItKttKt K

I

K

I

K

Y
tCtCvtFvKVq

ββα . (15)

Equation (15) states that when adjustment costs are zero, that is, when →β 0, marginal q

is independent of the investment-to-capital ratio ( KI ) and thus, solely a function of the

marginal productivity of capital. In addition, as suggested by literature, marginal q  is

increasing in the investment-to-capital ratio ( KI ) and β . A positive technology shock,

0>tv , for instance, increases the marginal productivity of capital, and as a result,

increases the incentive to invest. This assertion is consistent with the conventional

wisdom that marginal q varies systematically over business cycles.

In terms of marginal q , the investment return (9) can be rewritten as

                                                          
16 In the case in which the alternative specification of the capital accumulation rule is used as in
Cochrane (1991) and Baksi, Chen, and Naka (1995), other things equal, the following expression for
the investment return can be obtained:

( ) ( ) ( )
( )

( )[ ]2
2

11

3
11

111, 5.11
5.11

1
tt

tt

tt
tt

I
tt KI

KI

KI
KYR β

β
βδα −













−
+−+≡

++

++
+++ .

This specification has the same qualitative characteristics as (13) and empirically, almost the same
results are obtained.
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( ) ( ) ( )tCtFq

q
R

KKt

tI
tt −−

−= +
+

1
1, 1 δ . (16)

Therefore, other things equal, the investment return will be positively correlated

with current marginal q  and negatively correlated with one-period-lagged marginal q .

Since, to a reasonably close approximation, the investment return is proportional to the

(gross) rate of growth in the investment-capital ratio ( KI ), the period t investment

depends upon both current and one-lagged values of marginal q . This finding is

consistent with the series of literature on q  including Hayashi (1982) and Abel and

Blanchard (1986).

B. Testable Implication of the P-CAPM

The literature states that any asset-pricing model with homogeneous belief is

characterized by

[ ] 11,1, =++ ttttt RME 17, (17)

where 1, +ttM  is the stochastic discount factor from period t to t+1 and 1, +ttR  is any asset

return. Hence, equations (10) and (17) jointly suggest that ex ante asset returns should be

equal to the ex ante investment return state by state if there are no arbitrage opportunities

between asset and physical investment. This is the most important testable implication of

the P-CAPM.

C. Testable Form of the P-CAPM

According to Ross (1978), Hansen and Richard (1987), and Hansen and

Jagannathan (1991), if there are no arbitrage opportunities, then a stochastic discount

                                                          
17 Although it seems easiest to derive this equation by reference to the intertemporal choice problem of
a representative investor, it can be derived merely from the absence of arbitrage, without assuming that
the investor maximizes a well-behaved utility function. That is, without the arbitrage opportunity,
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factor 1, +ttM  can be uniquely characterized by any asset return 1, +ttR . The preceding

discussion suggests that the following condition sufficiently guarantees the satisfaction of

the asset-pricing condition:

I
tttt

tt RR
M

1,1,
1,

11

++
+ == . (18)

This condition can also be obtained by some types of the general equilibrium

model under the assumption of log utility and Cobb-Douglas production, as shown by

Cochrane (1996)18. For reference, let me sketch what this type of the model looks like.

Consider the following simplified version of the one-sector stochastic growth model:

( )











∑
∞

=
+

+ 0
ln

j
jt

j

C
CEMax

jt

ρ , (19)

subject to αγ 1−+++++ ==+ jtjtjtjtjt IYIC  and  jtjtjt +−++ += εγχγ 1lnln , where jtY +  denotes

the income and jt+ε  denotes white noise.

Then, the investment return can be computed as tttt
I
tt IYIR /1

1
11, +

−
++ == ααγ α . The

solution to the model gives ( ) tt YC αβ−= 1  and tt YI αβ= . Substituting this solution into the

investment return yields

1,

1
1,

11

+

+
+ ==

ttt

tI
tt MC

C
R

ρ
. (20)

Thus, one can obtain the condition (18).

                                                                                                                                                                     

][1 1,1,
1 1

1, ++
= =

+ === ∑ ∑ tttts

S

s

S

s

s
ttsss RMERMRp π , where sp  is state price, sπ  is the probability of state s

occurring. For more details, see Cambell, Lo, and MacKinlay (1997).
18 As a matter of fact, Cochrane (1996) does not use this specification of the stochastic discount factor,
but uses a more general form such that !++= ++

I
ttRtt RbbM 1,01, . That is, following the factor-pricing

tradition, he estimates the loading of the investment return factor as a free parameter. Since
approximately, one can write ( ) I

tt
I
tttt RRM 1,1,1, 21 +++ −≈= , the restriction in this paper implies that

20 =b  and 1−=Rb in terms of his formulation.
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Now let me clearly restate the system of equations to be estimated. I estimate the

following system19:

[ ] 11,1, =++
b

ttttt RME     for the bond return (21)

and [ ] 11,1, =++
i

ttttt RME .   for i-th stock return (i = 1,2,.....n) (22)

Of course, the system such that [ ] 11,1, =++
b

ttttt RME  and ( )[ ] 01,1,1, =− +++
b

tt
i

ttttt RRME  is

equivalent to the system consisting of conditions (21) and (22), since either set of

moments is a linear combination of the others. But it should be noted that to apply GMM

only to ( )[ ] 01,1,1, =− +++
b

tt
i

ttttt RRME , as done by Hori (1997), is problematic because this

treatment allows the right-hand side of each Euler equation to differ from 1. That is, even

if it is equal to some constant other than 1, if and only if it is the same constant across all

the Euler equations, is the relationship ( )[ ] 01,1,1, =− +++
b

tt
i

ttttt RRME  satisfied.

III. Empirical Methodologies

A. GMM Tests of the Euler Equations

As emphasized by Cochrane (1996), Generalized Method of Moments (GMM)

proposed by Hansen (1982) is particularly convenient when it comes to testing the

dynamic properties of a stochastic discount factor model, that is, when assessing a

model’s ability to capture variation over time in expected rates of return20.

                                                          
19 He and Modest (1996) and Luttmer (1996) independently show that, for example, in the case in
which there are short-sale constraints for some assets, it follows that [ ] 11,1, =++

i
tttt RME  for cAi ⊆ and

[ ] 11,1, ≤++
i

tttt RME  for Ai ⊆ , where A denotes the subset of assets that cannot be sold short and Ac the

complement set. That is, the returns on assets with no short-sale constraints satisfy the same equality
first-order Euler conditions. Also, the inequality restriction for the rest might be strict since in
equilibrium the investor may hold a zero amount in these assets. This is a typical example of the corner
solution.
20 For example, Hamilton (1994) explains this point as follows: people’s behavior is often influenced
by their expectations about future. Unfortunately, however, we do not have direct information on these
expectations. But, it is still possible to test behavioral models if people’s expectations are formed
rationally in the sense that the errors in forecasting are uncorrelated with information available at the
time of the forecast. As long as the econometrician observes a subset of the information people have
actually used, the rational expectations hypothesis suggests orthogonality conditions that can be used
in the GMM framework.
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In this case, all one has to do is scale the period t+1 returns by any variables that

are presumed to be observable in period t. To see how it works, let me define an N-

dimensional error vector 1+te  such that ( ) 0|1 =+ ttE Ze  from the moment conditions such as

(21) and (22), where tZ  is the R-dimensional vector of instrumental variables. Next, let

me define an NxR-dimensional vector tg such that ttt Zeg ⊗= , where ⊗  denotes the

Kronecker product. By the law of iterated expectation, it follows that

( ) ( )[ ] ( )[ ] ( )[ ] 0=⊗=⊗== ttttttttt EEEEEEE ZeZegg . (23)

This is the orthogonality condition in GMM. Lastly, define the sample average of tg  as

∑
=

=
T

t
tT

T 1

1
gg . (24)

Here, the GMM estimates θ̂  are obtained by

TTT gWg′=  argmin
θ

θ̂ , (25)

where TW  denotes a weight matrix. Hansen (1982) shows that if one chooses a consistent

estimate of the covariance matrix of the sample pricing errors Tg  as TW , the GMM

estimator is optimal or efficient in the sense that this variance matrix is the smallest of all

the possible cases.

In practice, however, for computational facility, let me start with an identity

weight matrix, IW =T , which forms the first-stage estimates. I use the first-stage

estimates to form an estimate of the covariance matrix of the sample pricing errors

denoted TS  and then use 1−
TS  as the weight matrix for the second-stage estimates. I iterate

this procedure, finding third and fourth-stage estimates, and so on. This procedure does

not change the asymptotic distribution theory. On the contrary, Ferson and Foerster

(1994) find that it gives a better small-sample performance.

When the number of orthogonality conditions exceeds the number of parameters

to be estimated, the model is overidentified in the sense that more orthogonality
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conditions are used than are needed for the estimation. In this regard, Hansen (1982) has

shown that the minimized value of the quadratic form TTT gWg '  times the number of

observations T , denoted the J-statistic, is 2χ  distributed under the null hypothesis that

the model is properly specified with degrees of freedom equal to the number of

orthogonality conditions net of the number of parameters to be estimated. In plain words,

the J-statistic tests whether or not the estimated error of an investor’s forecast is

uncorrelated with any instrumental variables in the information set available at the time of

the forecast. A high value of this statistics indicates a high probability that the model is

misspecified21.

Now let me proceed to the application of GMM to the P-CAPM. Strictly

speaking, the parameters to be estimated in the model are α  and β  in equation (13), but

it turns out that when the data set described below is analyzed, a consistent estimate of the

covariance matrix of the orthogonality conditions cannot be obtained since the matrix

does not converge properly. Thus, I follow the estimation procedure proposed by Ferson

and Constantinides (1991), who suggest that one parameter be estimated while the other

is fixed at some plausible value. Fortunately, as mentioned earlier, α  indicates the share

of capital in the value-added under the assumption of the Cobb-Douglas production

function, hence one can get its estimate from the historical data. That is, one can compute

it as one minus the labor share, which is, conventionally, calculated by the labor income

divided by the value-added. The sample mean value of labor share during the period from

1980 to 1996 is 0.52, so one can concentrate on estimating the value of β  by setting the

value of α  to be 0.48.

Although GMM is a standard testing method for estimating the Euler equations,

the test results tend to be sensitive to the choice of instrumental variables. Hansen (1985)

                                                          
21 Unfortunately, however, as shown by Newey (1985), Hansen’s J-statistic can easily fail to detect a
misspecified model. It is therefore often advisable to supplement this test with others.
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discusses how to select optimal instrumental variables, but his methodology is difficult to

implement in practice22.

In this paper, I follow the usual ad hoc procedure of picking out a small list of

instrumental variables. The following two sets of instrumental variables are used. The

first one, denoted Z1, includes a constant and one-lagged values of the investment-capital

ratio, the output-capital stock ratio, and the weighted average of industrial stock returns in

excess of the government bond rate. The second one, denoted Z2, includes a constant and

two-lagged values of the same variables. In theory, components of Z1 should be available

at the beginning of the period, but due to time aggregation problems associated with the

time-averaged investment and production data, in reality, Z1 might not be available to

investors at that time. So in this paper, Z2 is also used.

B. Hansen and Jagannathan’s Volatility Bound Test23

(i) Basic Framework

Hansen and Jagannathan (1991) proposed a set of restrictions in terms of a

volatility bound derived from equation (17). Let me review its basic framework. Consider

the least squares projection of a stochastic discount factor M 24onto the space spanned by

a vector of asset returns R  and the constant as

µθ += 0'
~
RM , (26)

where )'1('
~

RR =  and 0R =]'
~

[ µE . This implies that

]
~

[]}'
~~

[{0 MEE RRR 1−=Θ . (27)

If the second-moment matrix of the vector of asset returns, ]'
~~

[ RRE , is denoted RM , then

equation (27) can be rewritten as

                                                          
22 One’s first thought might be that, the more orthogonality conditions are used, the better the estimates
might be. However, Monte Carlo simulations by Tauchen (1986) and Kocherlakota (1990) strongly
suggest that one should be quite parsimonious in the selection of the conditioning information set.
23 Craig (1994) provides an excellent survey on this topic. In what follows, basically, I follow his
explanation.



16





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=Θ −

l
M 1
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R , (28)

where l  is a vector of ones conformable with R .

Since µ  is orthogonal to R
~  by construction, and must have nonnegative variance,

the following inequality holds:

])[][(])'[][()( 1 RlRl EMEEMEMVar R −Σ−≥ − , (29)

where RΣ  is the covariance matrix of R .

An equivalent approach proposed by Cochrane and Hansen (1992) is to construct

a bound on the second-moment of M  centered around zero. From the projection, it is

clear that





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)'][(]

~
'

~
['][ 1
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Here let me form the estimate:

'
~~1ˆ

1
t

T

t
tR T
RRM ∑

=
= ,. (31)

which allows the formation of an estimated bound such that






−
l

Ml
][ˆ)'][( 1

ME
ME R . (32)

An informal test of a candidate stochastic discount factor involves checking whether a

sample pair )ˆ( mMM  lies above or below the estimated bound, where

∑
=

=
T

t
tM

T
M

1

1
and ∑

=
=

T

t
tm M

T
M

1

21ˆ . (33)

Now define the vertical distance to the second-moment volatility bound as follows:







−= −

l
Ml

M
MM Rm

1ˆ)'(ˆς . (34)

Clearly, the population value of ς  must be nonnegative.

                                                                                                                                                                     
24 In this section, both M and tM  indicate 1, +ttM .
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Figure 1 plots both (i) the second-moment volatility bounds25 computed by the

actual data of the Japanese asset returns, and (ii) sample pairs of )ˆ( mMM  implied by the

P-CAPM for given values of β . Evidently, any sample pair of )ˆ( mMM  cannot satisfy

the volatility bound, but the larger the parameter β  becomes, the smaller the distance is.

In this situation, statistical inference should play a role.

(ii) Statistical Inference of the Volatility Bound Test

In this paper, I conduct a statistical inference based on the volatility bound test.

The purpose is to construct a statistical confidence region for the parameter β . According

to Cecchetti, Lam, and Mark (1994), two sources of uncertainty emanate when one

compares between the mean-standard deviation (or equivalently, second-moment centered

around zero) pairs from the volatility bound and the stochastic discount factor

counterparts.

First, the computation of the mean-standard deviation pair for each stochastic

discount factor is influenced by the estimated sample moments of the investment process.

Second, volatility bounds must be constructed from the asset return data. That is, both the

moments of the stochastic discount factor and the volatility bound are data-specific and

sample-dependent, which means that the test is influenced by measurement and sampling

errors.

In what follows, let me briefly describe the method of statistical inference

originally proposed by Cochrane and Hansen (1992) 26. The sample distance measure ς̂

                                                          
25 In Figure 1, two versions of the second-moment volatility bound are plotted. One is from a portfolio
consisting of 2 asset returns (the returns on the bond and the weighted average of 12 stock returns), and
the other is from a portfolio consisting of 13 asset returns (returns on the bond and 12 industry stock
returns).
26 In this paper, I choose to use this version of the volatility bound test rather than the one based on the
variance (29) due to the computational facility of standard errors associated with the vertical distance
parameter estimated via the GMM framework. For the statistical inference based on the inequality (29),
see, for example, Ceccheti, Lam, and Mark (1994).
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can be obtained using the GMM estimation. They showed that an exactly identified GMM

framework that exploits the k+2 moment conditions:

0RR
l

=


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
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E , (35)

and 0])'([ 2 =−Θ− ςltt MME , (36)

can be used to obtain the estimate ς̂ . These moment restrictions can be written in generic

form as 0=)],([ axfE t , where a  is the combined vector )''( ςΘ=a . In this case, the

corresponding sample moments are given by
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Since the estimator is exactly identified, the sample moments can be set exactly to 0 by

the estimates:
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The asymptotic covariance matrix of the vector )ˆ( 0aaT −  is given by

1
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This method is due to Newey and West (1987). n=4 is used throughout the paper.
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Finally, the statistic Z 27 is given by

[ ]212,2)ˆ(ˆ

ˆ

++

=

kka

TZ

raV

ς
, (43)

where 2,2)ˆ( ++ kkaVar  corresponds to the variance of ς̂ . Under the null hypothesis of 0=ς ,

the statistic Z  follows the property of )1,0(NZ d→ , given the properties of the GMM

estimators.

C. Estimation of Mispricing Coefficients

Next econometric methodology exploits the informal diagnostic used in Ferson

and Constantinides (1991). To gauge the implication of the P-CAPM for the Japanese

equity premium and risk-free rate puzzles, let me add parameters η s to the asset-pricing

Euler equations:

[ ] 1)( 1,1, =+++
bb

ttttt RME η  for the bond return, (44)

and [ ] 1)( 1,1, =+++
ii

ttttt RME η   for the i-th stock return (i = 1,2,...n) (45)

where each η  can be interpreted as a mispricing coefficient or a pricing error similar to

Jensen’s alpha28. Using the same set of assets as before, the restrictions imposed by

equations (44) and (45) are tested via GMM given the value of the adjustment cost

parameter β . Since the system is exactly identified, the sample moments can be set

exactly to 0. The asymptotic covariance of the parameters η s is given by Newey and

West’s (1987) method as in the preceding section.

It is easier to understand the role of those parameters in detecting the puzzles if

the system consisting equations (44) and (45) can be restated as

[ ] 1)( 1,1, =+++
bb

ttttt RME η , (46)

                                                          
27 Cochrane and Hansen (1982) proposed a second optimal test statistic that is designed to minimize the
sampling error involved in measuring distance to the bound. But, Craig (1994) shows that Cochrane
and Hansen's statistic and the statistic Z in this paper lead to identical probability values.
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and [ ] 0)( 1,1,1, =+− +++
ib

tt
i

ttttt RRME ϕ , (47)

where  bii ηηϕ −= .

If iϕ s are found to be significantly negative given the value of β , then it means

that the representative agent can gain at the margin by borrowing at the government bond

rate and investing in stocks. This is the so-called equity premium puzzle. Similarly, if bη

is found to be significantly positive, then it implies that the representative agent can gain

at the margin by transferring consumption from the future to the present (that is, reducing

his or her savings rate). This is the so-called risk-free rate puzzle. One can employ a t-

statistic computed from the parameter values and standard deviations derived from the

GMM estimation of the system consisting of equations (46) and (47).

D. Testing the Ability of Stock and Investment Returns to Forecast Future Economic

Activity

Among others, Cox, Ingersoll, and Ross (1985), Lucas (1978), and Brock (1982)

have modeled the relationship between stock returns and real economic activity as a

function of production technology. A typical intuition behind it is that a negative

productivity shock induces a fall in output and consumption, which results in an increase

in the market risk premium. These technology shocks get propagated over time via the

consumers’ willingness to intertemporally smooth their consumption profiles. Due to the

lumpiness of investment expenditures and the presence of the adjustment costs, however,

investment tends to be more volatile than output.

Also, Chen (1991) points out that since financial assets are claims to future real

output, changes in real economic activity will also cause the financial opportunity set to

change. Since the discount rate that prices cash flows is likely to be correlated with stock

market risk premiums, such variables as GDP and investment ought to be predictable

                                                                                                                                                                     
28 Bakshi and Naka (1997) use this method to compare the pricing performance of several types of C-
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using stock returns. Motivated by these arguments, I check whether or not stock and

investment returns can forecast future economic activity by the usual regression model.

IV. Data Set

A.  Sample Period and Industry Classification

The data set includes the variables described below for 12 manufacturing

industries covering the period between 1Q of 1980 and 1Q of 1997 due to the availability

of the data. This period covers noteworthy episodes of “bubble economy” from the mid-

1980’s to the early 1990s and the “post-bubble” economic sluggishness afterwards.

Concerning the industries, let me concentrate on the following 12 manufacturing

industries: Textiles, Pulp, Paper and Paper Products, Chemicals, Petroleum and Coal

Products, Non-Metallic Mineral Products, Iron and Steel, Nonferrous Metals and

Products, Fabricated Metal Products, General Machinery, Electric Machinery,

Transportation Equipment, and Precision Instruments. The reasons for this choice are that

(i) there was large-scale privatization in some non-manufacturing industries so that there

are big jumps in the investment and production data in these industries, and (ii) there are

no quarterly data of the operating ratio and production for such industries as Food in

manufacturing and the other non-manufacturing industries.

Table 1 reports the capitalization weight of each industry in the stock market.

Evidently, Electric Machinery, Transportation Equipment, and Chemicals have a

remarkable share in the Japanese stock market.

B. Data Description

(i) Investment, Capital Stock, and Depreciation Rate

The data of investment and capital stock are taken from Gross Capital Stock of

Private Enterprises issued by the Economic Planning Agency (EPA). They cover all

                                                                                                                                                                     
CAPM specifications.
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enterprises in the above-mentioned 12 manufacturing industries, which consist of both

incorporated and unincorporated businesses. Both the investment and capital stock data

include nonresidential buildings, structures, machinery, transportation equipment, and

instruments and tools, but they do not cover land and inventories. They are expressed in

real terms at 1990 market prices. In computing the investment-capital ratio ( KI ), I use

the total values of investment and capital stock across 12 industries instead of using

individual industry data. This is because the stochastic discount factor 1, +ttM  is assumed

to be common in asset markets so that it is more suitable if it reflects the variation in the

investment return in a macro sense.

On the other hand, the mean value of the depreciation rate29 for these industries is

about 1.07 % on a quarterly basis. However, its depreciation value is estimated using the

method of diminishing balance depreciation instead of straight-line depreciation. It is

often said that the former method overestimates the value of depreciation. Also, to be

exact, it is a gross rate of depreciation, because it includes the acquisition of the second-

hand goods. Taking into account of these points, I use an ad hoc constant quarterly

depreciation rate of 0.7 %30 instead of the estimated 1.07 %.

(ii) Output and Operating Ratio

Preceding studies including Hori (1996) and Bakshi, Chen, and Naka (1995) use

GDP or GNP as output data31. The problem here is that individual industry data can be

obtained only on an annual basis. One alternative is industrial production32 reported by

Ministry of International Trade and Industry (MITI). This is not a value, but an index

                                                          
29 This data is also available in Gross Capital Stock of Private Enterprises issued by the EPA.
30 For example, in the case of the 10-year depreciation period, at the end of the 5th year, the
accumulated value of depreciation by the diminishing balance depreciation is about 1.54 times larger
than the corresponding value by the straight-line depreciation method. Thus, the mean value of the
depreciation rate in the case of the diminishing balance depreciation (1.07%) divided by 1.54 is equal
to about 0.7%.
31 Hori (1997) estimates quarterly industry GDP under the assumption that the seasonal fluctuation of
GDP in each industry is the same as that in total GDP.
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series, hence I use it to capture fluctuations in output and tie its level to the 1996 value of

real industry GDP33

Further, I believe that one should adjust capital stock for the corresponding

operating ratio when one evaluates the marginal productivity of capital because the

operating ratio reflects the business cycle much more than capital stock itself. Hence I

multiply capital stock by the corresponding operating ratio divided by 100 (since it is an

index that is standardized at 100 in 1995) in computing the marginal productivity of

capital. The data of the operating ratio is issued by the MITI and is available from the

Nikkei NEEDS tape.

(iii) Industry Stock and Government Bond Returns

In this paper, I use the NIKKO Stock Performance Index (NIKKO SPI) issued by

Nikko Securities Inc. Ltd. It is a stock performance index weighted by market

capitalization value. In order to maintain continuity, individual rates of return are adjusted

for dividends and rights issues. Also, the NIKKO SPI has two types of indices, a cross-

share-holding-adjusted index and an unadjusted index. The cross-holding of shares among

publicly traded companies is one of the essential characteristics of the Japanese stock

market, which results in inflated market capitalization figures by means of double

counting. That is why I use the cross-share-holding adjusted series. In terms of the

coverage, it reflects all the stock returns of the firms that are listed in Tokyo, Osaka, and

Nagoya Stock Exchanges as well as on the over-the-counter (OTC) market.

For the bond return, I use the rate of return on the 10-year Japanese government

bond. It is taken from the Economic Statistics, Monthly published by the Bank of Japan34.

                                                                                                                                                                     
32 This is value-added data in real terms. I got it from the Nikkei NEEDS tape.
33 As the formula of the investment return suggests, the output-capital ratio is important in determining
the mean value of the investment return. Hence this adjustment is essential.
34 I also tried the collateralized overnight call rate, but estimation results are very similar to those in the
case of the return on the government bond.
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Similarly to Cochrane (1996)35, I follow the Fama and Gibbons’ (1982, 1984) method to

construct an expected inflation series36.

C. Coping with Seasonality, Trading-day Effects, and Trends

(i) Seasonality and Trading-day Effects

In this paper, every datum is adjusted for seasonality and trading-day effects by

the program named “Decomp,” whose main idea was originally developed by Kitagawa

and Gersch (1984). “Decomp” can be accessed on the Education Ministry's Institute of

Statistical Mathematics web site37. By this method one can decompose any time-series

data into not only trend, seasonal and autoregressive (AR) components, but also into the

component of trading-day effects, which cannot be estimated by other methods like X11

and X12 despite the fact that it is sometimes an important component, particularly in the

case of stock returns38.

(ii) Linear Trend

One of the maintained assumptions of GMM is that all the observable variables be

strictly stationary. Hence if the raw data appear to be trending over time39, one needs to

take necessary steps to remove the trend. In this paper, I remove the linear trend from

every variable while preserving its mean value.

                                                          
35 Although it is not an application of the P-CAPM, Chen, Roll, and Ross (1986) also use this formula
of the expected inflation series.
36 As for the moving average parameter λ (MA[1]) in the difference between the real interest rates for
time t+1 and t, I use the value  5.0=λ .
37 We can access “DECOMP” at http://ssnt.ism.ac.jp/inets/inets_eng.html
38 For example, two early studies (French [1980] and Gibbons and Hess [1981]) found that the return
on Monday was quite different from those on other days.
39 It turns out that the investment-capital ratios and the government bond rate, in particular, have
deterministic trends that are statistically significant.
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D. Properties of the Data

(i) Summary Statistics

Table 2A reports summary statistics of the data set, which is adjusted for

seasonality, trading-day effects, and linear trends (preserving mean values). All asset

returns are in real terms. As can readily be expected, the mean value of every stock return

is higher than that of the government bond return and the standard deviation of any stock

return is much higher than that of the government bond return. Also, the output-capital

stock ratio KY  has a larger mean value and a lower standard deviation than the

investment-capital stock ratio KI .

The 6th and 7th columns in Table 2A report excess skewness and kurtosis. The

estimation result shows that excess skewness for quarterly Japanese asset returns tends to

be negative, and excess kurtosis tends to be positive, indicating that returns have more

mass in the tail areas than would be predicted by a normal distribution. This result shows

that Japanese asset returns have almost the same characteristics as U.S. returns in this

regard40. By contrast, the skewness of both the investment-capital stock ratio KI and the

output-capital stock ratio KY  is positive and their kurtosis is negative.

In addition, to investigate the autocorrelation pattern of the data set, Table 2A also

reports the partial-autocorrelation coefficient and Ljung and Box’s (1979) Q-statistic. The

estimation result suggests that the investment-capital stock ratio KI , and the output-

capital stock ratio KY  are significantly serially correlated for all patterns of lags. On the

other hand, the stock returns and the bond return are not found to be significantly serially

correlated, which suggests that there are no significant predictable components in

Japanese asset returns as far as this period is concerned.

                                                          
40 For a detailed analysis of the U.S. asset returns, see Campbell, Lo, and MacKinlay (1997).
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(ii) Correlation Matrix

Table 2B reports coefficients of correlation between these variables. It shows that

there is a very high positive correlation between the various stock returns themselves, and

between the stock returns and the output-capital stock ratio KY , which is a source of the

variation in the marginal productivity of capital under the assumption of the Cobb-

Douglas production function. Also there is a negative correlation between the stock

returns and the investment-capital stock ratio KI , which captures the growth rate of

capital stock. However, the bond return does not seem to be correlated with any indices of

the stock returns, the investment-capital stock ratio KI , and the output-capital stock

ratio KY .

V. Empirical Results

A. GMM Test of the Euler Equation and the Corresponding Volatility Bound Test

Table 3A and 3B report estimation results of the coefficient β of the adjustment

cost function by GMM and the statistical inference of the corresponding volatility bound

test, which is based on the vertical distance between the raw second-moment volatility

bound calculated from actual asset return data and the implied value of the second-

moment mM̂  for the given value of β .

Table 3A shows the result when all asset returns including the bond return and

every stock return are used in estimation, and Table 3B reports the result in the case in

which the bond return and the individual industry stock returns are used in estimation.

The GMM test results here seem to provide a more convincing piece of evidence for the

P-CAPM than in previous studies such as Hori (1997). The significantly positive value of

the estimated β  implies that the stochastic discount factor is time-varying, since β

determines the variation in the investment return.
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Now, let me look at Table 3A in detail. The P-values associated with the TJ

statistics of the overidentifying restrictions test suggest that the model cannot be rejected

at the 5% significance level in any specification. Estimated values of β  differ from 8.838

in the case of the system (1-2) to 15.349 in the case of the system (2-1), but all the

estimated β s are significant at the 5% level. There is a tendency to have a larger value of

β  when 13 (bond plus 12 stock returns) asset returns are included and/or Z2 is used as

the information set. Now that all the estimation results are satisfactory in terms of the

GMM test, let me proceed to the next stage: that is, the determination of whether the

degree of variation in the stochastic discount factor is enough to satisfy the volatility

bound test or not.

Figure 1 depicts the relative relationship between (i) the second-moment volatility

bound, which is computed from raw Japanese asset returns and (ii) the pair of (a) the

mean of the candidate stochastic discount factor M  and (b) its second-moment centered

around zero mM , which is implied by the Japanese investment data when the value of

β is given from 0 to 50. This figure shows that for all the positive values of β 41, any

pairs of M  and mM  are below the second-moment volatility bounds. But, apparently, as

the value of β  is getting larger and larger, the vertical distance to the second-moment

bounds is getting smaller and smaller. In such a situation, as discussed before, the

statistical inference of this vertical distance plays an important role in judging whether the

distance is statistically zero or not, once one takes account of the sampling and

measurement errors in the relevant variables.

The last two columns of Table 3A report the results of the vertical distance of the

volatility bound test and its statistical inference. The vertical distance varies from -0.282

(system [2-1]) to -0.479 (system [1-2]) when the portfolio A consisting of the bond and

the weighted average of 12 industrial stock returns is used to construct the unconditional
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second-moment bound, and from -0.391 (system [2-1]) to -0.620 (system [1-2]) when the

portfolio B consisting of the bond and 12 individual stock returns is used.  The one-sided

t-test shows that in any case, the null hypothesis that the vertical distance is zero cannot

be rejected at the 5% significance level. Thus, one can conclude that the values of β

estimated by GMM consistent with Hansen and Jagannathan’s volatility bound test.

 Next, let me move on to Table 3B, which is meant to compare the estimated

coefficient of β  across the subset of returns. The estimated β  ranges from 10.099

(system [14-1]) to 15.906 (system [9-1])42 when Z1 is used as an information set and from

7.226 (system [7-2]) to 9.607 (system [4-2])43 when Z2 is used. This similarity of the

values of the estimated β  across the subset of asset returns, particularly in the case in

which Z2 is used as the information set, can be inferred from the high correlation between

the 12 stock returns. Similarly to the results of Table 3A, the P-values associated with the

TJ  statistics of the overidentifying restrictions test suggest that the model cannot be

rejected at the 5% significance level in any case. Also, except for a few cases, the null

hypothesis that the vertical distance between the second-moment bound and the implied

pair of M  and mM  is zero cannot be rejected at the 5% significance level.  

B. Estimation of Mispricing Coefficients

Table 4 reports the mispricing coefficients estimated using the unconditional

version of GMM since the system is exactly identified. According to the result, when the

values of β  estimated using Z1 as the information set are used44, mispricing coefficients

                                                                                                                                                                     
41Actually, I changed the value of β  from zero to 10000, but in any case, this result still holds.
42 The system (14-1) includes the returns on the bond and the portfolio of precision instrument industry,
while the system (9-1) includes the returns on the bond and the portfolio of nonferrous metals and
products industry.
43 The system (7-2) includes the returns on the bond and the portfolio of pulp, paper and paper products
industry, while the system (4-2) includes the returns on the bond and the portfolio of nonferrous metals
and products industry.
44 This corresponds to the systems (1-1) and (2-1).
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of all asset returns are not found to be significantly different from zero, which implies that

both risk-free rate and equity premium puzzles do not occur.

When the values of β  estimated using Z2 as the information set are used45,

however, the mispricing coefficient of the bond return is found to be different from zero

at the 5% significance level, while those of stock returns are still not found to be different

from zero. The latter result implies that the stochastic discount factor derived from the

investment return tends to over-discount the payoff from the bond.

To further investigate the implications of these puzzles, I examined the change in

the absolute value of the t-statistic of each mispricing coefficient induced by the change

in the value of β . Figures 2A and 2B illustrate this relationship. According to these

figures, the t-value of the mispricing coefficient on the bond return declines

monotonically in tandem with the value of β  over the positive range of β  and crosses

the line of the 5% significance level around the point of β =12.00. Hence when the

estimated value of β is larger than 12.00 (this corresponds to the result of the systems [1-

1] and [2-1]), the mispricing coefficients are not found to be significantly different from

zero. Particularly, in the case of the system (2-1), which includes the bond and 12

individual industrial returns and Z1 is used as the information set, at any values of β  in

the 95% confidence interval, the t-statistic of the mispricing coefficient on the bond return

is always below the line of the 5% significance level.

                                                          
45 This corresponds to the systems (1-2) and (2-2).
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C. Testing the Ability of Stock and Investment Returns to Forecast Future Economic

Activity

Table 5A and 5B summarize findings of both the single and the multiple

regressions of the output and investment46 growth rate on the current and two lags of

either the stock return, the investment return, or marginal q.

For the output growth rate, the lagged values of the investment return and

marginal q have significant predictive power. For example, the investment return explains

25.7% and marginal q explains 34.5% of the variation of the future production growth,

while the stock return explains only 7.8%47.

Also as for the investment growth, there is a very similar tendency. The

investment return and the marginal q are superior as forecasters of the investment growth

to the stock return48. Lastly, Figure 3A shows that production and investment have a very

similar pattern of the movement, while Figure 3B shows that the stock return is much

more volatile than the investment return and marginal q, which implies that the stock

return consists of a lot of noises.

VI. Concluding Remarks

This article have attempted to provide an empirical investigation of the validity of

the production-based capital asset-pricing model in Japanese asset markets during the

period 1980-1997.

In this paper, several methods have been used to test the implications of the P-

CAPM as rigorously as possible. Those methods include the GMM test of the Euler

equation, the statistical inference of Hansen and Jagannathan’s volatility bound test,

                                                          
46 Here, output and investment refer to the total of 12 industries.
47 But, the F-value suggests that two lags of the stock return are jointly significant forecasters of future
production growth.
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estimation of the mispricing coefficients, and the test of the ability of stock and

investment returns to forecast future economic activity. Taken all together, the results

basically supports the P-CAPM, which means that although ex post stock returns are very

noisy, at least in the expectations of investors, they follow fundamental movements of

investment and production.

For example, the GMM test of the Euler equation strongly favors the P-CAPM in

terms of the estimated parameter of the adjustment cost function and the

overidentification test. Also, the corresponding statistical inference of the volatility bound

test cannot reject the null hypothesis of zero-vertical distance. On the other hand,

estimation of the mispricing coefficients suggests that the risk-free rate puzzle is more

formidable than the equity premium puzzle during this period. Lastly, the test result of the

ability of stock and investment returns to forecast future economic activity indicates that

the stock return is not a good forecaster of future economic activity, while the investment

return and the implied value of marginal q are found to be superior forecasters.

It should be noted here, however, that throughout the paper, I assume that the

asset markets are frictionless, which implies that there are no constraints such as

shortsales of bonds and/or equities. In this regard, He and Modest (1995) and Luttmer

(1996) show that these constraints can significantly change some aspects of the test

results, including the shape of Hansen and Jagannathan’s volatility bound. I believe that

this line of research provides a promising direction for future research.

                                                                                                                                                                     
48 In this case, the F-value suggests that two-period-lags of the stock return are not jointly significant
forecasters of the future investment growth.
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Table 1: Industry Portfolio

Portfolio Industry Capitalization Weight (%)
1980/1Q          1997/1Q

E1 Textiles     4.83     3.66
E2 Pulp, Paper, and Paper Products     1.87     1.46
E3 Chemicals   16.41   18.54
E4 Petroleum and Coal Products     7.19     2.17
E5 Non-Metallic Mineral Products     3.83     3.11
E6 Iron and Steel     9.91     5.76
E7 Nonferrous Metals and Products     3.83     3.14
E8 Fabricated Metal Products     1.35     2.17
E9 General Machinery     9.90     9.10
E10 Electric Machinery   23.01   30.57
E11 Transportation Equipment   15.24   18.30
E12 Precision Instruments     2.61     2.02
TOTAL Weighted Average 100.00 100.00

Notes: 1. The real stock returns are computed from the NIKKO Stock Performance
Index (NIKKO SPI) issued by Nikko Securities Co. Ltd. It covers all the
firms listed on the Tokyo, Osaka, Nagoya Stock Exchanges, and on the
over-the-counter (OTC) market. It is adjusted for cross-share-holdings by
Keiretsu firm group.

  2. TOTAL is the average of quarterly real returns of 12 industry real returns
(E1-E12), which is weighted by each capitalization value. All the returns
are adjusted for seasonality and trading-day effects by the web-based
program “DECOMP,” whose main idea was originally developed by
Kitagawa and Gersch (1984).





Table 2: Properties of the Data Set (1980/1Q- 1997/1Q)
A. Summary Statistics

Mean S. D Min Max Skewness Kurtosis RHO(1) RHO(4) RHO(8) Q(1) Q(4) Q(8)
TOTAL
    E1
    E2
    E3
    E4
    E5
    E6
    E7
    E8
    E9
    E10
    E11
    E12
BOND
I/K
Y/K

 1.0211
 1.0168
 1.0164
 1.0191
 1.0109
 1.0168
 1.0218
 1.0209
 1.0188
 1.0163
 1.0237
 1.0226
 1.0234
 1.0100
 0.0238
 0.0514

 0.0984
 0.1029
 0.1049
 0.0956
 0.1292
 0.1032
 0.1437
 0.1120
 0.0976
 0.1120
 0.1236
 0.1121
 0.1238
 0.0078
 0.0035
 0.0009

 0.6764
 0.6995
 0.7856
 0.6889
 0.6069
 0.6256
 0.6628
 0.6840
 0.7241
 0.6329
 0.6955
 0.6735
 0.6335
 0.9855
 0.0184
 0.0495

 1.2194
 1.2072
 1.2465
 1.1782
 1.1905
 1.2008
 1.4658
 1.2730
 1.1920
 1.2979
 1.3289
 1.3325
 1.2441
 1.0254
 0.0321
 0.0532

-0.5570
-0.6027
 0.0436
-0.7265
-0.9002
-1.0072
 0.4596
-0.5680
-0.2967
-0.2334
-0.1145
 0.0707
-0.4235
-0.9631
 0.7820
 0.1541

 1.1835
 0.3089
-0.5867
 1.1281
 0.7097
 2.0023
 1.5233
 0.8947
-0.0714
 1.0169
 0.1616
 1.2582
 0.4666
 1.5376
-0.1983
-0.6637

 -0.0960
 -0.1028
  0.0435
 -0.1661
 -0.1777
 -0.0688
  0.0311
 -0.1296
  0.1095
 -0.0628
 -0.0954
 -0.0904
 -0.0906
 -0.0238
  0.9714
  0.6104

-0.1542
-0.1337
-0.0337
-0.1856
-0.1077
-0.0950
-0.0597
-0.1143
-0.1321
-0.0891
-0.1543
-0.0966
-0.1518
-0.0546
-0.0806
-0.1507

 -0.0910
  0.1278
 -0.2220
 -0.0749
 -0.0396
 -0.0350
 -0.1129
 -0.0390
 -0.0047
 -0.0237
 -0.0741
 -0.0709
 -0.0806
 -0.1146
 -0.2699
 -0.1328

  0.66 [ 0.417]
  0.74 [ 0.390]
  0.13 [ 0.718]
  1.95 [ 0.163]
  2.15 [ 0.143]
  0.33 [ 0.566]
  0.07 [ 0.791]
  1.20 [ 0.273]
  0.81 [ 0.368]
  0.28 [ 0.597]
  0.64 [ 0.424]
  0.58 [ 0.446]
  0.59 [ 0.442]
  0.04 [ 0.841]
  67.2 [ 0.000]
  26.5 [ 0.000]

  2.41 [ 0.661]
  1.98 [ 0.739]
  2.77 [ 0.597]
  4.88 [ 0.300]
  3.29 [ 0.511]
  1.09 [ 0.896]
  7.03 [ 0.134]
  2.52 [ 0.641]
  3.76 [ 0.439]
  0.78 [ 0.941]
  2.49 [ 0.602]
  1.96 [ 0.743]
  2.20 [ 0.699]
  4.52 [ 0.340]
  210  [ 0.000]
  64.3 [ 0.000]

  5.65 [ 0.686]
  3.50 [ 0.899]
  7.31 [ 0.504]
  6.68 [ 0.572]
  5.10 [ 0.747]
  3.01 [ 0.934]
  8.28 [ 0.407]
  3.03 [ 0.932]
  7.04 [ 0.532]
  4.60 [ 0.799]
  6.25 [ 0.619]
  5.84 [ 0.665]
  6.70 [ 0.569]
  7.21 [ 0.514]

257 [ 0.000]
  74.1 [ 0.000]

Notes: 1. TOTAL is the weighted average of 12 industry real returns (E1-E12). BOND is the real return on the 10-year Japanese government bond. I/K is the ratio of
Investment to capital stock. Y/K is the ratio of output to capital stock, which is adjusted for the corresponding operating ratio. All variables are adjusted for seasonality and
trading-day effects by the web-based program “DECOMP”.

 2. RHO(L) is the partial-autocorrelation coefficient and Q(L) is Ljung and Box’s (1978) Q-statistic at lag length of L. The Q(L) static is distributed 2χ  (L) under
the null hypothesis of no serial correlation. The p-values are reported in brackets.



B. Correlation Matrix

TOTAL E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 BOND I/K Y/K
TOTAL
    E1
    E2
    E3
    E4
    E5
    E6
    E7
    E8
    E9
    E10
    E11
    E12
BOND
I/K
Y/K

 1.0000
 0.7892
 0.6889
 0.8746
 0.6375
 0.9080
 0.7068
 0.8252
 0.7365
 0.9152
 0.8867
 0.8912
 0.8782
 0.0132
-0.1925
 0.2133

 1.0000
 0.7066
 0.8470
 0.7233
 0.8576
 0.7836
 0.8243
 0.6727
 0.7791
 0.4785
 0.6623
 0.5164
 0.1468
-0.1536
 0.1579

 1.0000
 0.6726
 0.6837
 0.7787
 0.6918
 0.6908
 0.7278
 0.7357
 0.4278
 0.5656
 0.4572
 0.1589
-0.1872
 0.1421

 1.0000
 0.7425
 0.8990
 0.5820
 0.7705
 0.7584
 0.8083
 0.6665
 0.6859
 0.6752
 0.0957
-0.1544
 0.1563

 1.0000
 0.7386
 0.5295
 0.7587
 0.6616
 0.6507
 0.3595
 0.4507
 0.3985
 0.0304
 0.0101
 0.1055

 1.0000
 0.7082
 0.8383
 0.7988
 0.8700
 0.6937
 0.7567
 0.7161
 0.0729
-0.1359
 0.1442

 1.0000
 0.6920
 0.4855
 0.6723
 0.4149
 0.7120
 0.4392
 0.0928
-0.1625
 0.2113

 1.0000
 0.6180
 0.7843
 0.6026
 0.7049
 0.6059
 0.0814
-0.1987
 0.1862

 1.0000
 0.8234
 0.5619
 0.5629
 0.6153
 0.0149
 0.0192
 0.1938

 1.0000
 0.7503
 0.7626
 0.8029
 0.0213
-0.0879
 0.2830

 1.0000
 0.7772
 0.9254
-0.0090
-0.2045
 0.1661

 1.0000
 0.7355
 0.0692
-0.1688
 0.2330

 1.0000
-0.1258
-0.1582
 0.1696

 1.0000
-0.0169
-0.0760

 1.0000
-0.0058  1.0000

Note: TOTAL is the weighted average of 12 industry real returns (E1-E12). BOND is the real return on the 10-year Japanese government bond. I/K is the ratio of
Investment to capital stock. Y/K is the ratio of output to capital stock, which is adjusted for the corresponding operating ratio. All variables are adjusted for seasonality
and trading-day effects by the web-based program “DECOMP”.

.
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Table 3: The GMM Estimation Results of the Euler Equations and the
Corresponding Volatility Bound Tests (1980/3Q-1997/1Q)

[ ] 11,1, =++
b

ttttt RME     for the bond return.

and [ ] 11,1, =++
i

ttttt RME .   for the i-th stock return (i = 1,2,.....n),

where 1, +ttM  is the stochastic discount factor characterized by the investment return, b
ttR 1, +  is the real

return on the government bond, and i
ttR 1, +  is the i-th real stock return.

A. Estimation Results Based on All Assets Returns

Implied Value of Volatility Bound Test (δ )System Info
Set

β JT DF

Em Mm Portfolio A Portfolio B
(1-1) BOND
 and TOTAL

(1-2) BOND
 and TOTAL

Z1

Z2

   13.400
 (   1.983)
 [   0.047]
     8.838
 (   2.064)
 [   0.039]

    9.879
 [  0.196]

   10.165
 [  0.179]

    7

    7

    0.986

    0.985

   0.971

   0.970

   -0.331
 ( -0.443)
 [   0.173]
   -0.479
 ( -1.445)
 [   0.074]

    -0.448
  ( -1.007)
  [   0.142]
    -0.620
  ( -1.527)
  [   0.063]

(2-1) BOND
 and E1-E12

(2-2) BOND
 and E1-E12

Z1

Z2

   15.349
 ( 14.234)
 [   0.000]
   11.257
 ( 21.219)
 [   0.000]

   14.126
 [  0.999]

   14.103
 [  0.999]

   51

   51

    0.986

    0.985

   0.972

   0.971

   -0.282
 ( -0.805)
 [   0.210]
   -0.394
 ( -1.140)
 [   0.127]

    -0.391
  ( -0.943)
  [   0.173]
    -0.521
  ( -1.253)
  [   0.105]

Notes: 1. Estimation of the Euler equations is based on Hansen’s (1982) generalized method of moments (GMM).
The information set Z1 contains one-period-lagged each of the return on the weighted average of 12
industry returns in excess of the bond rate, I/K, and Y/K, as well as a constant, while Z2 contains the
same variables as in Z1, but lagged twice. The t-values are reported in parentheses, which are
calculated based on standard errors corrected by the Newey and West’s (1987) method (a lag length of
4 is used). The corresponding p-values are reported in brackets. The JT static tests whether the
overidentifying restrictions of the model are consistent with the data. It is distributed 2χ with the
degrees of freedom denoted DF.

 2. Em is the sample mean of the stochastic discount factor implied by the estimated value of β , and Mm is
the sample second moment of the stochastic discount factor centered around zero. The volatility bound
test is based on the vertical distance between the implied value of Mm and the raw second-moment
volatility bound computed using two portfolios A and B. Portfolio A consists of the bond and the
weighted average of 12 industry stock returns and Portfolio B consists of the bond and 12 individual
industry stock returns.
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B. Estimation Results Based on the Bond Return and each Industry Stock Return

Implied Value of Volatility Bound Test (δ )System Info
set

β JT DF

Em Mm Portfolio A Portfolio B
(3-1) BOND
         and E1

(3-2) BOND
         and E1

Z1

Z2

   11.682
 (   1.959)
 [   0.050]
     7.859
 (   1.979)
 [   0.048]

  10.097
 [  0.183]

    9.480
 [  0.220]

  7

  7

    0.985

    0.985

     0.971

     0.969

   -0.381
 ( -1.097)
 [   0.136]
   -0.517
 ( -1.605)
 [   0.054]

    -0.506
  ( -1.213)
  [   0.113]
    -0.666
  ( -1.666)
  [   0.048]

(4-1) BOND
         and E2

(4-2) BOND
         and E2

Z1

Z2

   15.110
 (   2.058)
 [   0.040]
     9.607
 (   1.924)
 [   0.054]

    9.667
 [  0.208]

    9.039
 [  0.250]

  7

  7

    0.986

    0.985

     0.972

     0.970

   -0.288
 ( -0.820)
 [   0.206]
   -0.450
 ( -1.336)
 [   0.091]

    -0.397
  ( -0.957)
  [   0.169]
    -0.587
  ( -1.431)
  [   0.076]

(5-1) BOND
         and E3

(5-2) BOND
         and E3

Z1

Z2

   12.374
 (   1.915)
 [   0.055]
     8.586
 (   1.914)
 [   0.056]

    8.965
 [  0.255]

     9.821
 [  0.199]

  7

  7

    0.985

    0.985

     0.971

     0.970

   -0.360
 ( -1.031)
 [   0.151]
   -0.488
 ( -1.484)
 [   0.069]

    -0.481
  ( -1.153)
  [   0.125]
    -0.632
  ( -1.561)
  [   0.059]

(6-1) BOND
         and E4

(6-2) BOND
         and E4

Z1

Z2

   13.304
 (   2.272)
 [   0.023]
     8.514
 (   2.498)
 [   0.012]

    7.017
 [  0.427]

    8.163
 [  0.318]

  7

  7

    0.986

    0.985

     0.972

     0.970

   -0.334
 ( -0.951)
 [   0.171]
   -0.491
 ( -1.495)
 [   0.067]

    -0.451
  ( -1.079)
  [   0.140]
    -0.635
  ( -1.571)
  [   0.058]

(7-1) BOND
         and E5

(7-2) BOND
         and E5

Z1

Z2

   11.761
 (   1.913)
 [   0.056]
     7.226
 (   1.893)
 [   0.058]

    9.348
 [  0.229]

     9.928
 [  0.193]

  7

  7

    0.985

    0.984

     0.971

     0.969

   -0.378
 ( -1.089)
 [   0.138]
   -0.545
 ( -1.722)
 [   0.043]

    -0.503
  ( -1.206)
  [   0.114]
    -0.698
  ( -1.765)
  [   0.039]

(8-1) BOND
         and E6

(8-2) BOND
         and E7

Z1

Z2

   12.034
 (   2.120)
 [   0.034]
     9.571
 (   2.048)
 [   0.041]

    9.053
 [  0.249]

    8.978
 [  0.254]

  7

  7

    0.985

    0.985

     0.971

     0.970

   -0.370
 ( -1.062)
 [   0.144]
   -0.451
 ( -1.341)
 [   0.090]

    -0.493
  ( -1.182)
  [   0.118]
    -0.588
  ( -1.435)
  [   0.076]

(9-1) BOND
         and E7

(9-2) BOND
         and E7

Z1

Z2

   15.906
 (   1.907)
 [   0.057]
     9.536
 (   2.191)
 [   0.028]

  10.116
 [  0.182]

     9.922
 [  0.193]

  7

  7

    0.986

    0.985

     0.972

     0.970

   -0.270
 ( -0.771)
 [   0.220]
   -0.453
 ( -1.346)
 [   0.089]

    -0.376
  ( -0.911)
  [   0.181]
    -0.590
  ( -1.439)
  [   0.075]

(10-1)BOND
         and E8

(10-2)BOND
         and E8

Z1

Z2

   12.664
 (   2.090)
 [   0.037]
     8.062
 (   2.041)
 [   0.041]

    6.626
 [  0.469]

    8.442
 [  0.295]

  7

  7

    0.985

    0.985

     0.971

     0.970

   -0.352
 ( -1.005)
 [  0.157]
   -0.509
 ( -1.570)
 [   0.058]

    -0.472
  ( -1.129)
  [   0.130]
    -0.656
  ( -1.636)
  [   0.051]

Continued
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Implied Value of Volatility Bound Test (δ )System Info
set

β JT DF

Em Mm Portfolio A Portfolio B
(11-1)BOND
         and E9

(11-2)BOND
         and E9

Z1

Z2

   13.803
 (   2.281)
 [   0.023]
     9.381
 (   2.165)
 [   0.030]

    7.938
 [  0.338]

    8.754
 [  0.271]

    7

    7

    0.986

    0.985

     0.972

     0.970

   -0.321
 ( -0.912)
 [  0.181]
   -0.458
 ( -1.367)
 [   0.086]

    -0.435
  ( -1.043)
  [   0.149]
    -0.597
  ( -1.458)
  [   0.072]

(12-1)BOND
        and E10

(12-2)BOND
       and E10

Z1

Z2

   13.527
 (   1.996)
 [   0.046]
     9.474
 (   2.106)
 [   0.035]

  10.485
 [  0.163]

   10.427
 [  0.166]

    7

    7

    0.986

    0.985

     0.971

     0.970

   -0.328
 ( -0.933)
 [  0.175]
   -0.455
 ( -1.354)
 [   0.088]

    -0.444
  ( -1.062)
  [   0.144]
    -0.593
  ( -1.447)
  [   0.074]

(13-1)BOND
        and E11

(13-2)BOND
        and E11

Z1

Z2

   14.184
 (   1.907)
 [   0.057]
     8.300
 (   2.022)
 [   0.043]

    8.553
 [  0.286]

     9.893
 [  0.195]

    7

    7

    0.986

    0.985

     0.972

     0.970

   -0.311
 ( -0.884)
 [  0.188]
   -0.500
 ( -1.530)
 [   0.063]

    -0.424
  ( -1.016)
  [   0.155]
    -0.645
  ( -1.601)
  [   0.055]

(14-1)BOND
        and E12

(14-2)BOND
        and E12

Z1

Z2

   10.099
 (   2.127)
 [   0.033]
     9.442
 (   2.293)
 [   0.022]

    9.477
 [  0.220]

    9.227
 [  0.237]

    7

    7

    0.985

    0.985

     0.970

     0.970

   -0.433
 ( -1.273)
 [  0.102]
   -0.456
 ( -1.359)
 [   0.087]

    -0.566
  ( -1.374)
  [   0.085]
    -0.594
  ( -1.451)
  [   0.073]

Notes: 1. Estimation of the Euler equations is based on Hansen’s (1982) generalized method of moments (GMM).
The information set Z1 contains one-period-lagged each of the return on the weighted average of 12
industry returns in excess of the bond rate, I/K, and Y/K, as well as a constant, while Z2 contains the
same variables as in Z1, but lagged twice. The t-values are reported in parentheses, which are
calculated based on standard errors corrected by the Newey and West’s (1987) method (a lag length of
4 is used). The corresponding p-values are reported in brackets. The JT static tests whether the
overidentifying restrictions of the model are consistent with the data. It is distributed 2χ with the
degrees of freedom denoted DF.

 2. Em is the sample mean of the stochastic discount factor implied by the estimated value of β , and Mm is
the sample second moment of the stochastic discount factor centered around zero. The volatility bound
test is based on the vertical distance between the implied value of Mm and the raw second-moment
volatility bound computed using two portfolios A and B. Portfolio A consists of the bond and the
weighted average of 12 industry stock returns and Portfolio B consists of the bond and 12 individual
industry stock returns.
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 Table 4: Estimation of Mispricing Coefficients (1980/3Q-1997/1Q)

[ ] 1)( 1,1, =+++
bb

ttttt RME η                 for the bond return,

and [ ] 0)( 1,1,1, =+− +++
ib

tt
i

ttttt RRME ϕ     for the i-th stock return (i = 1,2,.....n),

where  bii ηηϕ −= .

Pricing Error BOND and TOTAL BOND and E1-E12
Coefficient (1-1)

BETA=13.400
(1-2)
BETA=8.838

(2-1)
BETA=15.349

(2-2)
BETA=10.419

ηBOND     0.398E-02
   ( 1.779)
   [ 0.075]

    0.480E-02
   ( 2.728)
   [ 0.006]

    0.367E-02
   ( 1.515)
   [ 0.130]

    0.435E-02
   ( 2.152)
   [ 0.031]

ϕTOTAL     -0.013
   (-1.102)
   [ 0.270]

    -0.013
   (-1.103)
   [ 0.270]

ϕE1     -0.895E-02
   (-0.824)
   [ 0.410]

    -0.896E-02
   (-0.826)
   [ 0.409]

ϕE2     -0.744E-02
   (-0.510)
   [ 0.610]

    -0.744E-02
   (-0.510)
   [ 0.610]

ϕE3     -0.011
   (-1.050)
   [ 0.294]

    -0.011
   (-1.050)
   [ 0.294]

ϕE4     -0.361E-03
   (-0.027)
   [ 0.978]

    -0.349E-03
   (-0.026)
   [ 0.979]

ϕE5     -0.855E-02
   (-0.712)
   [ 0.477]

    -0.856E-02
   (-0.712)
   [ 0.476]

ϕE6     -0.012
   (-0.554)
   [ 0.580]

    -0.012
   (-0.554)
   [ 0.580]

ϕE7     -0.0129
   (-1.095)
   [ 0.274]

    -0.0129
   (-1.096)
   [ 0.273]

ϕE8     -0.967E-02
   (-0.681)
   [ 0.496]

    -0.970E-02
   (-0.683)
   [ 0.495]

ϕE9     -0.748E-02
   (-0.566)
   [ 0.571]

    -0.751E-02
   (-0.569)
   [ 0.569]

ϕE10     -0.016
   (-1.184)
   [ 0.236]

    -0.016
   (-1.185)
   [ 0.236]

ϕE11     -0.015
   (-1.092)
   [ 0.275]

    -0.015
   (-1.093)
   [ 0.275]

ϕE12     -0.015
   (-1.104)
   [ 0.269]

    -0.015
   (-1.106)
   [ 0.269]

Note: Estimation of the Euler equation is based on unconditional version of Hansen’s (1982) generalized
method of moments (GMM). The system is exactly identified so that unconditional sample
moments are used to estimate pricing error coefficients. The t-values are reported in
parentheses, which are calculated using the standard errors corrected by the Newey and
West’s (1987) method (a lag length of 4 is used here). The corresponding p-values are
reported in brackets.
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Table 5: Return Forecasts of Production and Investment Growth Based on the
GMM Estimation Result of the System (2-2) (ββββ=11.257)

A. Production Growth
(i) OLS Single Regression

jtjtt ReturnConstantGrowthProduction −−+= γ  for j = 0, 1, 2.

Stock Return Investment Return Marginal q

tγ      0.012
   ( 0.633)
   [ 0.529]

     1.200
   ( 5.865)
   [ 0.000]

    -0.032
   (-0.689)
   [ 0.493]

1−tγ      0.024
   ( 1.267)
   [ 0.216]

     1.072
   ( 4.930)
   [ 0.000]

    -0.084
   (-1.835)
   [ 0.071]

2−tγ      0.042
   ( 2.220)
   [ 0.030]

     0.605
   ( 2.498)
   [ 0.015]

    -0.130
   (-2.958)
   [ 0.004]

(ii) OLS Multiple Regression

2211 −−−− ++= ttttt ReturnReturnConstantGrowthProduction γγ

Stock Return Investment Return Marginal q

1−tγ      0.029
   ( 1.545)
   [ 0.127]

     1.142
   ( 4.046)
   [ 0.000]

     0.791
   ( 4.875)
   [ 0.000]

2−tγ      0.045
   ( 2.387)
   [ 0.020]

    -0.110
   (-0.393)
   [ 0.696]

    -0.900
   (-5.542)
   [ 0.000]

Adj R2

F-value
     0.078
     3.711
   [ 0.030]

     0.257
   12.067
   [ 0.000]

     0.345
   17.838
   [ 0.000]

Notes: 1. Production refers to the total of 12 industries. It is adjusted for seasonality
and trading-day effects by the web-based program “DECOMP”.

 2. For derivation of the marginal q, see equation (15).
 3. The t-values are reported in parentheses and the corresponding
p-values are reported in brackets.
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B. Investment Growth
(i) OLS Single Regression

jtjtt ReturnConstantGrowthInvestment −−+= γ  for j = 0, 1, 2.

Stock Return Investment Return Marginal q

tγ     -0.357E-02
   (-0.079)
   [ 0.937]

     4.617
  (51.470)
   [ 0.000]

     0.188
   ( 1.780)
   [ 0.080]

1−tγ     -0.012
   (-0.266)
   [ 0.791]

     3.021
   ( 6.664)
   [ 0.000]

    -0.010
   (-0.091)
   [ 0.928]

2−tγ      0.031
   ( 0.694)
   [ 0.490]

     2.897
   ( 6.306)
   [ 0.000]

    -0.138
   (-1.291)
   [ 0.202]

(ii) OLS Multiple Regression

2211 −−−− ++= ttttt ReturnReturnConstantGrowthInvestment γγ

Stock Return Investment Return Marginal q

1−tγ     -0.901E-02
   (-0.197)
   [ 0.844]

     1.955
   ( 3.563)
   [ 0.001]

     2.314
   ( 6.428)
   [ 0.000]

2−tγ      0.030
   ( 0.666)
   [ 0.508]

     1.674
   ( 3.077)
   [ 0.003]

    -2.391
   (-6.636)
   [ 0.000]

Adj R2

F-value
    -0.024
     0.257
   [ 0.774]

     0.475
   29.920
   [ 0.000]

     0.397
   22.026
   [ 0.000]

Notes: 1. Production refers to the total of 12 industries. It is adjusted for seasonality
and trading-day effects by the web-based program “DECOMP”.

 2. For derivation of the marginal q, see equation (15).
 3. The t-values are reported in parentheses and the corresponding

p-values are reported in brackets.
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Figure 1: The Second-Moment Volatility Bound and the Pair of Em and Mm
Implied by the Japanese Investment Data

Notes:  1. Two versions of the second-moment volatility bound are computed. One is derived from the bond
return and 12 individual industry stock returns and the other is from the bond return and the weighted
average of these industry stock returns.

 2. ♦ indicates the implied pair of the mean (Em) and the second-moment centered around zero (Mm)
of the candidate stochastic discount factor calculated given each value of β.
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Figure 4-2: The Relationship between the Values of ββββ and the Mispricing Coefficients

A. The System of the Bond and the Weighted Average of Stock Returns

(i) Using Z1 as the Information Set (System [1-1])

Note: Mispricing coefficients are defined as in equations (46) and (47). They are estimated by GMM using
both White’s (1980) and Newy and West’s (1987) methods of correcting standard errors (lag length of
4 is used). The system is exactly identified so that sample moments are used to get these coefficients.

   B. Using Z2 as the Information Set (System [1-2])

Note: Mispricing coefficients are defined as in equations (46) and (47). They are estimated by GMM using
both White’s (1980) and Newy and West’s (1987) methods of correcting standard errors (lag length of
4 is used). The system is exactly identified so that sample moments are used to get these coefficients.
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B. The System of the Bond and 12 Industry Stock Returns

(i) Using Z1 as the Information Set (System [2-1])

Note: Mispricing coefficients are defined as in equations (46) and (47). They are estimated by GMM using
both White’s (1980) and Newy and West’s (1987) methods of correcting standard errors (lag length of
4 is used). The system is exactly identified so that sample moments are used to get these coefficients.

(ii) Using Z2 as the Information Set (System [2-2])

Note: Mispricing coefficients are defined as in equations (46) and (47). They are estimated by GMM using
both White’s (1980) and Newy and West’s (1987) methods of correcting standard errors (lag length of
4 is used). The system is exactly identified so that sample moments are used to get these coefficients.
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Figure 3: Production-Related Variables and the Investment Return

A. Production and Investment Growth

Note: Both production and investment are the total of 12 industries, which are adjusted for seasonality and
trading-day effects by the web-based program “DECOMP”.

B. Asset Returns, Investment Return, and Marginal q

Note: The investment return and marginal q are defined as equations (13) and (15), respectively. The stock
return is the weighted average of 12 industry stock returns, which is adjusted for seasonality
and trading-day effects by the web-based program “DECOMP”.
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