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Abstract 

Empirical studies have found that a low interest rate environment accelerates 
firms’ investment and debt financing, leading to subsequent balance sheet 
problems in many countries in recent years. We examine the mechanism whereby 
firm’s debt financing and investment become more accelerated and the credit risk 
rises under a low interest rate environment from the perspective of a real options 
model. We find that firms tend to increase debt financing and investment not only 
under strong expectations of continued low interest rates but also when there are 
expectations of future interest rate increases, and such behavior causes higher 
credit risk. We also find that when future interest rate rises are expected, the 
investment decisions vary depending on how firms incorporate the possibility of 
future interest rises. Specifically, myopic firms make “last-minute investments” 
based on concerns over future interest rate hikes and this behavior increases their 
credit risk. In contrast, economically rational firms choose to decrease their 
investments, carefully considering the likelihood of future interest rate hikes.  
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1. Introduction 

Empirical studies have found that a low interest rate environment accelerates firms’ 
investment and debt financing, leading to subsequent balance sheet problems in many 
countries in recent years.1 This paper seeks to analyze the mechanism whereby firm’s 
debt financing and investment become more accelerated and credit risk rises under a 
low interest rate environment from a theoretical perspective. 

This paper addresses two issues. The first is to confirm whether expectations of 
continued low interest rates2 have the effect of accelerating firms’ investments and 
increasing their credit risk. The second is to confirm whether firms make last-minute 
investments 3  while the debt financing costs are still favorable when there are 
expectations of a future increase in interest rates, and whether such behavior increases 
credit risk.  

We analyze these issues using a real options framework. Specifically, we extend the 
model in Sundaresan and Wang [2007], which considers the relation between 
investment and credit risk. Former real options models, such as the model in Dixit and 
Pindyck [1994], give a clear answer to the question of when investments should be 
made. But they do not address the question of how much debt should be issued to make 
those investments. Sundaresan and Wang [2007] answer this question by incorporating 
corporate finance theory as represented by Leland [1994], enabling examination of the 
relationship between investment and capital structure.4 

However, Sundaresan and Wang [2007] assume that interest rates are fixed into the 
future. So while their model can be used for examinations under continuous low interest 
rates, it cannot be used to consider the impact under expectations that interest rates will 
rise in the future. To address this problem, we extend the model in Sundaresan and 
Wang [2007] for analysis under a variable interest rates model using the technique 
developed by Grenadier and Wang [2007].  

                                                           
1 For example, see Okina, Shirakawa, and Shiratsuka[2000] and Hoshi[2001] regarding increased investment during 
the Japanese bubble economy period. 
2 In this paper, “interest rates” refers to risk free interest rates, and we distinguish this from “interest payments” 
which are the interest rates that companies actually pay on borrowings (the interest rates reflecting credit risk). Also, 
in this paper the term “low interest rates” refers to risk free rates that are around the same level as the economic 
growth rate and the corporate profit growth rate. Low interest rates would be around zero under the recent low growth 
rate environment in Japan, and around 6-8% during high growth periods such as during the Japanese bubble 
economy. 
3 The meaning of “last-minute investments” as used in this paper is explained in Section 3(3). 
4 This line of research was continued in many subsequent papers including Mauer and Sarkar[2005], Lyandres and 
Zhdanov[2006a,b], Zhdanov[2007, 2008], Nishihara and Shibata[2009], Yagi et al.[2008] and Egami[2009]. 
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We show that in such models myopic firms concerned over the possibility of future 
interest rate hikes may rush to make last-minute investments. Specifically, we analyze 
the behavior of both myopic firms and economically rational firms under a rising 
interest rate environment to see the differences in their debt financing and investment 
behavior. The former make investment decisions only considering the impact of interest 
rate hikes until the point in time when they raise funds and make investment. In contrast, 
the latter also consider the possibility of interest rate hikes after they raise funds and 
make investment. The former are myopic in the sense that they fail to consider the 
possibility that debt financing costs may increase if they need to refinance in the future. 
This phenomenon has been noted in the field of behavioral economics5, for example, 
managers who change posts every few years tend to pay little heed to cost increases 
after the ends of their terms of office.  

In this paper we divide firm’s investment behavior into the two categories described 
above. The fundamental difference between the two lies in whether the discount rate 
used for the investment decision is set consistently or inconsistently before and after the 
investment. In other words, the behavior of economically rational firms meets the 
requirements of standard finance theory, without arbitrage between short-term and 
long-term interest rates. It incorporates all possibilities of future interest rate increases 
into decisions at the investment time, so the discount rate does not change over time. In 
this case, the firms make investment decisions using a uniform discount rate whereby 
debt financing costs remain unchanged not only while the present managers are in office 
but also thereafter as well. In that sense, this may be considered “time-consistent” 
investment behavior.  

In contrast, myopic firms do not consider cost increases under subsequent refinancing 
when they make investment decisions. Therefore, their decisions are made under 
inconsistent settings which accept changes in the discount rate over time. In such cases 
the present managers accept future cost increases from refinancing after their terms of 
office which lower equity and firm value. Because the managers make investment 
decisions emphasizing performance during their own terms of office, the discount rates 
do not meet the above-mentioned non-arbitrage condition, but rather accept lower 
short-term and higher long-term discount rates. The optimal investment decision under 
these settings is called “time-inconsistent” investment behavior6, and this has become 

                                                           
5 Prior research on this discount rate issue includes Laibson[1997], Harris and Laibson[2003] and Grenadier and 
Wang[2007]. 
6 In this example, “time-inconsistent” is interpreted as making investment decisions emphasizing performance while 
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the subject of behavioral economics research in recent years.  

We find the following results. First, we find that under a continuous low interest rate 
environment firms invest even if the investment profits are low because the low interest 
rate lifts their equity value and makes their funding conditions advantageous. But this 
results in a high ratio of debt to profits. Moreover, this behavior increases the credit risk, 
that is, the more investments are made under a low interest rate environment, the shorter 
the time interval from investment to bankruptcy. 

Second, when future interest rate rises are expected, the investment decisions vary 
depending on how firms incorporate this possibility of future interest rises. Specifically, 
myopic firms rush to make last-minute investments based on concerns over future 
interest rate hikes, and this behavior increases their credit risk. In contrast, economically 
rational firms choose to decrease their investments, carefully considering the likelihood 
of future interest rate hikes. 

The rest of this paper is organized as follows. In Section 2, we consider investment 
and debt financing under continuous low interest rates based on Sundaresan and Wang 
[2007]. In Section 3, we extend Sundaresan and Wang [2007] using the technique in 
Grenadier and Wang [2007] to consider the case when there are expectations of future 
interest rate increases. Section 4 summarizes the conclusions.  

 
 

2. Investment and Debt Financing Model under Continuous Low Interest 
Rates 

In this section, we examine a firm’s investment and debt financing decision under 
continuous low interest rates based on the model in Sundaresan and Wang [2007]. 
 

(1) Model Specifications 

Assume that a firm is contemplating a new investment. The investment requires an 
initial expense (sunk cost), and the investment profit Xt is gained at the end of each 
period. Xt is stochastic over time, and follows a geometric Brownian motion.7,8 

                                                                                                                                                                          
the managers are still in office, while “time-consistent” is interpreted as making investment decisions that 
consistently maximize firm value both during and after their terms of office, and may be seen as a type of agency 
problem. 

7 Here, Xt is defined under a risk neutral measure. Thus μ is the growth rate after adjusting for risk, that is, after 
deducting the risk premium from the real growth rate. For that reason, we must assume that μ is less than the risk free 
rate r. This is a necessary condition for the discounted present value of future profit and the equity value to be finite 
values. Thus if r>μ, then the integral ∫[0,∞) e -rt (X0 e μt) dt converges to X0/ (r−μ), but if r≤μ then the same integral 
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 tttt dWXdtXdX σμ += ,  xX =0 . (1)

The conventional real options model (Figure 1) determines the optimal investment 
time comparing the investment profit with the sunk cost. Because the future profit is 
stochastic and may decline after the investment is made, there is a risk that the sunk cost 
may not be recovered. For that reason, the firm does not invest9 even if the discounted 
present value of the investment profit exceeds the sunk cost. The investment is only 
made when it will generate sufficient profit.  

The conventional real options model does not specify whether the funds for the sunk 
cost are raised from equity or debt. In a world without taxes or bankruptcy costs, the 
funding costs are constant whether the funds are raised from equity or debt (or some 
ratio between the two), and do not affect the investment decision (Modigliani and Miller 
[1958]). 
 

Figure 1. Investment Decision under the Conventional Real Options Model 

Discounted present 
value of investment 

Sunk cost
I

Investment
Time

 

                                                                                                                                                                          
diverges.  
8 This paper assumes, based on Sundaresan and Wang[2007], that pre-tax profit (EBIT) follows a geometric 
Brownian motion. Other papers, however, adopt a different definition whereby firm’s sales follow a geometric 
Brownian motion and profit is defined as sales minus operating costs (Mella-Barral and Perraudin[1997], Shibata and 
Yamada[2008]). While this latter definition is more realistic in that it can result in negative profits, it is known that 
operating costs have almost no influence on investment decisions and simply change the level of the investment 
profits. Considering this point, we adopt the former definition where a negative profit can result after subtracting 
interest payments. 

Also while this paper constructs a model which posits Xt as profits, Xt can also be read as operating cash flow. In that 
case, corporate bankruptcy results not from excessive debt but from a funds shortage. 
9 Under classical investment theory before the appearance of the real options model, that is, using the net present 
value method, the optimal investment takes place at the point where the discounted present value of the investment 
exceeds the sunk cost.  
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Sundaresan and Wang [2007] assume a more realistic world where taxes and 
bankruptcy costs exist, and devise a model where the sunk cost is financed from equity 
and debt (Figure 2). In this case, interest payments b are incurred as a cost after the firm 
invests and the firm goes bankrupt if it cannot cover the interest payments. At the 
bankruptcy the remaining firm value belongs to the debt holders, but a revaluation loss, 
which is named as bankruptcy cost, is incurred in the liquidation.  

 
Figure 2. Investment Decision under a Real Options Model Considering Debt Financing 

Discouted present value of 
investment profit Xt

Time

Investment 
(Financing with equity and debt )

Bankruptcy 

Interest payment 

Sunk cost
I

τ bτ

 

Because this model, unlike the conventional real options model, incorporates the 
possibility of bankruptcy after the firm invests, the firm considers this possibility and 
simultaneously determines (1) the optimal investment time and (2) the optimal capital 
structure, that is, the optimal amount of debt.10 This paper now considers how this 
investment and debt financing behavior is affected by the present interest rate 
environment and future interest rate levels. 

The details of the model are explained in Section 2(2), but first we present an outline 
of the mechanism for determining the optimal investment time and the optimal amount 
of debt. 

First we fix the investment time temporally (Figure 3, left figure). This investment 
time may not be optimal. It is optimized later on. Once the investment time is set, the 

                                                           
10 The bankruptcy is determined by the equity holders so as to maximize the equity value. (It may also be determined 
through negotiations between the equity holders and the debt holder, but that is ignored here since it is not the main 
focus). In this model, however, the investment decisions are made by the firm, and in that context the firm determines 
the investment timing and debt amount assuming the optimal bankruptcy behavior by the equity holders, rather than 
having the equity holders determine bankruptcy. 
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model reverts to deciding the amount of debt, so we apply standard corporate finance 
theory. Because (1) the bankruptcy costs increase if the debt is too large and (2) the tax 
benefits decline if the debt is too small, the firm considers this trade-off and decides the 
amount of debt to maximize the firm value as the sum of the equity value and the debt 
value.  

 
Figure 3. Determination of Investment Time and Debt Financing 

Time

Determination of optimal 
amount of debt financing
(Corprate finance theory)
・If debt b is too large → easily goes bankrupt
・If debt b is too small → tax burden is heavy
These trade-off determine optimal amount of 
debt.

b

Amount of debt financing

Considering that the 
optimal amount of debt 
varies by the timing of 
the investment

b
b

b

Determination of optimal 
timing of investment

Amount of debt financing

Timing of debt financing 
and investment (fixed)

Time

 
 

It is important to note that the optimal debt amount changes depending on the 
investment time (Figure 3, right figure), which is fixed temporally. The firm determines 
the optimal investment time paying attention to this factor. The optimal investment time 
is determined comparing the sunk cost I and the firm value with the optimal capital 
structure. Through this process the firm simultaneously decides the optimal investment 
time and the amount of debt.  

 
(2) Determination of optimal investment time and amount of debt 

As noted above, we first fix the investment time t temporally and then determine the 
debt amount at that time. In this process, we consider the trade-off between bankruptcy 
costs and tax benefits, following standard corporate finance theory.11 

 First, we define the amount of the firm’s interest payments each period as b and set the 
amount of debt as its discounted present value B≡b/r where r is the risk free rate. When 
the interest payments are large, this accelerates firm bankruptcy and increases 
bankruptcy costs. The optimal time of bankruptcy τb is determined as the equity value is 

                                                           
11 See, for example, Leland[1994] and Goldstein, Ju, and Leland[2001]. 
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maximized, as follows. 
 
 ( )( ) ⎥

⎦

⎤
⎢
⎣

⎡
−−= ∫ −−

∈

b

tb t
sax

tsr
tFt dsbXeXE

τ

τ
τ1max)( )(E . (2)

In this equation, τax is the tax rate and the expectation Et is defined under risk neutral 
measure. Ft is the filtration generated by the Brownian motion concerning Xt. Each 
period the equity holders receive profits (1−τax)(Xt−b) deducting taxes and interest 
payments b from the investment profit Xt. Bankruptcy is determined by equity holders 
when this profit turns negative and there is no possibility of recovering the equity value. 
Thereafter, the equity value becomes zero. 

 The debt value is expressed as shown in Equation (3) using the optimized bankruptcy 
timing *

bτ from Equation (2).  
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τ

τ
τ αE . (3)

Prior to bankruptcy the debt holders receive interest payments which are expressed by 
the first term, and upon bankruptcy they receive the residual value which is defined by 
the second term where α is the bankruptcy cost, that is, the revaluation loss upon 
bankruptcy, and )( *

b
XWb τ

 expresses the firm value prior to revaluation at bankruptcy.  
 
 ( ) ⎥

⎦

⎤
⎢
⎣

⎡
−= ∫

∞
−−

*
** )1()(

b

b

bb
dsXeXW sax

sr
b

τ

τ
ττ τE . (4)

 

The firm value W(x) is defined as the sum of the equity value E(x) and the debt value 
D(x).  
 
 )()()( ttt XDXEXW +=  

),(),()( bXBCbXTBXW ttta −+= , (5)

where, 
 ( ) ⎥

⎦

⎤
⎢
⎣

⎡
−= ∫

∞
−−

t
sax

tsr
tta dsXeXW )1()( τE  (6)

is the firm value in the case that the funds are all raised from equity, and TB(Xt,b) is the 
tax benefit.  
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BC(Xt,b) is the bankruptcy cost. 
 
 

⎥
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⎤
⎢
⎣

⎡
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The firm decides the optimal amount of debt to maximize W(Xt), that is, the firm 
determines the amount of interest payments b to minimize the funding costs. It is 
important to note that the optimal amount of debt depends on the temporarily fixed 
investment timing t. 
  Next, we determine the optimal investment timing using the firm value W(Xt) with 
the optimal capital structure. The firm decides the optimal investment time τ to 
maximize the option value to invest as follows.12 
 
 ( ) ⎥

⎦

⎤
⎢
⎣

⎡
−= −−

∈
IXWeXV tr

tFt
t

)(max)( )(
τ

τ

τ
E . (9)

The optimal capital structure, which depends on the investment time, is also determined 
at the same time. 

 
(3) Model Solution 

There is an analytical solution to the above optimization problem (see Appendices 1 
and 2 for the details). First, we derive the equity value as follows. 
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where 
 ( )μ

γ
γ

−
−

= r
r
bxb 1

 (11)

expresses the bankruptcy threshold, and the firm goes bankrupt when x<xb. The equity 

                                                           
12 This paper determines the investment time which maximizes the firm value, and that is also the same as the time 
which maximizes the equity value. That is because the firm value minus the sunk cost can be rewritten as W(x)− I= 
E(x)−I−D(x)), and the right half of this equation can be interpreted as the equity value minus the funds which the 
equity holders must raise (I−D(x)), and this is maximized.  
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value becomes zero after bankruptcy where γ is the negative root of the following 
characteristic equation.  
 
 ( ) 01

2
1 2 =−+− rγμγγσ . (12)

The debt value is then derived as follows. 
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(13)

where Wb(xb) is the residual value of the firm after revaluation at the time of bankruptcy 
xb. In Equation (13), the term b/r−Wb(xb) represents the loss given default, the term 
(x/xb)γ indicates the probability of default 13 and their product (b/r−Wb(xb))⋅(x/xb)γ 

expresses the expected loss. 

  The firm value W(x) is defined by the sum of the equity value and the debt value, so it 
can be calculated analytically as W(x)=E(x)+D(x). The option value to invest V(x) can 
also being solved analytically using this W(x) as follows.  
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where, 
 ( ) Ir

I
x

ax
I τ

μ
β
βψ

−
−

−
=

1
 (15)

is the investment threshold, and the firm invests when the profit exceeds xI. β is the 
positive root of the characteristic equation, 
 
 ( ) 01

2
1 2 =−+− rβμββσ , (16)

and ψ and h are constants. 

                                                           
13 For details, see Shibata and Yamada[2008].  
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  The optimal debt amount is derived using h, τax and ψ as follows. 
 
 

Irhb
axτ

ψ
β
β

γ
γγ
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−

=
11

1
1

* . (19)

Figure 4 shows the firm value W(x), the bankruptcy threshold xb, the investment 
threshold xI and the option value to invest V(x) derived above.14 

 
Figure 4. Investment Decision Considering the Possibility of Bankruptcy 
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In this Figure, the thin solid line expresses the net investment value defined by W(x)−I. 
This value becomes asymptotic to the value Wa(x)+TB(x)−I expressed by the dotted line 
as the investment profit increases (as x→∞). This dotted line shows “the ideal 
conditions” with no bankruptcy and with only tax benefits. The net investment value 

                                                           
14 The parameters are set at μ=0%, σ=15%, I=100, α=50%, τax=50%, and r=1%. 
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W(x)−I is less than the value under the ideal conditions by the amount of the expected 
loss. The net investment value separates from the ideal dotted line as the value of x 
declines, and the firm goes bankrupt when x<xb.  

The thick solid line expresses the option value to invest V(x). It becomes equal to the 
thin solid line W(x)−I in the area x≥xI where the firm has already invested. In contrast, 
x<xI is the area where the firm does not invest and the firm has the option to invest and 
gain the net investment value W(x)−I in the future. It is important to note that here the 
firm does not invest at the stage when the net present value W(x)−I becomes positive. 
This is because that there exists the risk that the profit may decline in the future, making 
it impossible to recover the sunk cost. The firm takes this risk into consideration and 
waits until the investment generates sufficient profit xI. At this xI, V(x) smoothly pates to 
W(x)−I. 

 
(4) Comparative Statics and Implications 

Next we consider how the bankruptcy threshold and the investment threshold change 
by the risk free rate. We also consider how the firm’s probability of default (PD), 
expected loss (EL) and other credit risk indices change.  

Figure 5 shows the solutions with the risk free rate at 1% and at 2%.15 
 

                                                           
15 The parameters are set at μ=0%, σ=15%, I=100, α=30%, τax=30%, r=1%, and these are used for the subsequent 
comparative statics. 
When the corporate profit growth rate μ (the growth rate after deducting the risk premium) is set at 0% in this 

manner, as explained in Footnote 2, a “low interest rate” is one where the risk free rate is at the same level as μ, that 
is, in the neighborhood of 0%. For this reason the risk free rate approaches 0% in the comparative statics as well .  
Even if μ is set at a high level, a decline in the risk free rate r to the level of μ has the same effect as a decline in r to 

nearby 0% under the parameter settings in this paper. This decline promotes firms’ debt financing and investment and 
heightens credit risk. This result can also be confirmed by the derivation of the investment threshold in Equation (15) 
and the bankruptcy threshold in Equation (11). Looking at the equations, firms’ debt financing and investment 
behavior depend not on the level of the risk free rate r, but rather on the differential between μ and r, demonstrating 
that the ratio between μ and r is an important determining factor. 
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Figure 5．Investment and Bankruptcy Decisions under a Low Interest Rate Environment 
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In Figure 5, we can see that the investment threshold is lower, that is, the investment 
time is earlier, under a low interest rate (1%). We also see that the difference between 
the investment threshold and bankruptcy threshold is smaller under a low interest rate 
environment. In other words, the time interval from investment to bankruptcy grows 
shorter under a low interest rate environment. This is because low interest rates have a 
lot of influence on the investment timing but do not have much influence on the 
bankruptcy timing.  

Figure 6 shows how the probability of default (PD) and the expected loss (EL) 
change by the risk free rate. We can see that the lower the interest rate, the earlier the 
firm invests, even if the investment profits (1) are low. We also see that the ratio of debt 
to profits (2)/(1) rises as the interest rate declines. In the extreme case (r = 0.1%, 0.5%), 
the investment profits are smaller than the interest payments (xI<b). That suggests some 
firms make speculative investment decisions seeking capital gains. For that reason, the 
PD and EL rise sharply under a low interest rate environment. In other words, firms 
tend to choose investments with high credit risk (PD, EL) under such an environment. 
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Figure 6. Probability of Default (PD) and Expected Loss (EL)  
under Low Interest Rates 

risk free rate
 r

investment timing
(profit x at time of

investment)
(1)
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（interest
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(2)

(2)/(1)
PD EL

5% 9.6 6.9 0.71 26% 18%
2% 5.2 3.9 0.75 39% 30%
1% 3.5 2.9 0.84 51% 42%

0.5% 2.6 2.7 1.04 64% 56%
0.1% 1.7 4.6 2.68 88% 84%  

 
 
3. Debt Financing and Investment Model under Rising Interest Rates 

In this section, we extend the Sundaresan and Wang [2007] model presented in 
Section 2 and construct a model which incorporates changes in future interest rates.   
 
(1) Model Specifications 

In this section, the risk free rate r set as a constant in Section 2 varies following a 
Poisson process. In other words, we assume that at time τi the risk free rate jumps from 
ri−1 to ri. The frequency of that change is given by Equation (20). 
 
 ( ) dttdtttP iiii λτττ =<<+∈ ++ 11 |],( . (20)

In other words, the instantaneous probability of the next jump following the ith jump at 
time t (τi<t<τi+1) is expressed by λi.16 
 

                                                           
16 Because the main focus of this paper is to consider firms’ debt financing and investment under changes in interest 
rates, we only consider the changes in interest rates, and assume that the investment profit growth rate (μ) remains 
constant. On the other hand, considerations of how much interest rates should change when profit growth rates 
change would require the construction of a model whereby interest rates and profit growth rates change 
simultaneously or in correlation, but that inquiry lies outside the subject of this paper. 
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Figure 7. Interest Rate Changes following a Poisson Process 
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(2) Optimal Investment Problem 
First, we consider the case where the debt financing is not taken into account for 

simplification. When there are expectations of rising interest rates, the investment 
decision varies depending on how the firm incorporates the possibility of future interest 
rate increases. In this paper, we consider two types of firms. The first is (1) myopic 
firms which consider this possibility partially in their investment decisions and the 
second is (2) economically rational firms which do so perfectly. Myopic firms make 
their investment decisions only considering the interest rate increases until they raise 
funds and invest. In contrast, economically rational firms consider that interest rates 
may rise not only before but also after they raise funds and invest. The former are 
myopic in the sense that they fail, at the time they make investments, to consider the 
possibility of higher debt financing costs if they need to refinance in the future. 
 
A. Myopic Firms: Time-inconsistent Discount Rate 

Assume there are expectations that interest rates will increase from r0 to r1, and that 
the interest rate will increase at time τ117. τ1 is a random variable given by the Poisson 
process defined in Section 3(1). The optimal investment problem when interest rates 
will rise in the future is expressed by the following equation.  
 

                                                           
17 For simplification of the argument developed here, this paper only considers the case of a single jump in the 
interest rate. Multiple jumps can be considered as essentially repetitions of a single jump (see Grenadier and 
Wang[2007]). It is also possible to consider interest rate drops, but this paper limits its considerations to interest rate 
increases. 
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The first term shows the value if the firm invests after the interest rate rise, and the 
second term shows the value if the firm invests before the interest rate rise. With the 
first term, the interest rate has already been increased when the firm invests, so the rate 
r1 is used for the discount rate. With the second term, the interest rate has not yet been 
increased when the firm invests, so r0 is used for the discount rate.  

 
B. Economically Rational Firms: Time-consistent Discount Rate 

In contrast, economically rational firms raise funds considering the possibility of 
changes in interest rates both before and after these firms raise funds and invest. The 
investment problem of these firms is formulated as follows. 
 
 

{ }

{ }⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−++

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=

≤

∞
−−−−−−

>

∞
−−−−−−

∈

∫∫

∫
1

1

1
1

00

1

11011

1

1
max)(

)()()(

)()()(

ττ
τ

τ
τ

τ

ττ

ττ
τ

ττττ

τ
IdsXedsXee

IdsXee
XV

s
sr

s
srtr

s
srtrr

tFt
t

E . (22)

The difference from Equation (21) is in the second term. Since these firms consider 
the possibility of additional interest rate increases after the investment, r1 is used as the 
discount rate after the time τ1. On the other hand, the first term remains unchanged since 
there is no possibility of interest rate increases after the investment.  

The correct investment decisions are derived from the optimization problem for 
economically rational firms. This optimization problem meets the requirements of 
standard financial theory, without arbitrage between short-term and long-term interest 
rates. This type of discount rate is referred as a “time-consistent” discount rate, and 
takes the form of an exponential function to time. In contrast, the discount rate in the 
optimization problem for myopic firms is referred as a “time-inconsistent” discount rate, 
as introduced in behavioral economics in recent years. It is characterized by a weak 
discount in the short term and a strong discount in the long term. This discount rate’s 
function resembles a hyperbolic function, so it is referred to as a quasi-hyperbolic 
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discount rate.18 

Even with the same future interest rate expectations, the investment decisions are 
different depending on how the discount rate is recognized by different firms. Because 
both perceptions may actually occur19, we now examine them both and compare the 
results. Hereafter in this paper, myopic and economically rational firms are referred to 
as time-inconsistent and time-consistent firms, respectively. 

 
(3) Model Solution and Implications 

First we consider the time-consistent investment decision. Figure 8 presents the 
investment threshold and the option value to invest under this case.20 For comparison, 
in addition to the solution under expectations of an interest rate increase (0.5%→1%), 
we also show the solution with constant interest rates at 0.5% and at 1.0%. Because 
time-consistent firms consider all possibilities of interest rate increases at the time they 
invest, their discount rate is higher than under a constant interest rate of 0.5%. For that 
reason, the value after investment expressed by the dotted line is lower than that under 
the case with a constant low interest rate of 0.5%. Consequently, the solution shows that 
time-consistent firms wait to invest until the investment profit x is sufficiently high (see 
Appendix 4 for the details). 

 

                                                           
18 Hyperbolic discount rates are representative examples of myopic behavior. Hyperbolic discount rates increase over 
time because they use hyperbolic functions as discount rates rather than conventional exponential functions. In other 
words, they are expressions with a relatively weak short-term discount and a relatively strong long-term discount. 
However, as the discount rate changes continuously over time, the intertemporal optimization problem becomes 
complex. For that reason Laibson[1997] and others consider a quasi-hyperbolic discount rate which changes 
discretely, and applies the discount rate for the intertemporal optimization problems (Harris and Laibson[2003], etc.). 
In this paper, we follow the method in Grenadier and Wang[2007] which introduces the quasi-hyperbolic discount 
rate to the real options field. 
19 In general, it is said that time-inconsistent discount rates easily emerge under the following conditions: (1) when 
managers change every few years and easily overemphasize current performance, (2) when making long-term 
investments, and (3) when investments have a first mover advantage. 
20 In addition to the parameters used in Figure 5 (see footnote 16), Figures 7−11 also adopt an interest rate increase 
probability of λ=5%. 
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Figure 8. Time-consistent Investment Decision 
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The results for time-inconsistent firms (Figure 9) are exactly the opposite. They 
invest earlier, that is, invest at a lower profit level, than when the interest rate remains 
low at a constant 0.5%. Under expectations of a future interest rate increase, 
time-inconsistent firms consider only interest rates hikes until they make their 
investment decisions. Therefore, they consider the funding costs to be lower if they 
invest before the interest rate rises, and they evaluate the option value to invest as higher. 
In contrast, they evaluate the option value to invest as lower if they make the investment 
after the interest rate rises because the funding costs increase. Consequently, compared 
with the case under a constant low interest rate of 0.5%, when there are expectations of 
interest rate rises time-inconsistent firms have the incentive to invest earlier by the 
perception that the option value will decrease if they wait until the interest rate rises. 
These types of rushed investments are considered “last-minute investments”, which is 
caused by over concerns that the option value will decline if they wait.  

The above scenario can be directly understood by comparing the two option values to 
invest in Figure 9. The thick solid line shows the perceived option value to invest when 
low interest rates continue, and the line connecting the plotted squares shows the 
perceived option value to invest under expectations of a future interest rate increase. In 
the latter case, they believe that if interest rates increase before they invest, the option 
value to invest will decline to the value shown by the solid grey line. Therefore, they 
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evaluate the option value as lower as the expectations of the interest rate increase (see 
Appendix 3 for the details) 

 
Figure 9. Time-inconsistent Investment Decision 
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(4) Case Considering Debt Financing 
We now consider the model where firm’s debt financing and bankruptcy are taken 

into account. 
First, we consider the time-inconsistent firms. In this case, the optimal investment 

problem is expressed by the following equation. 
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The first term shows the value when the firm issues debt and invests after the interest 
rate increase, and the second term shows the value when the firm issues debt and invests 
prior to the interest rate increase. W[i](Xt) (i=0,1) express the firm value under r0 and r1, 
respectively.  
 
 )()()( ][][][

t
i

t
i

t
i XDXEXW += , (24)

where E[i](Xt) and D[i](Xt) are the equity value and the debt value when the risk free rate 
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is r1 or r2. 
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In the time-inconsistent case, if the firm issues debt and invests prior to the interest 
rate increase, the risk free rate is perceived to remain constant at r0, determining the 
amount of debt, the firm’s bankruptcy and the investment timing. 

   For time-consistent firms, the optimal investment problem is expressed as follows. 
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where W[0→1](Xt) expresses the firm value incorporating the interest rate increase 
(r0→r1). 
 
 )()()( ]10[]10[]10[

ttt XDXEXW →→→ += . (28)

E[0→1](Xt) is the equity value incorporating the interest rate increase (r0→r1).  
 
 

{ }

{ }

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

−−

+−−

+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

=

>
−−−−

−−

≤
−−

∈

→

∫
∫

∫

1
][][

1

110

1
0

1
][

1
0

][

1
))(1(

))(1(

1))(1(

max)(

][)()(

][)(

][)(

]10[

ττ
λ

τ

τ

τ

λ
τ

ττ
λ

τ

τ
λλ

λ

λ

τ

τ

τ

bb

b

tb

dsbXee

dsbXe

dsbXe

XE

sax
tsrtr

sax
t

tsr

sax
t

tsr

t
F

t E .

 

(29)

The first term is the equity value when bankruptcy occurs before the interest rate 
increase, and the second term is the equity value when bankruptcy occurs after the 
interest rate increase. Similarly D[0→1](Xt) is the debt value incorporating the interest 
rate increase (r0→r1), with the first term indicating bankruptcy before the interest rate 
increase and the second term bankruptcy after the interest rate increase. 
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As explained above, the time-consistent firms determine the debt financing and 
bankruptcy incorporating all future interest rate increases into their decisions.  
  Figure 10 presents the solutions to the above optimization problems as a graph. 
Because time-consistent firms consider subsequent interest rates increase perfectly at 
the time they invest, the investment is made later and the time interval from investment 
to bankruptcy is longer. Consequently the credit risk of investment is comparatively 
lower (see Appendix 6 for the details).  

 
Figure 10. Investment and Bankruptcy: Time-consistent Firms 
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In contrast, because time-inconsistent firms make last minute investments as 
examined in the previous section, the investment timing is comparatively early and the 
time interval from investment to bankruptcy is relatively short (Figure 11). This 
suggests that time-inconsistent firms choose high credit risks, last minute investments 
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(see Appendix 5 for the details). 
 

Figure 11. Investment and Bankruptcy: Time-inconsistent Firms 
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4. Conclusion 

    In this paper, we have examined the mechanism whereby firm’s debt financing and 
investment become more accelerated and credit risk rises under a low interest rate 
environment from a theoretical perspective using a real options model. We find that 
firms tend to increase debt financing and investment, and credit risk rises not only under 
strong expectations of continued low interest rates but also when there are expectations 
of future interest rate hikes. The main results and their implications are as follows. 

  First, we find that under a continuous low interest rate environment firms invest 
and take on debt even if the investment profits are comparatively low because the low 
interest rate lifts their equity value and makes funding conditions advantageous. We 
also find that under a low interest rate environment the more investments are made, the 
higher the credit risk and the shorter the time interval from investment to bankruptcy. 
For those reasons, credit risk must be managed with greater prudence under a low 
interest rate environment. 

Next, we find that when there are expectations of future interest rate increases, 
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investment decisions vary depending on how firms incorporate this possibility of future 
interest rate rises. The results indicate that time-inconsistent firms, which incorporate 
this possibility in a short-sighted manner, rush to make last minute investments. In 
contrast, time-consistent firms, which incorporate the possibility in an economically 
rational manner, actually decrease investments, carefully considering the likelihood of 
future interest rate hikes. These findings indicate the importance of accurately grasping 
the standards which firms follow in their investment decisions when we analyze the 
economic effects of interest rate increases.  

Finally, we note some future works. This paper assumes that the investment profit 
growth rate remains constant, because we focus our analysis on firm’s debt financing 
and investment under changes in the interest rate environment. The question of how 
much interest rate should change when profit growth rates change would require another 
type of model whereby interest rates and profit growth rates change simultaneously or 
in correlation with each other. Extension to this type of model remains for future 
investigation.  

Also our analysis is limited to debt financing and investment concerning new 
investments of firms. Therefore, we do not consider the debt position of the firms prior 
to making investments, or how the debt position influences the investment decision. In 
reality, the investment decisions of firms with excessive debts may well differ, as well 
as their reactions to changes in the interest rate environment. Extension to a model that 
would facilitate these types of analyses also remains for future investigations. 
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Appendix 1  Optimal Debt Financing Problem 
 

  In Appendix 1 and 2, we explain the debt financing and investment problem when 
interest rates remain constant following Sundaresan and Wang [2007]. In Appendix 1, 
we derive the equity value E (Xt), the debt value D (Xt), the firm value W(Xt) and the 
optimal amount of debt. In Appendix 2, we derive the optimal investment time and 
investment value V(Xt) based on the results of Appendix 1. 

First, we transform the optimization problem of equity value in Equation (2) into a 
bankruptcy decision problem at each time t.  
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The first term of the equation expresses the value when the firm does not go bankrupt at 
time t as (τb∈Ft＋dt), and the second term expresses the value as 0 when the firm goes 
bankrupt. Dividing the first term into the present investment profit (1−τax)(Xt−b) and the 
future equity value E(Xt+dt), the relationship between E (Xt) and E (Xt+dt) can be derived 
as follows (Bellman equation).  
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The equation when the firm does not go bankrupt 
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can be transformed into the following stochastic differential equation. 
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Here we apply Ito’s formula to the term dE(Xt) to derive the differential equation which 
satisfies E (Xt),  
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2
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and the boundary conditions are as follows.  
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The first and second conditions are to determine the optimal bankruptcy threshold bx , 
which not only requires that the equity value becomes 0 at bx  but also that it smoothly 
connects to 0. For that reason, these are referred to as the value matching condition and 
the smooth pasting condition respectively. The third condition requires that when the 
profit grows large the equity value approaches the discounted present value of the profit. 
This is a condition to exclude bubble solutions. Equation (A-5) is known as a Euler 
differential equation, and the solution generally takes the following form.   
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where β is the positive constant defined by Equation (16) and γ is the negative constant 
defined by Equation (12). Substituting Equation (A-7) into the boundary conditions 
(A-6), we obtain three equations with B, C, and xb as unknown variables, which can be 
solved as follows. 
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Substituting these into Equation (A-7), the equity value can be derived as shown in 
Equation (A-9). 
 
 

( ) b
b

b
ax xx

x
x

r
b

r
x

r
b

r
xxE >⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−
−= ,1)(

γ

μμ
τ . (A-9)

In the same manner, the debt value in Equation (3) can be transformed into the 
following Bellman equation, clarifying the relation between D(Xt) and D(Xt+dt). 
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Applying Ito’s formula to Equation (A10), the differential equation which satisfies 
D(Xt) becomes as follows. 
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This equation has an analytical solution. 
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W (x) is then derived as the sum of E(x) and D (x).  
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The optimal amount of debt can be solved by differentiating this firm value by b. 
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where h is the constant defined by Equation (18). Note that at this time the amount of 
debt is dependent on the profit x at the time of investment. The firm value with the 
optimal capital structure is derived by substituting Equation (A-15) into Equation 
(A-14).  
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where ψ is the constant larger than 1 defined by Equation (17). The parts of W(x) other 
than ψ express the firm value when the financing is all from equity. Having the value of 
ψ greater than 1 means the firm value has been increased by optimizing the capital 
structure. 
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Appendix 2  Optimal Investment Problem Considering Debt Financing 

 
In Appendix 2, we seek the optimal investment time and the option value to invest V 

(Xt) by using the optimal debt amount (A-15) and the firm value W(x) (A-16) derived in 
Appendix 1.  

  The optimization problem Equation (9) reverts to the investment decision problem at 
each time t.  
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⎬
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⎨
⎧ −−= −
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tFtt

dtt
ττ
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The first term of the equation shows the value when the investment is made at time t 
and the second term shows the value when the firm does not invest (τ∈Ft＋dt). Because 
the value when the firm does not invest equals the future option value to invest 
e-rdtV(Xt+dt), the relationship between V (Xt) and V (Xt+dt) can be derived as follows 
(Bellman equation).  
 

 ( ) ( ) ( )[ ]{ }dttt
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tt XVeIXWXV +
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The equation when the firm does not invest 
 ( ) ( )[ ]dttt

rdt
t XVeXV +

−= E  (A-19)

can be transformed into the following stochastic differential equation: 
 ( ) ( )[ ]dtttt XdVdtXrV += E . 

(A-20)

We then apply Ito’s formula to the term dV (Xt), to derive the differential equation 
which satisfies V(Xt),  

 ( ) ( ) ( ) 0
2
1 22 =−′+′′ xrVxVxxVx μσ , (A-21)

and the boundary conditions are as follows.  
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These are the conditions to determine the optimal investment threshold xI, and they are 
also the value matching condition and the smooth pasting condition for V (Xt) to smooth 
connect with W(xI)−I at xI. Equation (A-21) is also a Euler differential equation, and the 
solution generally takes the following form.   
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 ( ) γβ xCxBxV += , (A-23)

where β is the positive constant defined by Equation (16) and γ is the negative constant 
defined by Equation (12). Substituting Equation (A-23) into the boundary conditions 
(A-22) and giving the condition V(x)<∞, we obtain three equations with B, C, and xI as 
unknown variables, which can be solved as follows. 
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where ψ is the constant defined by Equation (17), and xI expresses the optimal 
investment threshold. Substituting these into Equation (A-23), the option value to invest 
can be derived as follows.  
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(A-25)

Finally, substituting the investment threshold xI for Equation (A-15) gives the optimal 
debt amount at the optimal investment timing as shown in the following equation. 
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Appendix 3  Optimal Investment Problem for Time-inconsistent Firms 

 
  The optimal investment problem (21) can be transformed into the following Bellman 
equation, and this clarifies the relation between ( )tXV  and ( )dttXV + . 
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where ( )tXV1  expresses the option value to invest after the interest rate increase 
(r0→r1). 
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We now solve the optimal investment problem after the interest rate increase and then 
use that solution to solve the optimal investment problem for the case incorporating the 
possibility of future interest rate increases. 

By applying Ito’s formula to Equation (A-28), we derive the differential equation 
which satisfies ( )tXV1 . 
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where the boundary conditions (A-30) determine the optimal investment threshold )1(
Ix . 

These are the value matching conditions and smooth pasting conditions for ( )xV1  to 
smoothly connect with ( ) IrxI −− μ1

)1(  at )1(
Ix . 

  This equation has an analytical solution.  
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 (A-31)

The optimal investment threshold )1(
Ix  can also be solved from the boundary 

conditions (A-30) as follows. 
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where β1 is the positive root of the characteristic equation to solve the optimization 
problem. 
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The above solution is now used to solve Equation (A-27). By applying Ito’s formula 
to Equation (A-27), we derive the differential equation which satisfies ( )tXV . 
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This equation has an analytical solution. 
 

 

⎪
⎪

⎩

⎪
⎪

⎨

⎧

≥−
−

<⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
−⋅−⋅

=

,,

,,)()(
)(

)(

0

)(
)(

0

)(
)(

11

λ

λ
β

λ

λ
λ

μ

μ
δδ

λ

I

I
I

I
I

xxI
r

x

xx
x

xI
r
xxVxV

xV  (A-36)

where δ expresses the additional discount rate from the interest rate increase (r0→r1).  
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The optimal investment threshold )(λ
Ix  can also be solved numerically as the root of 

the following equation. 
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where λβ  is the solution of the characteristic equation to solve the optimization 
problem: 
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Appendix 4  Optimal Investment Problem for Time-consistent Firms 

 

The optimal investment problem (22) can be transformed into the following Bellman 
equation, and this clarifies the relation between ( )tXV  and ( )dttXV + . 
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where ( )tXV1  expresses the option value to invest after the interest rate increase 
(r0→r1) defined by Equation (A-28). ( )tXWλ  is the discounted present value 
incorporating future interest rate increases.  
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We first derive ( )tXWλ  to solve the optimal investment problem (A-40). 

 By applying Ito’s formula to Equation (A-41), we derive the differential equation 
which satisfies ( )tXWλ . 
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where )(1 xWλ is the discounted present value incorporating future interest rate 
increases.  
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This equation has an analytical solution: 
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Here rλ is the long-term interest rate which considers future interest rate increases: 
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Note that the natural results hold for the interest rate increase probability λ. 
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We now use the above solution to solve Equation (A-40).  Applying Ito’s rule to 
Equation (A-40), we derive the differential equation which satisfies ( )tXV . 
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This equation has an analytical solution. 
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where δ expresses the additional discount rate (A-37) from the interest rate increase 
(r0→r1). 

  The optimal investment threshold )(λ
Ix  can also be solved numerically as the root of 

the following equation: 
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where λβ  is the constant defined by Equation (A-39). 
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Appendix 5  Debt Financing and Investment Problem for Time-inconsistent Firms 
 

The optimal debt financing and investment problem (23) can be transformed into the 
following Bellman equation, and this clarifies the relation between ( )tXV  and 
( )dttXV + . 
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Where ( )tXV1  expresses the option value to invest after the interest rate increase 
(r0→r1). 
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We now solve the debt financing and investment problem after the interest rate increase 
(A-52), and then use that solution to solve the debt financing and investment problem 
for the case incorporating the possibility of future increases in the interest rate (A-51). 

  Because Equation (A-52) is the debt financing and investment problem with a fixed 
interest rate (r1), we can apply an analytical solution derived in Section 2 (Appendix 1). 
First, we derive the equity value E[1] (x) and the debt value D[1] (x) which comprise the 
firm value W[1] (x) as follows.  
 
 

( ) ]1[
]1[

1

]1[

1

]1[

1

]1[

1

]1[ ,1)(
1

b
b

b
ax xx

x
x

r
b

r
x

r
b

r
xxE >

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

−
−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
−=

γ

μμ
τ , (A-53)

where, 
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expresses the bankruptcy threshold, and the firm goes bankrupt when x<xb
[1]. The stock 

price after bankruptcy is zero. Meanwhile γ is the negative root of the following 
characteristic equation to solve the optimization problem. 
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The debt value is then derived as follows.  
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where Wb
[1] (xb

[1]) is the residual value (revised valuation) of the firm at the time of 
bankruptcy xb

[1].  W[1] (x) is derived as the sum of E[1] (x) and D[1] (x). 
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We then seek the optimal amount of debt by differentiating this firm value by b[1] . 
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where h[1] is a constant. 
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Note that the optimal amount of debt depends on the profit x at the time of investment. 
The firm value with optimal capital structure is derived by substituting Equation (A-58) 
into Equation (A-57). 
 
 ]1[

1

1]1[]1[ ,
)1()( b

ax xx
r

xxW >
−

−
=

−

μ
τψ , (A-60)

where ψ[1] is a constant.  
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The option value to invest V[1] (x) can be solved analytically using this ψ[1]. 
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where xI
[1] is the investment threshold. 
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β1 is the constant defined by Equation (A-33). The optimal debt amount at the optimal 
investment timing can also be solved by substituting the investment threshold xI

[1] for x 
in Equation (A-58).  
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Next, we solve Equation (A-51) using the above solution. We apply Ito’s rule to 
Equation (A-51) to derive the differential equation which satisfies V(Xt).  
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where W[0] (x) is the firm value when the interest rate is fixed at r0, and this is solved in 
exactly the same manner as W[1] (x) (it is equal to Equation (A-60), substituting the 
subscript 0 for the subscript 1).  

  This equation has an analytical solution.  
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where δ expresses the additional discount rate (A-37) from the interest rate increase 
(r0→r1). The optimal investment threshold ][λ

Ix  can also be solved numerically as the 
root of the following equation. 
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where βλ is the constant defined by Equation (A-39). 
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Appendix 6  Debt Financing and Investment Problem for Time-consistent Firms 
 

The optimal debt financing and investment problem (27) can be transformed into the 
following Bellman equation, and this clarifies the relation between ( )tXV  and 
( )dttXV + . 
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where ( )tXV ]1[  expresses the option value to invest after the interest rate increase 
(r0→r1) defined by Equation (A-52). W[0→1](Xt) is the firm value incorporating the 
interest rate increase (r0→r1) defined by Equation (28), (29) and (30). Hereafter, we first 
derive W[0→1](Xt) to solve the debt financing and investment problem (A-69).  

Because W[0→1](Xt) is defined as the sum of E[0→1](Xt) and D[0→1](Xt), we first solve 
these problems. We apply Ito’s rule to Equation (29) to derive the differential equation 
which satisfies E[0→1](Xt). 
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where E[1](Xt) is the equity value after the interest rate increase (A-53). This equation 
has an analytical solution: 
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where 
 ( )μ
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expresses the bankruptcy threshold, and the firm goes bankrupt when x<xb
[λ]. The stock 

price after bankruptcy is zero. Meanwhile γλ is the negative root of the following 
characteristic equation to solve the optimization problem. 
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The debt value D[0→1](Xt) is derived in the same manner, as follows. 
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where, Wb
[λ] (xb

[λ]) is the residual value (revised valuation) of the firm at the time of 
bankruptcy xb

[λ]. W[0→1](Xt) is derived as the sum of E[0→1](Xt) and D[0→1](Xt), and the 
optimal amount of debt is also derived as follows. 
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Note that the optimal amount of debt is dependent on the profit x at the time of 
investment. 

Next, we solve Equation (A-69) using the above solution W[0→1](Xt). We apply Ito’s rule 
to Equation (A-69) to derive the differential equation which satisfies V(Xt).  
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Boundary conditions : 
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This equation has an analytical solution. 
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where ( )tXV ]1[  expresses the option value to invest after the interest rate increase 
(r0→r1) derived in Equation (A-62), and δ expresses the additional discount rate (A-37) 
from the interest rate increase (r0→r1). The optimal investment threshold ][λ

Ix  can be 
solved numerically as the root of the following equation: 
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where βλ is the constant defined by Equation (A-39). 
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